Теория хаоса в динамических системах. Chaos Theory (Теория хаоса) (Lorenz Poincaré)

Теория «управляемого хаоса» – это современный феномен, геополитическая доктрина, уходящая своими корнями в древнейшие науки, такие как философия, математика, физика. Понятие «хаос» возникло от названия в древнегреческой мифологии изначального состояния мира, некой «разверзшейся бездны», из которой возникли первые божества.

Попытки научного осмысления понятий «порядок» и «хаос» сформировали теории направленного беспорядка, обширные классификации и типологии хаоса. В древнейшей историко-философской традиции хаос понимался как все собой обнимающее и порождающее начало. В античном мировосприятии безвидный и непостижимый хаос наделен формообразующей силой и означал первичное бесформенное состояние материи и первопотенцию мира.

Современный уровень научных исследований обосновал теорию хаоса на утверждении того, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Стивен Манн – ключевая фигура в развитии геополитической доктрины «управление хаосом», в том числе и в рамках национальных интересов США. Стивен Манн (год рождения 1951) в 1973 г. закончил Оберлинский колледж (степень бакалавра по немецкому языку), в 1974 г. получил степень магистра по немецкой литературе в Корнуэльском университете (Нью-Йорк), с 1976 г. находился на дипломатической службе. Начинал карьеру в качестве сотрудника посольства США на Ямайке. Затем работал в Москве и в отделе по вопросам Советского Союза при Госдепартаменте в Вашингтоне, работал в Операционном Центре Госдепартамента (круглосуточно функционирующем кризисном центре), а также с 1991 по 1992 гг. – в офисе секретаря по обороне, охватывавшем вопросы России и Восточной Европы. В 1985-1986 гг. был стипендиатом Института Гарримана по исследованиям Советского Союза (Harriman Institute for Advanced Soviet Studies) при Колумбийском университете (здесь получил степень магистра по политологии). Был первым временным поверенным в делах США в Микронезии (1986-1988 гг.), Монголии (1988 г.) и Армении (1992 г.). В 1991 г. с отличием закончил Национальный военный колледж (National War College) в Вашингтоне. В 1992-1994 гг. был заместителем посла на Шри-Ланке. В 1995-1998 гг. работал директором отдела Индии, Непала и Шри-Ланки при Госдепартаменте США. С 1998 по май 2001 г. был послом США в Туркменистане. С мая 2001 г. Стивен Манн является специальным представителем президента США в странах Каспийского бассейна. Он – главный представитель американских энергетических интересов в этом регионе, лоббист проекта АБТД (нефтяной трубопровод Актау-Баку-Тбилиси-Джейхан).

По результатам обучения в Национальном военном колледже Стивен Манн в 1992 году подготовил статью, получившую большой резонанс в военно-политическом сообществе: «Теория хаоса и стратегическая мысль». Она была напечатана в главном профессиональном журнале армии США (Mann, Steven R. Chaos Theory and Strategic Thought // Parameters (US Army War College Quarterly), Vol. XXII, Autumn 1992, pp. 54-68).

В этой статье С. Манн излагает следующие тезисы: «Мы можем многому научиться, если рассматривать хаос и перегруппировку как возможности, а не рваться к стабильности как иллюзорной цели…». «Международная среда является превосходным примером хаотической системы... «самоорганизованная критичность» ... соответствует ей в качестве средства анализа... Мир обречен быть хаотичным, потому что многообразные акторы человеческой политики в динамической системе... имеют разные цели и ценности». «Каждый актор в политически критических системах производит энергию конфликта, ...которая провоцирует смену статус-кво, участвуя, таким образом, в создании критического состояния... и любой курс приводит состояние дел к неизбежному катаклизменному переустройству».

Основная мысль, вытекающая из представленных тезисов Манна, – перевести систему в состояние «политической критичности». А далее она – при определенных условиях – сама неизбежно ввергнет себя в катаклизмы хаоса и «переустройства». В контексте его статьи важно отметить, что рассматриваемый подход может использоваться как для социального созидания, так и для асоциального разрушения и геополитических манипуляций.

