Утверждение о признаках параллелограмма. Вычисляем сумму углов и площадь параллелограмма: свойства и признаки

Параллелограмм. Признаки параллелограмма

Параллелограммом называется четырехугольник, у которого противолежащие стороны попарно параллельны.

Теорема.

Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник – параллелограмм.

Доказательство.

Пусть ABCD – данный параллелограмм, O – точка пересечения диагоналей данного параллелограмма.
Δ AOD = Δ COB по первому признаку равенства треугольников (OD = OB, AO = OC по условию теоремы, ∠ AOD = ∠ COB, как вертикальные углы). Следовательно, ∠ OBC = ∠ ODA. А они являются внутренними накрест лежащими для прямых AD и BC и секущей BD. По признаку параллельности прямых прямые AD и BC параллельны. Так же доказываем, что AB и DC тоже параллельны. По определению данный четырехугольник параллелограмм. Теорема доказана.

Теорема.

Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм.

Пусть ABCD – данный четырехугольник. AD параллельно BC и AD = BC.
Тогда Δ ADB = Δ CBD по первому признаку равенства треугольников (∠ ADB = ∠ CBD, как внутренние накрест лежащие между прямыми AD и BC и секущей DB, AD=BC по условию, DB – общая).
Следовательно, ∠ ABD = ∠ CDB, а эти углы являются внутренними накрест лежащими для прямых AB и CD и секущей DB. По теореме признаке параллельности прямых AB и CD параллельны. Значит, ABCD – параллелограмм. Теорема доказана.

Теорема.

Если в четырехугольнике противолежащие углы равны, такой четырехугольник – параллелограмм.

Доказательство.

Пусть дан четырехугольник ABCD. ∠ DAB = ∠ BCD и ∠ ABC = ∠ CDA.

Проведем диагональ DB. Сумма углов четырех угольника равна сумме углов треугольников ABD и BCD. Так как сумма углов в треугольнике равна 180 º,
∠ DAB + ∠ BCD + ∠ ABC + ∠ CDA.= 360 º. Так как противолежащие углы в четырехугольнике равны, то ∠ DAB + #8736 ABC = 180 º и ∠ BCD + ∠ CDA = 180 º.
Углы BCD и CDA являются внутренними односторонними для прямых AD и ВС и секущей DC, их сумма равна 180 º, поэтому из следствия к теореме о признаке параллельности прямых, прямые AD и ВС параллельны. Так же доказывается, что AB || DC. Таким образом, четырехугольник ABCD – параллелограмм по определению. Теорема доказана.

Для того, чтобы определить является ли данная фигура параллелограммом существует ряд признаков. Рассмотрим три основных признака параллелограмма.

1 признак параллелограмма

Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.

А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.

2 признак параллелограмма

Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.

Доказательство:

Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.

Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.

3 признак параллелограмма

Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.

Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.

Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.

Как в евклидовой геометрии точка и прямая - главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.

Вконтакте

Определение параллелограмма

Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.

Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, - высотой (BE и BF), линии AC и BD - диагоналями.

Внимание! Квадрат, ромб и прямоугольник - это частные случаи параллелограмма.

Стороны и углы: особенности соотношения

Ключевые свойства, по большому счету, предопределены самим обозначением , их доказывает теорема. Эти характеристики следующие:

  1. Стороны, которые являются противоположными, - попарно одинаковые.
  2. Углы, расположенные противоположно друг другу - попарно равны.

Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).

Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.

Характеристики диагоналей фигуры

Основной признак этих линий параллелограмма: точка пересечения разделяет их пополам.

Доказательство: пусть т. Е - это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника - ∆ABE и ∆CDE.

AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.

По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.

Особенности смежных углов

У смежных сторон сумма углов равна 180° , поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:

∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º

Свойства биссектрисы:

  1. , опущенные на одну сторону, являются перпендикулярными;
  2. противолежащие вершины имеют параллельные биссектрисы;
  3. треугольник, полученный проведением биссектрисы, будет равнобедренным.

