Table of mineral acids. Names of some inorganic acids and salts

Select the category Books Mathematics Physics Access control and management Fire safety Useful Equipment suppliers Measuring instruments Humidity measurement - suppliers in the Russian Federation. Pressure measurement. Measuring expenses. Flow meters. Temperature measurement Level measurement. Level gauges. Trenchless technologies Sewage systems. Suppliers of pumps in the Russian Federation. Pump repair. Pipe fittings. Butterfly valves (butterfly valves). Check valves. Control valves. Mesh filters, mud filters, magnetic-mechanical filters. Ball valves. Pipes and pipeline elements. Seals for threads, flanges, etc. Electric motors, electric drives... Manual Alphabets, denominations, units, codes... Alphabets, incl. Greek and Latin. Symbols. Codes. Alpha, beta, gamma, delta, epsilon... Ratings of electrical networks. Conversion of units of measure Decibel. Dream. Background. Units of measurement for what? Units of measurement for pressure and vacuum. Conversion of pressure and vacuum units. Units of length. Conversion of length units (linear dimensions, distances). Volume units. Conversion of volume units. Density units. Conversion of density units. Area units. Conversion of area units. Units of hardness measurement. Conversion of hardness units. Temperature units. Conversion of temperature units in Kelvin / Celsius / Fahrenheit / Rankine / Delisle / Newton / Reamur units of measurement of angles ("angular dimensions"). Conversion of units of measurement of angular velocity and angular acceleration. Standard errors of measurements Gases are different as working media. Nitrogen N2 (refrigerant R728) Ammonia (refrigerant R717). Antifreeze. Hydrogen H^2 (refrigerant R702) Water vapor. Air (Atmosphere) Natural gas - natural gas. Biogas is sewer gas. Liquefied gas. NGL. LNG. Propane-butane. Oxygen O2 (refrigerant R732) Oils and lubricants Methane CH4 (refrigerant R50) Properties of water. Carbon monoxide CO. Carbon monoxide. Carbon dioxide CO2. (Refrigerant R744). Chlorine Cl2 Hydrogen chloride HCl, also known as hydrochloric acid. Refrigerants (refrigerants). Refrigerant (refrigerant) R11 - Fluorotrichloromethane (CFCI3) Refrigerant (Refrigerant) R12 - Difluorodichloromethane (CF2CCl2) Refrigerant (Refrigerant) R125 - Pentafluoroethane (CF2HCF3). Refrigerant (Refrigerant) R134a is 1,1,1,2-Tetrafluoroethane (CF3CFH2). Refrigerant (Refrigerant) R22 - Difluorochloromethane (CF2ClH) Refrigerant (Refrigerant) R32 - Difluoromethane (CH2F2). Refrigerant (Refrigerant) R407C - R-32 (23%) / R-125 (25%) / R-134a (52%) / Percentage by weight. other Materials - thermal properties Abrasives - grit, fineness, grinding equipment. Soils, earth, sand and other rocks. Indicators of loosening, shrinkage and density of soils and rocks. Shrinkage and loosening, loads. Angles of slope, blade. Heights of ledges, dumps. Wood. Lumber. Timber. Logs. Firewood... Ceramics. Adhesives and adhesive joints Ice and snow (water ice) Metals Aluminum and aluminum alloys Copper, bronze and brass Bronze Brass Copper (and classification of copper alloys) Nickel and alloys Correspondence of alloy grades Steels and alloys Reference tables of weights of rolled metal and pipes. +/-5% Pipe weight. Metal weight. Mechanical properties of steels. Cast Iron Minerals. Asbestos. Food products and food raw materials. Properties, etc. Link to another section of the project. Rubbers, plastics, elastomers, polymers. Detailed description of Elastomers PU, TPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE modified), Strength of materials. Sopromat. Construction materials. Physical, mechanical and thermal properties. Concrete. Concrete solution. Solution. Construction fittings. Steel and others. Material applicability tables. Chemical resistance. Temperature applicability. Corrosion resistance. Sealing materials - joint sealants. PTFE (fluoroplastic-4) and derivative materials. FUM tape. Anaerobic adhesives Non-drying (non-hardening) sealants. Silicone sealants (organosilicon). Graphite, asbestos, paronite and derivative materials Paronite. Thermally expanded graphite (TEG, TMG), compositions. Properties. Application. Production. Plumbing flax. Rubber elastomer seals. Heat insulation and thermal insulation materials. (link to project section) Engineering techniques and concepts Explosion protection. Protection from environmental influences. Corrosion. Climatic versions (Material compatibility tables) Classes of pressure, temperature, tightness Drop (loss) of pressure. — Engineering concept. Fire protection. Fires. Theory of automatic control (regulation). TAU Mathematical reference book Arithmetic, Geometric progressions and sums of some number series. Geometric shapes. Properties, formulas: perimeters, areas, volumes, lengths. Triangles, Rectangles, etc. Degrees to radians. Flat figures. Properties, sides, angles, attributes, perimeters, equalities, similarities, chords, sectors, areas, etc. Areas of irregular figures, volumes of irregular bodies. Average signal magnitude. Formulas and methods for calculating area. Charts. Building graphs. Reading graphs. Integral and differential calculus. Tabular derivatives and integrals. Table of derivatives. Table of integrals. Table of antiderivatives. Find the derivative. Find the integral. Diffuras. Complex numbers. Imaginary unit. Linear algebra. (Vectors, matrices) Mathematics for the little ones. Kindergarten - 7th grade. Mathematical logic. Solving equations. Quadratic and biquadratic equations. Formulas. Methods. Solving differential equations Examples of solutions to ordinary differential equations of order higher than the first. Examples of solutions to simplest = analytically solvable first order ordinary differential equations. Coordinate systems. Rectangular Cartesian, polar, cylindrical and spherical. Two-dimensional and three-dimensional. Number systems. Numbers and digits (real, complex, ....). Number systems tables. Power series of Taylor, Maclaurin (=McLaren) and periodic Fourier series. Expansion of functions into series. Tables of logarithms and basic formulas Tables of numerical values ​​Bradis tables. Probability theory and statistics Trigonometric functions, formulas and graphs. sin, cos, tg, ctg….Values ​​of trigonometric functions. Formulas for reducing trigonometric functions. Trigonometric identities. Numerical methods Equipment - standards, sizes Household appliances, home equipment. Drainage and drainage systems. Containers, tanks, reservoirs, tanks. Instrumentation and automation Instrumentation and automation. Temperature measurement. Conveyors, belt conveyors. Containers (link) Fasteners. Laboratory equipment. Pumps and pumping stations Pumps for liquids and pulps. Engineering jargon. Dictionary. Screening. Filtration. Separation of particles through meshes and sieves. The