Совершенно ясно из доклада С. Манна прослеживается не только научно-идеологическая мысль, но и преследование национальной безопасности США. В указанной статье Манн пишет: «С американскими преимуществами в коммуникациях и увеличивающимися возможностями глобального перемещения, вирус (речь идет об «идеологическом заражении») будет самовоспроизводящимся и будет распространяться хаотическим путем. Поэтому наша национальная безопасность будет иметь наилучшие гарантии...». И далее: «Это единственный путь для построения долговременного мирового порядка. Если мы не сможем достичь такого идеологического изменения во всем мире, у нас останутся спорадические периоды спокойствия между катастрофическими переустройствами». Слова Манна о «мировом порядке» здесь – дань «политкорректности». Потому что в его докладе речь идет исключительно о хаосе, в котором, судя по словам Манна о «наилучших гарантиях национальной безопасности США», только у Америки будет возможность сохраниться в качестве «острова порядка» в океане «управляемой критичности» или глобального хаоса.

При этом, до сих пор не существует четкого математической формулировки понятия «хаоса». В этой связи некоторые исследователи теории нередко формулируют хаос как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, которое возникает в динамической системе.

Однако, хаос не случаен. Подтверждением тому могут служить некоторые аспекты астрономии, астрологии и религиозных течений, которые мы не станем затрагивать в нашем тексте. И, более того, несмотря на кажущуюся непредсказуемость, он динамически детерминирован (т.е. определен) и не выходит за рамки четких закономерностей. И, хотя на первый взгляд, непредсказуемость

хаоса граничит со случайностью - это обманчивое впечатление. Согласно Теории Хаоса, когда речь заходит о хаотичном движении цен, то имеется в виду не их случайное движение, а упорядоченное определенным способом движение. И, если динамика рынка и хаотична, это не говорит о ее случайности. Т.е., случайность и непредсказуемость - понятия не однозначные, и это важно понимать.

Непредсказуемость хаоса, как правило, объясняется существенной зависимостью от начальных условий. Такая зависимость указывает на то, что даже самые незначительные просчеты в определении параметров изучаемого объекта могут привести к абсолютно неверному прогнозу. Такие ошибки могут возникнуть в результате незнания или непонимания изначально предлагаемых условий. Неважные на первый взгляд моменты, которым трейдер может по неопытности или лени не придать значения, дадут неверно поставленную задачу, и, как следствие, приведут к неправильному прогнозу. Например, касательно невозможности делать правильные долгосрочные прогнозы погоды существенную зависимость от начальных условий называют "эффектом бабочки". "Эффект бабочки" указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе.

Также отметим, что факторы воздействия могут быть экзогенные (внешние), и эндогенные (внутренние). В качестве характерного примера хаотичного движения и влияния экзогенных и эндогенных факторов можно привести движение бильярдного шара. Кто хоть раз играл в бильярд, прекрасно знает, насколько на конечный результат - попадание шара в лузу - влияет направление удара кием, сила удара, расположение шара относительно других шаров и некоторые другие вводные данные. Малейший просчет в одном из этих факторов приведет к абсолютно непредсказуемой траектории движения шара по столу. Однако, даже при всех правильных действиях игрока движение шара может стать непредсказуемым на одном из этапов движения: после соприкосновения с бортом стола, другими шарами, лузой.

Исходя из вышесказанного можно утверждать, что будущее предсказать невозможно, так как всегда существуют изначальные ошибки измерения, порожденные в том числе незнанием всех факторов и условий. Как итог: мелкие недочеты и/или ошибки порождают крупные последствия, которые, как правило, развиваются лавинообразно, или в геометрической прогрессии.

Существует утверждение, что Хаос - более высокая форма порядка. Однако, более правильно считать Хаос другой формой порядка: с неизбежностью в любой динамической системе за порядком в обычном его понимании следует хаос, а за хаосом - порядок. И, если определять Хаос как беспорядок, то внутри него формируется своя, особенную форму порядка. К примеру, дым от сигарет, поднимающийся сначала в виде упорядоченного столба далее под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными. Другой пример хаотичности в природе - лист дерева или рисунок кожи пальца человека: ученые доказали, что абсолютной идентичности не бывает НИКОГДА.

Движение от порядка к Хаосу и обратно является сущностью Вселенной, какие бы проявления ее мы не рассматривали. Даже в мозгу человека одновременно присутствует упорядоченное и хаотическое начала. Первое соответствует левому полушарию мозга, а второе - правому. Левое полушарие отвечает сознательное поведение человека, за выработку линейных правил и стратегий в поведении человека, где четко определяется "если…, то…". В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга. Не зря древняя китайская мудрость гласит, что мысли человека подобны обезьянам, прыгающим с ветки на ветку.