Определение характерных черт параллелограмма по теореме

Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммом в том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.

Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности - AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.

Вычисление площади фигуры

Площадь этой фигуры находится несколькими методами, одним из самых простых: умножения высоты и основания, к которому она проведена.

Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF - равные, поскольку AB = CD и BE = CF. ABCD - равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:

S ABCD = S EBCF = BE×BC=BE×AD.

Для определения общей формулы площади параллелограмма обозначим высоту как hb , а сторону - b . Соответственно:

Другие способы нахождения площади

Вычисления площади через стороны параллелограмма и угол , который они образуют, - второй известный метод.

,

Sпр-ма - площадь;

a и b - его стороны

α - угол между отрезками a и b.

Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.

Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.

Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.

Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:

.

Применение в векторной алгебре

Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.

Доказательство: из произвольно выбранного начала - т. о. - строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB - стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма

Тождества приведены при следующих условиях:

  1. a и b, α - стороны и угол между ними;
  2. d 1 и d 2 , γ - диагонали и в точке их пересечения;
  3. h a и h b - высоты, опущенные на стороны a и b;
Параметр Формула
Нахождение сторон
по диагоналям и косинусу угла между ними

по диагоналям и стороне

через высоту и противоположную вершину
Нахождение длины диагоналей
по сторонам и величине вершины между ними

На сегодняшнем уроке мы повторим основные свойства параллелограмма, а затем уделим внимание рассмотрению первых двух признаков параллелограмма и докажем их. В ходе доказательства вспомним применение признаков равенства треугольников, которые мы изучали в прошлом году и повторяли на первом уроке. В конце будет приведен пример на применение изученных признаков параллелограмма.

Тема: Четырехугольники

Урок: Признаки параллелограмма

Начнем с того, что вспомним определение параллелограмма.

Определение. Параллелограмм - четырехугольник, у которого каждые две противоположные стороны параллельны (см. Рис. 1).

Рис. 1. Параллелограмм

Вспомним основные свойства параллелограмма :

Для того, чтобы иметь возможность пользоваться всеми этими свойствами, необходимо быть уверенным, что фигура, о которой идет речь, - параллелограмм. Для этого необходимо знать такие факты, как признаки параллелограмма. Первые два из них мы сегодня и рассмотрим.

Теорема. Первый признак параллелограмма. Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник - параллелограмм . .

Рис. 2. Первый признак параллелограмма

Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 2), она разбила его на два треугольника. Запишем, что мы знаем об этих треугольниках:

по первому признаку равенства треугольников.

Из равенства указанных треугольников следует, что по признаку параллельности прямых при пересечении их секущей. Имеем, что:

Доказано.

Теорема. Второй признак параллелограмма. Если в четырехугольнике каждые две противоположные стороны равны, то этот четырехугольник - параллелограмм . .

Рис. 3. Второй признак параллелограмма

Доказательство. Проведем в четырехугольнике диагональ (см. Рис. 3), она разбивает его на два треугольника. Запишем, что мы знаем об этих треугольниках, исходя из формулировки теоремы:

по третьему признаку равенства треугольников.

Из равенства треугольников следует, что и по признаку параллельности прямых при пересечении их секущей. Получаем:

параллелограмм по определению. Что и требовалось доказать.

Доказано.

Рассмотрим пример на применение признаков параллелограмма.

Пример 1. В выпуклом четырехугольнике Найти: а) углы четырехугольника; б) сторону .

Решение. Изобразим Рис. 4.

Рис. 4

параллелограмм по первому признаку параллелограмма.






















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: рассмотреть признаки параллелограмма и закрепить полученные знания в процессе решения задач.

Задачи:

  • образовательная: формирование умений применять признаки параллелограмма для решения задач;
  • развивающая: развитие логического мышления, внимания, навыков самостоятельной работы, навыков самооценки;
  • воспитательная: воспитание интереса к предмету, умение работать в коллективе, культуре общения.

Тип урока: изучение нового материала, первичное закрепление.

