Эволюция звезд в зависимости от исходной массы. Как происходит эволюция звезд

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла , пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности . Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра , если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

Жизненный цикл звезд

Обычная звезда выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в ее сердцевине. После того как звезда израсходует водород в центре, он начинает перегорать в оболочке звезды, которая увеличивается в размере, разбухает. Размер звезды возрастает, температура ее падает. Этот процесс порождает красных гигантов и сверхгигантов. Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды заканчивают свой жизненный цикл взрывом. Звезды, подобные Солнцу, сжимаются, превращаясь в плотные белые карлики. В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую газовую оболочку, обнажив ядро.

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Путешественники автора Дорожкин Николай

Из книги Экономика недвижимости автора Бурханова Наталья

Сложный жизненный маршрут Отношение наших отечественных учёных к Свену Гедину претерпевало значительные изменения. Причины кроются как в характере самого Гедина, так и в политических ситуациях его времени. С юности зная русский язык и испытывая симпатии к России и её

Из книги Финансы: Шпаргалка автора Автор неизвестен

4. Жизненный цикл объектов недвижимого имущества Так как объекты недвижимого имущества в течение времени своего существования подвергаются экономическим, физическим, правовым изменения, то любая недвижимая вещь (за исключением земли) проходит следующие стадии

Из книги Все обо всем. Том 5 автора Ликум Аркадий

47. ВОЗДЕЙСТВИЕ ФИНАНСОВ НА ЖИЗНЕННЫЙ УРОВЕНЬ НАСЕЛЕНИЯ Социально-экономическая сущность финансовых отношений состоит в исследовании вопроса, за счет кого государство получает финансовые ресурсы и в чьих интересах используются эти средства.Значительная часть

Из книги Организационное поведение: Шпаргалка автора Автор неизвестен

Далеко ли до звезд? Во Вселенной есть звезды, которые находятся так далеко от нас, что у нас даже нет возможности узнать расстояние до них или установить их количество. Но как далека от Земли ближайшая звезда? Расстояние от Земли до Солнца 150 000 000 километров. Так как свет

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

50. ЖИЗНЕННЫЙ ЦИКЛ ОРГАНИЗАЦИИ Широко распространено понятие жизненного цикла организации – ее изменения с определенной последовательностью состояний при взаимодействии с окружающей средой. Существуют определенные этапы, через которые проходят организации, и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

45. ЖИЗНЕННЫЙ ЦИКЛ ТОВАРА Жизненный цикл товара – это изменение объема продаж и прибылей на протяжении времени его жизни. Товар имеет стадию зарождения, роста, зрелости и конец – «смерть», уход.1. Стадия «разработка и вывод на рынок». Это период инвестиций в маркетинговые

Из книги 200 знаменитых отравлений автора Анцышкин Игорь

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

4.5.1. Жизненный цикл водорослей Отдел Зеленые водоросли включает в себя одноклеточные колониальные и многоклеточные растения. Всего около 13 тыс. видов. К одноклеточным относятся хламидомонада, хлорелла. Колонии образованы клетками вольвокса и пандорины. К многоклеточным

Из книги Популярный звездочет автора Шалашников Игорь

ЖЕРТВЫ ЗВЕЗД Итальянский математик Кардано был и философом, и медиком, и астрологом. Сперва он занимался исключительно медициной, но с 1534 года состоял профессором математики в Милане и Болонье; однако для увеличения своих скромных доходов профессор не оставлял

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

25 ближайших звезд mV - визуальная звездная величина; r - расстояние до звезды, пк; L - светимость (мощность излучения) звезды, выражена в единицах светимости Солнца (3,86–1026

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий. Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно

Из книги автора

"ЖИЗНЕННЫЙ МИР" (Lebenswelt) - одно из центральных понятий поздней феноменологии Гуссерля, сформулированное им в результате преодоления узкого горизонта строго феноменологического метода за счет обращения к проблемам мировых связей сознания. Такое включение "мировой"

Из книги автора

Жизненный цикл вируса Каждый вирус проникает в клетку своим, только ему свойственным путем. Проникнув, он должен прежде всего снять верхнюю одежду, чтобы обнажить, хотя бы частично, свою нуклеиновую кислоту и начать ее копирование.Работа вируса хорошо организована.