approximate strength of ropes, cables, cords, ropes made of various plastics. Rubber products. Joints and connections. Diameters are conventional, nominal, DN, DN, NPS and NB. Metric and inch diameters. SDR. Keys and keyways. Communication standards. Signals in automation systems (instrumentation and control systems) Analog input and output signals of instruments, sensors, flow meters and automation devices. Connection interfaces. Communication protocols (communications) Telephone communications. Pipe fittings. Taps, valves, valves... Construction lengths. Flanges and threads. Standards. Connecting dimensions. Threads. Designations, dimensions, uses, types... (reference link) Connections ("hygienic", "aseptic") of pipelines in the food, dairy and pharmaceutical industries. Pipes, pipelines. Pipe diameters and other characteristics. Selection of pipeline diameter. Flow rates. Expenses. Strength. Selection tables, Pressure drop. Copper pipes. Pipe diameters and other characteristics. Polyvinyl chloride (PVC) pipes. Pipe diameters and other characteristics. Polyethylene pipes. Pipe diameters and other characteristics. HDPE polyethylene pipes. Pipe diameters and other characteristics. Steel pipes (including stainless steel). Pipe diameters and other characteristics. Steel pipe. The pipe is stainless. Stainless steel pipes. Pipe diameters and other characteristics. The pipe is stainless. Carbon steel pipes. Pipe diameters and other characteristics. Steel pipe. Fitting. Flanges according to GOST, DIN (EN 1092-1) and ANSI (ASME). Flange connection. Flange connections. Flange connection. Pipeline elements. Electric lamps Electrical connectors and wires (cables) Electric motors. Electric motors. Electrical switching devices. (Link to section) Standards for the personal life of engineers Geography for engineers. Distances, routes, maps….. Engineers in everyday life. Family, children, recreation, clothing and housing. Children of engineers. Engineers in offices. Engineers and other people. Socialization of engineers. Curiosities. Resting engineers. This shocked us. Engineers and food. Recipes, benefits. Tricks for restaurants. International trade for engineers. Let's learn to think like a huckster. Transport and travel. Personal cars, bicycles... Physics and chemistry of man. Economics for engineers. Bormotology of financiers - in human language. Technological concepts and drawings Writing, drawing, office paper and envelopes. Standard photo sizes. Ventilation and air conditioning. Water supply and sewerage Hot water supply (DHW). Drinking water supply Waste water. Cold water supply Electroplating industry Refrigeration Steam lines/systems. Condensate lines/systems. Steam lines. Condensate pipelines. Food industry Natural gas supply Welding metals Symbols and designations of equipment on drawings and diagrams. Conventional graphical representations in heating, ventilation, air conditioning and heating and cooling projects, according to ANSI/ASHRAE Standard 134-2005. Sterilization of equipment and materials Heat supply Electronic industry Electricity supply Physical reference book Alphabets. Accepted notations. Basic physical constants. Humidity is absolute, relative and specific. Air humidity. Psychrometric tables. Ramzin diagrams. Time Viscosity, Reynolds Number (Re). Viscosity units. Gases. Properties of gases. Individual gas constants. Pressure and Vacuum Vacuum Length, distance, linear dimension Sound. Ultrasound. Sound absorption coefficients (link to another section) Climate. Climate data. Natural data. SNiP 01/23/99. Construction climatology. (Climate data statistics) SNIP 01/23/99. Table 3 - Average monthly and annual air temperature, °C. Former USSR. SNIP 01/23/99 Table 1. Climatic parameters of the cold period of the year. RF. SNIP 01/23/99 Table 2. Climatic parameters of the warm period of the year. Former USSR. SNIP 01/23/99 Table 2. Climatic parameters of the warm period of the year. RF. SNIP 23-01-99 Table 3. Average monthly and annual air temperature, °C. RF. SNiP 01/23/99. Table 5a* - Average monthly and annual partial pressure of water vapor, hPa = 10^2 Pa. RF. SNiP 01/23/99. Table 1. Climatic parameters of the cold season. Former USSR. Densities. Weights. Specific gravity. Bulk density. Surface tension. Solubility. Solubility of gases and solids. Light and color. Coefficients of reflection, absorption and refraction. Color alphabet:) - Designations (codings) of color (colors). Properties of cryogenic materials and media. Tables. Friction coefficients for various materials. Thermal quantities, including boiling, melting, flame, etc.... for more information, see: Adiabatic coefficients (indicators). Convection and total heat exchange. Coefficients of thermal linear expansion, thermal volumetric expansion. Temperatures, boiling, melting, other... Conversion of temperature units. Flammability. Softening temperature. Boiling points Melting points Thermal conductivity. Thermal conductivity coefficients. Thermodynamics. Specific heat of vaporization (condensation). Enthalpy of vaporization. Specific heat of combustion (calorific value). Oxygen requirement. Electrical and magnetic quantities Electrical dipole moments. Permittivity. Electrical constant. Electromagnetic wavelengths (reference book of another section) Magnetic field strengths Concepts and formulas for electricity and magnetism. Electrostatics. Piezoelectric modules. Electrical strength of materials Electrical current Electrical resistance and conductivity. Electronic potentials Chemical reference book "Chemical alphabet (dictionary)" - names, abbreviations, prefixes, designations of substances and compounds. Aqueous solutions and mixtures for metal processing. Aqueous solutions for applying and removing metal coatings. Aqueous solutions for cleaning from carbon deposits (asphalt-resin deposits, carbon deposits from internal combustion engines...) Aqueous solutions for passivation. Aqueous solutions for etching - removing oxides from the surface Aqueous solutions for phosphating Aqueous solutions and mixtures for chemical oxidation and coloring of metals. Aqueous solutions and mixtures for chemical polishing Degreasing aqueous solutions and organic solvents pH value. pH tables. Combustion and explosions. Oxidation and reduction. Classes, categories, designations of danger (toxicity) of chemicals. Periodic table of chemical elements by D.I. Mendeleev. Periodic table. Density of organic solvents (g/cm3) depending on temperature. 0-100 °C. Properties of solutions. Dissociation constants, acidity, basicity. Solubility. Mixtures. Thermal constants of substances. Enthalpies. Entropy. Gibbs energies... (link to the chemical directory of the project) Electrical engineering Regulators Systems of guaranteed and uninterrupted power supply. Dispatch and control systems Structured cabling systems Data centers