изучает порядок хаотичной системы, которая выглядит случайной, беспорядочной. При этом Теория Хаоса дает возможность построить модель такой системы, не ставя задачу точного прогнозирования поведения хаотичнойой системы в будущем.

Теория Хаоса начала зарождаться еще в XIX веке, однако действительное научное развитие она получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал причины трудности прогнозирования погоды. Заметим, что до появления работы Лоренца в научной среде господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход был сформулирован в 1776 году французским математиком Пьером Симоном Лапласом. Он утверждал, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Направление его мыслей повторяли знаменитое изречение Архимеда: "Дайте мне точку опоры, и я переверну весь мир". Таким образом, Лаплас и приверженцы его теории говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.д. Лаплас считал, что чем больше человек будет иметь информации, тем точнее будет его прогноз относительно будущего.

Второй подход относительно возможности прогнозирования погоды был сформулирован другим французским математиком Жюлем Анри Пуанкаре. В 1903 году он сказал: "Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем.

Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этом высказывании Пуанкаре и состоит постулат Теории Хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм теории Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются детерминизму Лапласа. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется - невозможно.

Таким образом, мы подошли вплотную к самой Теории Хаоса, изучение которой основано на таких инструментах, как аттракторы и фракталы.



Аттрактор

Аттрактор (англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени.

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотичным) образом.

Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению.

Наряду с этим, любой аттрактор имеет определенные размеры границ, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее и маловероятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов.

Сходимость-расходимость (или складывание и вытягивание соответственно) хаотичного аттрактора систематически устраняет начальную информацию и заменяет ее новой. При схождении траектории сближаются и начинает проявляться эффект близорукости - возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации (этот подход применил в своей Теории Пассионарности Л. Н. Гумилев, назвав такие явления «оберрацией близости» и «оберрацией дальности»).

В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы. То, чем так гордится наука - способностью устанавливать связи между причинами и следствиями - в хаотичных системах невозможно. Причинно-следственной связи между прошлым и будущем в Хаосе не существует.

Также надо отметить, что скорость схождения-расхождения является мерой Хаоса, т.е. численным выражением хаотичности самой системы. Другой статистической мерой Хаоса служит размерность аттрактора.

Подводя промежуточный итог, заметим, что основным свойством хаотичных аттракторов является сходимость-расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются.

На этом этапе поговорим о пересечении фрактальной геометрии и Теории Хаоса. А парадокс заключен в том, что хотя фрактал и является одним из инструментов Теории Хаоса, по сути он - противоположность Хаоса.

Главное различие между Хаосом и Фракталом состоит в том, что первый является динамическим явлением, а второй - статическим. Под динамическим свойством Хаоса понимается непостоянное и непериодическое изменение траекторий.



Фрактал

Фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова. Отсюда проявляется одно из свойств фрактала - самоподобие.

Другое свойство фрактала - дробность. Дробность фрактала является математическим отражением меры неправильности фрактала.

Фактически все, что кажется случайным и неправильным, может быть фракталом (очертания океанов и морей, облака, деревья, биение сердца, популяции и миграции животных, дым от костра или языки пламени).

В итоге, Теория Хаоса предполагает три основных принципа для изучения рынка :

Все в мире следует путем наименьшего сопротивления. Рынок подобен реке, выбирающей свое русло.

Путь наименьшего сопротивления определяется структурой, которая всегда обусловлена причинами и обычно не видна. Если русло реки глубоко и широко, течение медленное, если неглубокое и узкое - на реке образовываются буруны и стремнины. Поведение течения можно предсказать путем исследования русла реки.

Основная и обычно невидимая структура всегда может быть определена и изменена. Структура определяет поведение. Вы можете изменить поток вашей жизни и вашей торговли, распознавая основную структуру вашей торговли.

ТЕОРИЯ ХАОСА

ТЕОРИЯ ХАОСА , теория, цель которой - описание и объяснение крайне сложного поведения систем; они лишь на первый взгляд кажутся беспорядочными и непредсказуемыми, однако, основаны на определенном порядке. Поведение некоторых физических система невозможно описать с помощью обычных законов физики. Это связано с тем, что математический аппарат, необходимый для описания таких систем, слишком сложен даже для сверхмощных компьютеров. Подобные системы иногда называют нелинейными либо хаотическими; к ним относятся сложные механизмы, электрические цепи, а также такие природные явления, как погода. Упорядоченные системы то же могут стать хаотическими, как, например, равномерный поток воды, когда он ударяется о скалу и становится турбулентным. Отсутствие адекватных описаний означает, что стандартное прогнозирование их поведения также невозможно. Теория хаоса предлагает такие математические методы, которые позволяют описывать хаотические системы и даже делать некоторые обобщенные прогнозы их вероятного поведения. Однако она также показывает, что даже малейшее изменение в исходных условиях системы может привести к огромной разнице спустя некоторое время. Таким образом, из-за невозможности узнать точные начальные условия системы невозможно сделать точный прогноз.