Оборудование: интерактивная доска, проектор, карточки с заданием, презентация.

Ход урока

1. Организационный момент.

У: Добрый день, ребята! Сегодня на уроке мы опять будем говорить о параллелограмме. Нам предстоит выполнить много заданий, доказать теоремы и научиться применять их при решении задач. Девизом нашего урока будут слова Ле Карбюзье: "Всё вокруг - геометрия".

2. Актуализация знаний учащихся.

Теоретический опрос

Некоторым учащимся дать индивидуальные задания по карточкам на тему свойства параллелограмма (задания выбирает каждый самостоятельно на слайде презентации по гиперссылке, наводя указатель мышки на фигуру, но не на цифру) , выслушать индивидуально каждого отвечающего.

С остальным - доказать дополнительные свойства параллелограмма. (Сначала обсудить устно доказательство, затем сверить с интерактивной доской).

1°. Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник.

2°. Биссектрисы соседних углов параллелограмма перпендикулярны, а биссектрисы противоположных углов параллельны или лежат на одной прямой.

После подготовки выслушать доказательства дополнительных свойств параллелограмма.

ABCD -параллелограмм,

AE -биссектриса угла BAD.

Доказать: ABE - равнобедренный.

Доказательство:

Так как ABCD - параллелограмм, значит BC || AD, тогда угол EAD = углу BEA как накрест лежащие при параллельных прямых BC и AD и секущей AE. AE - биссектриса угла BAD, значит, угол BAE = углу EAD, поэтому угол BAE = углу BEA.

В ABE угол BAE =углу BEA, значит, ABE - равнобедренный с основанием AE.

Наводящие вопросы:

Сформулируйте признак равнобедренного треугольника.

Какие углы в BAE могут быть равными? Почему?

ABCD -параллелограмм,

BE -биссектриса угла CBA,

AE - биссектриса угла BAD.

Наводящие вопросы:

Когда прямые AE и CK будут параллельными?

Равны ли углы BEA и <3? Почему?

В каком случае AE и CK совпадут?

Подготовка к изучению нового материала

Фронтальная работа с классом (устно).

  • Что означают слова "свойства" и "признак"? Приведите примеры.
  • Что такое обратная теорема?
  • Всегда ли верно утверждение обратное данному? Приведите примеры.

3. Объяснение нового материала.

У.: У каждого объекта есть свои свойства и признаки. Скажите, пожалуйста, чем отличаются свойства от признаков.

Давайте попробуем разобраться в этом вопросе на простом примере. Дан объект - осень. Назовите его свойства: Его признаки:

  • Какими утверждениями являются по отношению друг к другу свойство и признак объекта? (ответ: обратными)
  • Какие свойства в курсе геометрии мы уже изучали? Сформулируйте их. (называют несколько)

Для любого ли свойства можно построить верное обратное утверждение? (разные ответы).

Проверим это на следующих свойствах:

Сделайте вывод: Для любого ли свойства можно построить верное обратное утверждение? (нет, не для любого)

Теперь, давайте вернёмся к нашему четырёхугольнику, вспомним его свойства и сформулируем обратные для них утверждения, т.е:.. (ответ - признаки параллелограмма). Итак, тема сегодняшнего урока: "Признаки параллелограмма".

Итак, назовите свойства параллелограмма.

Сформулируйте обратные свойствам утверждения. (ученики формулируют признаки, учитель их корректирует и формулирует повторно)

Докажем, эти признаки. Первый признак - подробно, второй - коротко, третий - самостоятельно дома.

4. Закрепление изученного материала.

Работа в рабочих тетрадях: решить задачу №11 на интерактивной доске к доске вызвать менее подготовленного учащегося.

Решение задачи № 379 (решение записать на интерактивной доске). Из вершин B и D параллелограмма ABCD, у которого AB BC и А острый, проведены перпендикуляры ВК и DМ к прямой АС. Докажите, что четырёхугольник BMDK - параллелограмм.



Понравилась статья? Поделитесь с друзьями!