7. Acids. Salt. Relationship between classes of inorganic substances

7.1. Acids

Acids are electrolytes, upon the dissociation of which only hydrogen cations H + are formed as positively charged ions (more precisely, hydronium ions H 3 O +).

Another definition: acids are complex substances consisting of a hydrogen atom and acid residues (Table 7.1).

Table 7.1

Formulas and names of some acids, acid residues and salts

Acid formulaAcid nameAcid residue (anion)Name of salts (average)
HFHydrofluoric (fluoric)F −Fluorides
HClHydrochloric (hydrochloric)Cl −Chlorides
HBrHydrobromicBr−Bromides
HIHydroiodideI −Iodides
H2SHydrogen sulfideS 2−Sulfides
H2SO3SulphurousSO 3 2 −Sulfites
H2SO4SulfuricSO 4 2 −Sulfates
HNO2NitrogenousNO2−Nitrites
HNO3NitrogenNO 3 −Nitrates
H2SiO3SiliconSiO 3 2 −Silicates
HPO 3MetaphosphoricPO 3 −Metaphosphates
H3PO4OrthophosphoricPO 4 3 −Orthophosphates (phosphates)
H4P2O7Pyrophosphoric (biphosphoric)P 2 O 7 4 −Pyrophosphates (diphosphates)
HMnO4ManganeseMnO 4 −Permanganates
H2CrO4ChromeCrO 4 2 −Chromates
H2Cr2O7DichromeCr 2 O 7 2 −Dichromates (bichromates)
H2SeO4SeleniumSeO 4 2 −Selenates
H3BO3BornayaBO 3 3 −Orthoborates
HClOHypochlorousClO –Hypochlorites
HClO2ChlorideClO2−Chlorites
HClO3ChlorousClO3−Chlorates
HClO4ChlorineClO 4 −Perchlorates
H2CO3CoalCO 3 3 −Carbonates
CH3COOHVinegarCH 3 COO −Acetates
HCOOHAntHCOO −Formiates

Under normal conditions, acids can be solids (H 3 PO 4, H 3 BO 3, H 2 SiO 3) and liquids (HNO 3, H 2 SO 4, CH 3 COOH). These acids can exist both individually (100% form) and in the form of diluted and concentrated solutions. For example, H 2 SO 4 , HNO 3 , H 3 PO 4 , CH 3 COOH are known both individually and in solutions.

A number of acids are known only in solutions. These are all hydrogen halides (HCl, HBr, HI), hydrogen sulfide H 2 S, hydrogen cyanide (hydrocyanic HCN), carbonic H 2 CO 3, sulfurous H 2 SO 3 acid, which are solutions of gases in water. For example, hydrochloric acid is a mixture of HCl and H 2 O, carbonic acid is a mixture of CO 2 and H 2 O. It is clear that using the expression “hydrochloric acid solution” is incorrect.

Most acids are soluble in water; silicic acid H 2 SiO 3 is insoluble. The overwhelming majority of acids have a molecular structure. Examples of structural formulas of acids:

In most oxygen-containing acid molecules, all hydrogen atoms are bonded to oxygen. But there are exceptions:


Acids are classified according to a number of characteristics (Table 7.2).

Table 7.2

Classification of acids

Classification signAcid typeExamples
Number of hydrogen ions formed upon complete dissociation of an acid moleculeMonobaseHCl, HNO3, CH3COOH
DibasicH2SO4, H2S, H2CO3
TribasicH3PO4, H3AsO4
The presence or absence of an oxygen atom in a moleculeOxygen-containing (acid hydroxides, oxoacids)HNO2, H2SiO3, H2SO4
Oxygen-freeHF, H2S, HCN
Degree of dissociation (strength)Strong (completely dissociate, strong electrolytes)HCl, HBr, HI, H2SO4 (diluted), HNO3, HClO3, HClO4, HMnO4, H2Cr2O7
Weak (partially dissociate, weak electrolytes)HF, HNO 2, H 2 SO 3, HCOOH, CH 3 COOH, H 2 SiO 3, H 2 S, HCN, H 3 PO 4, H 3 PO 3, HClO, HClO 2, H 2 CO 3, H 3 BO 3, H 2 SO 4 (conc)
Oxidative propertiesOxidizing agents due to H + ions (conditionally non-oxidizing acids)HCl, HBr, HI, HF, H 2 SO 4 (dil), H 3 PO 4, CH 3 COOH
Oxidizing agents due to anion (oxidizing acids)HNO 3, HMnO 4, H 2 SO 4 (conc), H 2 Cr 2 O 7
Anion reducing agentsHCl, HBr, HI, H 2 S (but not HF)
Thermal stabilityExist only in solutionsH 2 CO 3, H 2 SO 3, HClO, HClO 2
Easily decomposes when heatedH 2 SO 3 , HNO 3 , H 2 SiO 3
Thermally stableH 2 SO 4 (conc), H 3 PO 4

All general chemical properties of acids are due to the presence in their aqueous solutions of excess hydrogen cations H + (H 3 O +).