Теория хаоса служит для описания явлений, кажущихся сложными, которые можно смоделировать математически простыми численными формулами, многократно повторяемыми. Некоторые хаотичные системы являются фрактальными, т е. содержат взаимно подобные геометрические структуры или компоненты. Другими словами, небольшая часть такой системы будет напоминать всю систему в целом, и потому возможность дать математическое описание части системы означает возможность описания системы в целом. Примером фрактальной структуры служит «губка» Сер-пинского (1): она состоит из многократно повторенных равносторонних треугольников(2-3). Кажущаяся сложной структура живых организмов, например, цветной капусты,также содержит подобные элементы, и потому отдельное со цветие (4) дает представление обо всей головке (5). Движение дыма от погасшей свечи (6) описывается сложным рисунком, который трудно уловить, но оно моделируется с применением понятий ламинарного и турбулентного течений (7). Климат Земли - чрезвычайно сложное явление, однако в основе его лежаг простые законы (8). Солнечный нагрев вызывает испарение воды (9) с поверхности моря,в результате чего образуются облака (10), отражающие солнечный свет и препятствующие его проникно вению к поверхности моря или суши Температура падает, и может выпасть дождь (11). Если бы мы могли осуществить измерения погодных параметров в достаточно широком масштабе и создать чрезвычайно подробную математическую модель,тогда стало бы возможно безошибочное прогнозирование погоды.


Научно-технический энциклопедический словарь .

Смотреть что такое "ТЕОРИЯ ХАОСА" в других словарях:

    - (chaos theory) Математическая теория, занимающаяся анализом случайных, непредсказуемых последствий отдельных небольших отклонений от состояния равновесия (equilibrium) в сложной системе. На нее часто ссылаются в связи с различными вариантами… … Политология. Словарь.

    У этого термина существуют и другие значения, см. Теория хаоса (значения). Диаграмма раздвоения логистической карт … Википедия

    - … Википедия

    Теория хаоса Chaos Theory Сериал «CSI. Место преступления» Номер серии Сезон 2 Серия № Авторы сценария Джош Берман, Эли Талберт Режиссёр {{{Режиссёр}}} … Википедия

    У этого термина существуют и другие значения, см. Теория хаоса (значения). Теория хаоса Chaos Theory … Википедия

    Теория хаоса: Теория хаоса математический аппарат. Теория хаоса фильм 2007 года. См. также Tom Clancy s Splinter Cell: Chaos Theory компьютерная игра … Википедия

    Может ссылаться на: Изучение сложных систем Теория хаоса Теория сложности вычислений Теоретическое рассмотрение Колмогоровской сложности строки, изучаемое в теории алгоритмов, определяемое по длине кратчайшей двоичной программы, которая может… … Википедия

    - (catastrophe theory) Систематизированная классификация внезапных переходов от одного устойчивого состояния к другому. Применима к таким разным экстремальным явлениям, как замерзание жидкости и падение империи, закаливание металла и тюремный бунт … Политология. Словарь.

    Раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими… … Энциклопедия Кольера

    Теория хаоса математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к… … Википедия

Книги

  • Джек Райан: теория хаоса (DVD) , Брана Кеннет. Продолжение истории культового персонажа Тома Клэнси! Финансовый аналитик ЦРУ Райан (Крис Пайн) приезжает на задание в Москву и оказывается в паутине интриг и заговоров, в которую вовлечены…

​Введение в теорию хаоса

Что такое теория хаоса?

Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия - процесс повторения элементов самоподобным образом).

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как "Парк юрского периода", и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Теория хаоса о беспорядке

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

Бифуркационная диаграмма для логистического отображения x rx (1 - x ). Каждый вертикальный сектор показывает аттрактор при соответствующем значении r . На диаграмме видно серию удвоениий периода при увеличении r . После некоторого значения r аттрактор становится хаотическим.

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса



Понравилась статья? Поделитесь с друзьями!