1. Due to the excess of H + ions, aqueous solutions of acids change the color of litmus violet and methyl orange to red (phenolphthalein does not change color and remains colorless). In an aqueous solution of weak carbonic acid, litmus is not red, but pink; a solution over a precipitate of very weak silicic acid does not change the color of the indicators at all.

2. Acids interact with basic oxides, bases and amphoteric hydroxides, ammonia hydrate (see Chapter 6).

Example 7.1. To carry out the transformation BaO → BaSO 4 you can use: a) SO 2; b) H 2 SO 4; c) Na 2 SO 4; d) SO 3.

Solution. The transformation can be carried out using H 2 SO 4:

BaO + H 2 SO 4 = BaSO 4 ↓ + H 2 O

BaO + SO 3 = BaSO 4

Na 2 SO 4 does not react with BaO, and in the reaction of BaO with SO 2 barium sulfite is formed:

BaO + SO 2 = BaSO 3

Answer: 3).

3. Acids react with ammonia and its aqueous solutions to form ammonium salts:

HCl + NH 3 = NH 4 Cl - ammonium chloride;

H 2 SO 4 + 2NH 3 = (NH 4) 2 SO 4 - ammonium sulfate.

4. Non-oxidizing acids react with metals located in the activity series up to hydrogen to form a salt and release hydrogen:

H 2 SO 4 (diluted) + Fe = FeSO 4 + H 2

2HCl + Zn = ZnCl 2 = H 2

The interaction of oxidizing acids (HNO 3, H 2 SO 4 (conc)) with metals is very specific and is considered when studying the chemistry of elements and their compounds.

5. Acids interact with salts. The reaction has a number of features:

a) in most cases, when a stronger acid reacts with a salt of a weaker acid, a salt of a weak acid and a weak acid are formed, or, as they say, a stronger acid displaces a weaker one. The series of decreasing strength of acids looks like this:

Examples of reactions occurring:

2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2

H 2 CO 3 + Na 2 SiO 3 = Na 2 CO 3 + H 2 SiO 3 ↓

2CH 3 COOH + K 2 CO 3 = 2CH 3 COOK + H 2 O + CO 2

3H 2 SO 4 + 2K 3 PO 4 = 3K 2 SO 4 + 2H 3 PO 4

Do not interact with each other, for example, KCl and H 2 SO 4 (diluted), NaNO 3 and H 2 SO 4 (diluted), K 2 SO 4 and HCl (HNO 3, HBr, HI), K 3 PO 4 and H 2 CO 3, CH 3 COOK and H 2 CO 3;

b) in some cases, a weaker acid displaces a stronger one from a salt:

CuSO 4 + H 2 S = CuS↓ + H 2 SO 4

3AgNO 3 (dil) + H 3 PO 4 = Ag 3 PO 4 ↓ + 3HNO 3.

Such reactions are possible when the precipitates of the resulting salts do not dissolve in the resulting dilute strong acids (H 2 SO 4 and HNO 3);

c) in the case of the formation of precipitates that are insoluble in strong acids, a reaction may occur between a strong acid and a salt formed by another strong acid:

BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl

Ba(NO 3) 2 + H 2 SO 4 = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

Example 7.2. Indicate the row containing the formulas of substances that react with H 2 SO 4 (diluted).

1) Zn, Al 2 O 3, KCl (p-p); 3) NaNO 3 (p-p), Na 2 S, NaF; 2) Cu(OH) 2, K 2 CO 3, Ag; 4) Na 2 SO 3, Mg, Zn(OH) 2.

Solution. All substances of row 4 interact with H 2 SO 4 (dil):

Na 2 SO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + SO 2

Mg + H 2 SO 4 = MgSO 4 + H 2

Zn(OH) 2 + H 2 SO 4 = ZnSO 4 + 2H 2 O

In row 1) the reaction with KCl (p-p) is not feasible, in row 2) - with Ag, in row 3) - with NaNO 3 (p-p).

Answer: 4).

6. Concentrated sulfuric acid behaves very specifically in reactions with salts. This is a non-volatile and thermally stable acid, therefore it displaces all strong acids from solid (!) salts, since they are more volatile than H2SO4 (conc):

KCl (tv) + H 2 SO 4 (conc.) KHSO 4 + HCl

2KCl (s) + H 2 SO 4 (conc) K 2 SO 4 + 2HCl

Salts formed by strong acids (HBr, HI, HCl, HNO 3, HClO 4) react only with concentrated sulfuric acid and only when in a solid state

Example 7.3. Concentrated sulfuric acid, unlike dilute one, reacts:

3) KNO 3 (tv);

Solution. Both acids react with KF, Na 2 CO 3 and Na 3 PO 4, and only H 2 SO 4 (conc.) react with KNO 3 (solid).

Answer: 3).

Methods for producing acids are very diverse.

Anoxic acids receive:

  • by dissolving the corresponding gases in water:

HCl (g) + H 2 O (l) → HCl (p-p)

H 2 S (g) + H 2 O (l) → H 2 S (solution)

  • from salts by displacement with stronger or less volatile acids:

FeS + 2HCl = FeCl 2 + H 2 S

KCl (tv) + H 2 SO 4 (conc) = KHSO 4 + HCl

Na 2 SO 3 + H 2 SO 4 Na 2 SO 4 + H 2 SO 3

Oxygen-containing acids receive:

  • by dissolving the corresponding acidic oxides in water, while the degree of oxidation of the acid-forming element in the oxide and acid remains the same (with the exception of NO 2):

N2O5 + H2O = 2HNO3

SO 3 + H 2 O = H 2 SO 4

P 2 O 5 + 3H 2 O 2H 3 PO 4

  • oxidation of non-metals with oxidizing acids:

S + 6HNO 3 (conc) = H 2 SO 4 + 6NO 2 + 2H 2 O

  • by displacing a strong acid from a salt of another strong acid (if a precipitate insoluble in the resulting acids precipitates):

Ba(NO 3) 2 + H 2 SO 4 (diluted) = BaSO 4 ↓ + 2HNO 3

AgNO 3 + HCl = AgCl↓ + HNO 3

  • by displacing a volatile acid from its salts with a less volatile acid.

For this purpose, non-volatile, thermally stable concentrated sulfuric acid is most often used:

NaNO 3 (tv) + H 2 SO 4 (conc.) NaHSO 4 + HNO 3

KClO 4 (tv) + H 2 SO 4 (conc.) KHSO 4 + HClO 4

  • displacement of a weaker acid from its salts by a stronger acid:

Ca 3 (PO 4) 2 + 3H 2 SO 4 = 3CaSO 4 ↓ + 2H 3 PO 4

NaNO 2 + HCl = NaCl + HNO 2

K 2 SiO 3 + 2HBr = 2KBr + H 2 SiO 3 ↓

Acid formula Acid name Name of salt Corresponding oxide
HCl Solyanaya Chlorides ----
HI Hydroiodic Iodides ----
HBr Hydrobromic Bromides ----
HF Fluorescent Fluorides ----
HNO3 Nitrogen Nitrates N2O5
H2SO4 Sulfuric Sulfates SO 3
H2SO3 Sulphurous Sulfites SO 2
H2S Hydrogen sulfide Sulfides ----
H2CO3 Coal Carbonates CO2
H2SiO3 Silicon Silicates SiO2
HNO2 Nitrogenous Nitrites N2O3
H3PO4 Phosphorus Phosphates P2O5
H3PO3 Phosphorous Phosphites P2O3
H2CrO4 Chrome Chromates CrO3
H2Cr2O7 Two-chrome Bichromates CrO3
HMnO4 Manganese Permanganates Mn2O7
HClO4 Chlorine Perchlorates Cl2O7

Acids can be obtained in the laboratory:

1) when dissolving acid oxides in water:

N 2 O 5 + H 2 O → 2HNO 3;

CrO 3 + H 2 O → H 2 CrO 4 ;

2) when salts interact with strong acids:

Na 2 SiO 3 + 2HCl → H 2 SiO 3 ¯ + 2NaCl;

Pb(NO 3) 2 + 2HCl → PbCl 2 ¯ + 2HNO 3.

Acids interact with metals, bases, basic and amphoteric oxides, amphoteric hydroxides and salts:

Zn + 2HCl → ZnCl 2 + H 2 ;

Cu + 4HNO 3 (concentrated) → Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

H 2 SO 4 + Ca(OH) 2 → CaSO 4 ¯ + 2H 2 O;

2HBr + MgO → MgBr 2 + H 2 O;

6HI ​​+ Al 2 O 3 → 2AlBr 3 + 3H 2 O;

H 2 SO 4 + Zn(OH) 2 → ZnSO 4 + 2H 2 O;

AgNO 3 + HCl → AgCl¯ + HNO 3 .

Typically, acids react only with those metals that come before hydrogen in the electrochemical voltage series, and free hydrogen is released. Such acids do not interact with low-active metals (voltages come after hydrogen in the electrochemical series). Acids, which are strong oxidizing agents (nitric, concentrated sulfuric), react with all metals, with the exception of noble ones (gold, platinum), but in this case it is not hydrogen that is released, but water and an oxide, for example, SO 2 or NO 2.

A salt is the product of replacing hydrogen in an acid with a metal.

All salts are divided into:

average– NaCl, K 2 CO 3, KMnO 4, Ca 3 (PO 4) 2, etc.;

sour– NaHCO 3, KH 2 PO 4;

main – CuOHCl, Fe(OH) 2 NO 3.

A middle salt is the product of complete replacement of hydrogen ions in an acid molecule with metal atoms.

Acidic salts contain hydrogen atoms that can participate in chemical exchange reactions. In acidic salts, incomplete replacement of hydrogen atoms with metal atoms occurred.

Basic salts are the product of incomplete replacement of hydroxo groups of polyvalent metal bases with acidic residues. Basic salts always contain a hydroxo group.

Medium salts are obtained by the interaction:

1) acids and bases:

NaOH + HCl → NaCl + H 2 O;

2) acid and basic oxide:



H 2 SO 4 + CaO → CaSO 4 ¯ + H 2 O;

3) acid oxide and base:

SO 2 + 2KOH → K 2 SO 3 + H 2 O;

4) acidic and basic oxides:

MgO + CO 2 → MgCO 3 ;

5) metal with acid:

Fe + 6HNO 3 (concentrated) → Fe(NO 3) 3 + 3NO 2 + 3H 2 O;

6) two salts:

AgNO 3 + KCl → AgCl¯ + KNO 3 ;

7) salts and acids:

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ¯;

8) salts and alkalis:

CuSO 4 + 2CsOH → Cu(OH) 2 ¯ + Cs 2 SO 4.

Acid salts are obtained:

1) when neutralizing polybasic acids with alkali in excess acid:

H 3 PO 4 + NaOH → NaH 2 PO 4 + H 2 O;

2) during the interaction of medium salts with acids:

CaCO 3 + H 2 CO 3 → Ca(HCO 3) 2;

3) during the hydrolysis of salts formed by a weak acid:

Na 2 S + H 2 O → NaHS + NaOH.

The main salts are obtained:

1) during a reaction between a polyvalent metal base and an acid in excess of the base:

Cu(OH) 2 + HCl → CuOHCl + H 2 O;

2) during the interaction of medium salts with alkalis:

СuCl 2 + KOH → CuOHCl + KCl;

3) during the hydrolysis of medium salts formed by weak bases:

AlCl 3 +H 2 O → AlOHCl 2 + HCl.

Salts can interact with acids, alkalis, other salts, and water (hydrolysis reaction):

2H 3 PO 4 + 3Ca(NO 3) 2 → Ca 3 (PO 4) 2 ¯ + 6HNO 3 ;

FeCl 3 + 3NaOH → Fe(OH) 3 ¯ + 3NaCl;

Na 2 S + NiCl 2 → NiS¯ + 2NaCl.

In any case, the ion exchange reaction proceeds to completion only when a poorly soluble, gaseous or weakly dissociating compound is formed.

In addition, salts can interact with metals, provided that the metal is more active (has a more negative electrode potential) than the metal included in the salt:

Fe + CuSO 4 → FeSO 4 + Cu.

Salts are also characterized by decomposition reactions:

BaCO 3 → BaO + CO 2;

2KClO 3 → 2KCl + 3O 2.

Laboratory work No. 1

OBTAINING AND PROPERTIES

BASES, ACIDS AND SALTS

Experiment 1. Preparation of alkalis.

1.1. Interaction of metal with water.

Pour distilled water into a crystallizer or porcelain cup (about 1/2 of the vessel). Obtain from your teacher a piece of sodium metal, previously dried with filter paper. Drop a piece of sodium into a crystallizer with water. Once the reaction is complete, add a few drops of phenolphthalein. Note the observed phenomena and create an equation for the reaction. Name the resulting compound and write down its structural formula.



1.2. Interaction of metal oxide with water.

Pour distilled water into a test tube (1/3 of the test tube) and place a lump of CaO in it, mix thoroughly, add 1 - 2 drops of phenolphthalein. Note the observed phenomena, write the reaction equation. Name the resulting compound and give its structural formula.

Acids- electrolytes, upon dissociation of which only H + ions are formed from positive ions:

HNO 3 ↔ H + + NO 3 - ;

CH 3 COOH↔ H + +CH 3 COO — .

All acids are classified into inorganic and organic (carboxylic), which also have their own (internal) classifications.

Under normal conditions, a significant amount of inorganic acids exist in a liquid state, some in a solid state (H 3 PO 4, H 3 BO 3).

Organic acids with up to 3 carbon atoms are highly mobile, colorless liquids with a characteristic pungent odor; acids with 4-9 carbon atoms are oily liquids with an unpleasant odor, and acids with a large number of carbon atoms are solids insoluble in water.

Chemical formulas of acids

Let us consider the chemical formulas of acids using the example of several representatives (both inorganic and organic): hydrochloric acid - HCl, sulfuric acid - H 2 SO 4, phosphoric acid - H 3 PO 4, acetic acid - CH 3 COOH and benzoic acid - C 6 H5COOH. The chemical formula shows the qualitative and quantitative composition of the molecule (how many and which atoms are included in a particular compound). Using the chemical formula, you can calculate the molecular weight of acids (Ar(H) = 1 amu, Ar(Cl) = 35.5 amu. amu, Ar(P) = 31 amu, Ar(O) = 16 amu, Ar(S) = 32 amu, Ar(C) = 12 a.m.):

Mr(HCl) = Ar(H) + Ar(Cl);

Mr(HCl) = 1 + 35.5 = 36.5.

Mr(H 2 SO 4) = 2×Ar(H) + Ar(S) + 4×Ar(O);

Mr(H 2 SO 4) = 2×1 + 32 + 4×16 = 2 + 32 + 64 = 98.

Mr(H 3 PO 4) = 3×Ar(H) + Ar(P) + 4×Ar(O);

Mr(H 3 PO 4) = 3×1 + 31 + 4×16 = 3 + 31 + 64 = 98.

Mr(CH 3 COOH) = 3×Ar(C) + 4×Ar(H) + 2×Ar(O);

Mr(CH 3 COOH) = 3×12 + 4×1 + 2×16 = 36 + 4 + 32 = 72.

Mr(C 6 H 5 COOH) = 7×Ar(C) + 6×Ar(H) + 2×Ar(O);

Mr(C 6 H 5 COOH) = 7 × 12 + 6 × 1 + 2 × 16 = 84 + 6 + 32 = 122.

Structural (graphic) formulas of acids

The structural (graphic) formula of a substance is more visual. It shows how atoms are connected to each other within a molecule. Let us indicate the structural formulas of each of the above compounds:

Rice. 1. Structural formula of hydrochloric acid.

Rice. 2. Structural formula of sulfuric acid.

Rice. 3. Structural formula of phosphoric acid.

Rice. 4. Structural formula of acetic acid.

Rice. 5. Structural formula of benzoic acid.

Ionic formulas

All inorganic acids are electrolytes, i.e. capable of dissociating in an aqueous solution into ions:

HCl ↔ H + + Cl - ;

H 2 SO 4 ↔ 2H + + SO 4 2- ;

H 3 PO 4 ↔ 3H + + PO 4 3- .

Examples of problem solving

EXAMPLE 1

Exercise With complete combustion of 6 g of organic matter, 8.8 g of carbon monoxide (IV) and 3.6 g of water were formed. Determine the molecular formula of the burned substance if it is known that its molar mass is 180 g/mol.
Solution Let’s draw up a diagram of the combustion reaction of an organic compound, designating the number of carbon, hydrogen and oxygen atoms as “x”, “y” and “z”, respectively:

C x H y O z + O z →CO 2 + H 2 O.

Let us determine the masses of the elements that make up this substance. Values ​​of relative atomic masses taken from the Periodic Table of D.I. Mendeleev, round to whole numbers: Ar(C) = 12 amu, Ar(H) = 1 amu, Ar(O) = 16 amu.

m(C) = n(C)×M(C) = n(CO 2)×M(C) = ×M(C);

m(H) = n(H)×M(H) = 2×n(H 2 O)×M(H) = ×M(H);

Let's calculate the molar masses of carbon dioxide and water. As is known, the molar mass of a molecule is equal to the sum of the relative atomic masses of the atoms that make up the molecule (M = Mr):

M(CO 2) = Ar(C) + 2×Ar(O) = 12+ 2×16 = 12 + 32 = 44 g/mol;

M(H 2 O) = 2×Ar(H) + Ar(O) = 2×1+ 16 = 2 + 16 = 18 g/mol.

m(C) = ×12 = 2.4 g;

m(H) = 2 × 3.6 / 18 × 1 = 0.4 g.

m(O) = m(C x H y O z) - m(C) - m(H) = 6 - 2.4 - 0.4 = 3.2 g.

Let's determine the chemical formula of the compound:

x:y:z = m(C)/Ar(C) : m(H)/Ar(H) : m(O)/Ar(O);

x:y:z= 2.4/12:0.4/1:3.2/16;

x:y:z= 0.2: 0.4: 0.2 = 1: 2: 1.

This means the simplest formula of the compound is CH 2 O and the molar mass is 30 g/mol.

To find the true formula of an organic compound, we find the ratio of the true and resulting molar masses:

M substance / M(CH 2 O) = 180 / 30 = 6.

This means that the indices of carbon, hydrogen and oxygen atoms should be 6 times higher, i.e. the formula of the substance will be C 6 H 12 O 6. This is glucose or fructose.

Answer C6H12O6

EXAMPLE 2

Exercise Derive the simplest formula of a compound in which the mass fraction of phosphorus is 43.66%, and the mass fraction of oxygen is 56.34%.
Solution The mass fraction of element X in a molecule of the composition NX is calculated using the following formula:

ω (X) = n × Ar (X) / M (HX) × 100%.

Let us denote the number of phosphorus atoms in the molecule by “x”, and the number of oxygen atoms by “y”

Let's find the corresponding relative atomic masses of the elements phosphorus and oxygen (the values ​​of the relative atomic masses taken from D.I. Mendeleev's Periodic Table are rounded to whole numbers).

Ar(P) = 31; Ar(O) = 16.

We divide the percentage content of elements into the corresponding relative atomic masses. Thus we will find the relationship between the number of atoms in the molecule of the compound:

x:y = ω(P)/Ar(P) : ω (O)/Ar(O);

x:y = 43.66/31: 56.34/16;

x:y: = 1.4: 3.5 = 1: 2.5 = 2: 5.

This means that the simplest formula for combining phosphorus and oxygen is P 2 O 5 . It is phosphorus(V) oxide.

Answer P2O5

Acids are chemical compounds that are capable of donating an electrically charged hydrogen ion (cation) and also accepting two interacting electrons, resulting in the formation of a covalent bond.

In this article we will look at the basic acids that are studied in middle grades of secondary schools, and also learn many interesting facts about a wide variety of acids. Let's get started.

Acids: types

In chemistry, there are many different acids that have very different properties. Chemists distinguish acids by their oxygen content, volatility, solubility in water, strength, stability, and whether they belong to the organic or inorganic class of chemical compounds. In this article we will look at a table that presents the most famous acids. The table will help you remember the name of the acid and its chemical formula.

So, everything is clearly visible. This table presents the most famous acids in the chemical industry. The table will help you remember names and formulas much faster.

Hydrogen sulfide acid

H 2 S is hydrosulfide acid. Its peculiarity lies in the fact that it is also a gas. Hydrogen sulfide is very poorly soluble in water, and also interacts with many metals. Hydrogen sulfide acid belongs to the group of “weak acids”, examples of which we will consider in this article.

H 2 S has a slightly sweet taste and also a very strong rotten egg smell. In nature, it can be found in natural or volcanic gases, and it is also released when protein rots.

The properties of acids are very diverse; even if an acid is indispensable in industry, it can be very harmful to human health. This acid is very toxic to humans. When a small amount of hydrogen sulfide is inhaled, a person experiences a headache, severe nausea and dizziness. If a person inhales a large amount of H 2 S, this can lead to convulsions, coma or even instant death.

Sulfuric acid

H 2 SO 4 is a strong sulfuric acid, which children are introduced to in chemistry lessons in the 8th grade. Chemical acids such as sulfuric acid are very strong oxidizing agents. H 2 SO 4 acts as an oxidizing agent on many metals, as well as basic oxides.

H 2 SO 4 causes chemical burns when it comes into contact with skin or clothing, but it is not as toxic as hydrogen sulfide.

Nitric acid

Strong acids are very important in our world. Examples of such acids: HCl, H 2 SO 4, HBr, HNO 3. HNO 3 is a well-known nitric acid. It has found wide application in industry as well as in agriculture. It is used to make various fertilizers, in jewelry, in photograph printing, in the production of medicines and dyes, as well as in the military industry.

Chemical acids such as nitric acid are very harmful to the body. HNO 3 vapors leave ulcers, cause acute inflammation and irritation of the respiratory tract.

Nitrous acid

Nitrous acid is often confused with nitric acid, but there is a difference between them. The fact is that it is much weaker than nitrogen, it has completely different properties and effects on the human body.

HNO 2 has found wide application in the chemical industry.

Hydrofluoric acid

Hydrofluoric acid (or hydrogen fluoride) is a solution of H 2 O with HF. The acid formula is HF. Hydrofluoric acid is very actively used in the aluminum industry. It is used to dissolve silicates, etch silicon and silicate glass.

Hydrogen fluoride is very harmful to the human body; depending on its concentration, it can be a mild narcotic. If it comes into contact with the skin, at first there are no changes, but after a few minutes a sharp pain and chemical burn may appear. Hydrofluoric acid is very harmful to the environment.

Hydrochloric acid

HCl is hydrogen chloride and is a strong acid. Hydrogen chloride retains the properties of acids belonging to the group of strong acids. The acid is transparent and colorless in appearance, but smokes in air. Hydrogen chloride is widely used in the metallurgical and food industries.

This acid causes chemical burns, but getting into the eyes is especially dangerous.

Phosphoric acid

Phosphoric acid (H 3 PO 4) is a weak acid in its properties. But even weak acids can have the properties of strong ones. For example, H 3 PO 4 is used in industry to restore iron from rust. In addition, phosphoric (or orthophosphoric) acid is widely used in agriculture - many different fertilizers are made from it.

The properties of acids are very similar - almost each of them is very harmful to the human body, H 3 PO 4 is no exception. For example, this acid also causes severe chemical burns, nosebleeds, and chipping of teeth.

Carbonic acid

H 2 CO 3 is a weak acid. It is obtained by dissolving CO 2 (carbon dioxide) in H 2 O (water). Carbonic acid is used in biology and biochemistry.

Density of various acids

The density of acids occupies an important place in the theoretical and practical parts of chemistry. By knowing the density, you can determine the concentration of a particular acid, solve chemical calculation problems, and add the correct amount of acid to complete the reaction. The density of any acid changes depending on the concentration. For example, the higher the concentration percentage, the higher the density.

General properties of acids

Absolutely all acids are (that is, they consist of several elements of the periodic table), and they necessarily include H (hydrogen) in their composition. Next we will look at which are common:

  1. All oxygen-containing acids (in the formula of which O is present) form water upon decomposition, and also oxygen-free acids decompose into simple substances (for example, 2HF decomposes into F 2 and H 2).
  2. Oxidizing acids react with all metals in the metal activity series (only those located to the left of H).
  3. They interact with various salts, but only with those that were formed by an even weaker acid.

Acids differ sharply from each other in their physical properties. After all, they can have a smell or not, and also be in a variety of physical states: liquid, gaseous and even solid. Solid acids are very interesting to study. Examples of such acids: C 2 H 2 0 4 and H 3 BO 3.

Concentration

Concentration is a value that determines the quantitative composition of any solution. For example, chemists often need to determine how much pure sulfuric acid is present in dilute acid H 2 SO 4. To do this, they pour a small amount of dilute acid into a measuring cup, weigh it, and determine the concentration using a density chart. The concentration of acids is closely related to density; often, when determining the concentration, there are calculation problems where you need to determine the percentage of pure acid in a solution.

Classification of all acids according to the number of H atoms in their chemical formula

One of the most popular classifications is the division of all acids into monobasic, dibasic and, accordingly, tribasic acids. Examples of monobasic acids: HNO 3 (nitric), HCl (hydrochloric), HF (hydrofluoric) and others. These acids are called monobasic, since they contain only one H atom. There are many such acids, it is impossible to remember absolutely every one. You just need to remember that acids are classified according to the number of H atoms in their composition. Dibasic acids are defined similarly. Examples: H 2 SO 4 (sulphuric), H 2 S (hydrogen sulfide), H 2 CO 3 (coal) and others. Tribasic: H 3 PO 4 (phosphoric).

Basic classification of acids

One of the most popular classifications of acids is their division into oxygen-containing and oxygen-free. How to remember, without knowing the chemical formula of a substance, that it is an oxygen-containing acid?

All oxygen-free acids lack the important element O - oxygen, but they do contain H. Therefore, the word “hydrogen” is always attached to their name. HCl is a H 2 S - hydrogen sulfide.

But you can also write a formula based on the names of acid-containing acids. For example, if the number of O atoms in a substance is 4 or 3, then the suffix -n-, as well as the ending -aya-, is always added to the name:

  • H 2 SO 4 - sulfur (number of atoms - 4);
  • H 2 SiO 3 - silicon (number of atoms - 3).

If the substance has less than three oxygen atoms or three, then the suffix -ist- is used in the name:

  • HNO 2 - nitrogenous;
  • H 2 SO 3 - sulfurous.

General properties

All acids taste sour and often slightly metallic. But there are other similar properties that we will now consider.

There are substances called indicators. The indicators change their color, or the color remains, but its shade changes. This occurs when the indicators are affected by other substances, such as acids.

An example of a color change is such a familiar product as tea and citric acid. When lemon is added to tea, the tea gradually begins to noticeably brighten. This is due to the fact that lemon contains citric acid.

There are other examples. Litmus, which is lilac in color in a neutral environment, turns red when hydrochloric acid is added.

When the tensions are in the tension series before hydrogen, gas bubbles are released - H. However, if a metal that is in the tension series after H is placed in a test tube with acid, then no reaction will occur, there will be no gas evolution. So, copper, silver, mercury, platinum and gold will not react with acids.

In this article we examined the most famous chemical acids, as well as their main properties and differences.



Did you like the article? Share with your friends!