Вполне естественно, что звёзды – не живые существа, но и они проходят через эволюционные этапы, сходные с рождением, жизнью и смертью. Подобно человеку, звезда на протяжении своей жизни подвергается радикальным изменениям. Но надо отметить, живут они явно подольше – миллионы и даже миллиарды земных лет.

Как рождаются звезды? Изначально, вернее после Большого Взрыва, материя во Вселенной была распределена неравномерно. Звезды начали образовываться в туманностях – гигантских облаках межзвездной пыли и газов, в основном водорода. На эту материю воздействует гравитация, и происходит сжатие части туманности. Тогда образуются круглые и плотные газопылевых облака – глобулы Бока. По мере того, как такая глобула продолжает сгущаться, её масса увеличивается за счет притяжения к себе материи из туманности. Во внутренней части глобулы сила гравитации наиболее сильна, и она начинает разогреваться и вращаться. Это – уже протозвезда. Атомы водорода начинают бомбардировать друг друга и вырабатывают тем самым большое количество энергии. В конце концов температура центральной части достигает температуры порядка пятнадцати миллионов градусов Цельсия, формируется ядро новой звезды. Новорожденная вспыхивает, начинает гореть и светиться. Как долго это будет продолжаться, зависит от того, какова была масса родившейся звезды. То, что я рассказывал на прошлой нашей встрече. Чем масса больше, тем жизнь звезды короче.
Кстати говоря, именно от массы зависит, сможет ли протозвезда стать звездой. Согласно расчетам, для того, чтобы это сжимающееся небесное тело превратилось в звезду, его масса должна быть не менее 8% от массы Солнца. Глобула меньших размеров, сгущаясь, будет постепенно охлаждаться и превратится в переходный объект, нечто среднее между звездой и планетой. Такие объекты называются коричневыми карликами.

Планета Юпитер, например, слишком мала для того, чтобы стать звездой. Если бы Юпитер был массивней, возможно, в его недрах начались бы термоядерные реакции, и наша Солнечная система была бы системой двойной звезды. Но это всё лирика…

Итак, основной этап жизни звезды. Большую часть своего существования звезда находится в равновесном состоянии. Сила гравитации стремится сжать звезду, а энергия, высвобожденная в результате протекающих в звезде термоядерных реакций, вынуждает звезду расширятся. Эти две силы создают устойчивое положения равновесия – настолько устойчивое, что звезда так живёт миллионы и миллиарды лет. Эта фаза жизни звезды обеспечивает ей место в главной последовательности. -


Просияв миллионы лет, крупная звезда, то есть звезда по меньшей мере вшестеро тяжелее Солнца, - начинает выгорать. Когда в ядре заканчивается водород, звезда расширяется и охлаждается, превращаясь в красный сверхгигант. Затем этот сверхгигант будет сжиматься, пока наконец не взорвется чудовищной и драматической сверкающей вспышкой, получившей название сверхновой звезды. Тут надо отметить, что очень массивные голубые сверхгиганты минуют стадию превращения в красный сверхгигант и куда быстрее взрываются сверхновой.
Если оставшееся ядро сверхновой мало, то начинается его катастрофическое сжатие (гравитационный коллапс) в очень плотную нейтронную звезду, а если оно достаточно большое, то будет сжиматься ещё сильнее, образуя чёрную дыру.

Несколько иная кончина у обычной звезды. Такая звезда живёт дольше и умирает более спокойной смертью. Солнце, например, будет гореть ещё пять миллиардов лет, прежде чем в его ядре иссякнет водород. Его внешние слои затем станут расширяться и охлаждаться; образуется красный гигант. В таком виде звезда может просуществовать порядка 100 миллионов лет на гелии, образовавшемся за время жизни в её ядре. Но и гелий выгорает. В довершении всего внешние слои отнесет прочь – они образуют планетарную туманность, а из ядра сожмётся плотный белый карлик. Хотя белый карлик достаточно горяч, в конце концов и он охладится, превратившись в мёртвую звезду, которую называют чёрным карликом.

Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

Каждый из нас хотя бы раз в жизни смотрел в звездное небо. Кто-то смотрел на эту красоту, испытывая романтические чувства, другой пытался понять, откуда берется вся эта красота. Жизнь в космосе, в отличие от жизни на нашей планете, течет на другой скорости. Время в космическом пространстве живет своими категориями, расстояния и размеры во Вселенной колоссальны. Мы редко задумываемся над тем, что на наших глазах постоянно происходит эволюция галактик и звезд. Каждый объект в бескрайнем космосе является следствием определенным физических процессов. У галактик, у звезд и даже у планет имеются основные фазы развития.

Наша планета и мы все зависим от нашего светила. Как долго Солнце будет радовать нас своим теплом, вдыхая жизнь в Солнечную систему? Что ждет нас в будущем через миллионы и миллиарды лет? В связи с этим, любопытно больше узнать о том, каковы этапы эволюции астрономических объектов, откуда берутся звезды и чем оканчивается жизнь этих чудесных светил в ночном небе.

Происхождение, рождение и эволюция звезд

Эволюция звезд и планет, населяющих нашу галактику Млечный Путь и всю Вселенную, большей частью неплохо изучена. В космосе незыблемо действуют законы физики, которые помогают понять происхождение космических объектов. Опираться в данном случае принято на теорию Большого Взрыва, которая сейчас является доминирующей доктриной о процессе происхождения Вселенной. Событие, потрясшее мироздание и приведшее к формированию вселенной, по космическим меркам молниеносно. Для космоса от рождения звезды до ее гибели проходят мгновения. Огромные расстояния создают иллюзию постоянства Вселенной. Вспыхнувшая вдали звезда светит нам миллиарды лет, в то время ее уже может и не быть.

Теория эволюции галактики и звезд является развитием теории Большого Взрыва. Учение о рождении звезд и возникновении звездных систем отличается масштабами происходящего и временными рамками, которые, в отличие от Вселенной в целом, возможно наблюдать современными средствами науки.

Изучая жизненный цикл звезд можно на примере ближайшего к нам светила. Солнце – одна из сотни триллионов звезд в нашем поле зрения. К тому же расстояние от Земли до Солнца (150 млн. км) предоставляет уникальную возможность изучить объект, не покидая пределов Солнечной системы. Полученная информация позволит детально разобраться с тем, как устроены другие звезды, как быстро эти гигантские источники тепла истощаются, каковы стадии развития звезды и каким будет финал этой блистательной жизни — тихий и тусклый или сверкающий, взрывной.

После Большого взрыва мельчайшие частицы сформировали межзвездные облака, которые стали «роддомом» для триллионов звезд. Характерно, что все звезды рождались в одно и то же время в результате сжатия и расширения. Сжатие в облаках космического газа возникало под воздействием собственной гравитации и аналогичных процессов у новых звезд по соседству. Расширение возникло в результате внутреннего давления межзвездного газа и под действием магнитных полей внутри газового облака. При этом облако свободно вращалось вокруг своего центра масс.

Облака газа, образовавшиеся после взрыва, на 98% состоят из атомарного и молекулярного водорода и гелия. Только 2% в этом массиве приходится на пылевые и твердые микроскопические частицы. Ранее считалось, что в центре любой звезды лежит ядро железа, раскаленного до температуры в миллион градусов. Именно этим аспектом и объяснялась гигантская масса светила.

В противостоянии физических сил преобладали силы сжатия, так как свет, возникающий в результате выделения энергии, не проникает внутрь газового облака. Свет вместе с частью выделяемой энергии распространяется наружу, создавая внутри плотного скопления газа минусовую температуру и зону низкого давления. Находясь в таком состоянии, космический газ стремительно сжимается, влияние сил гравитационного притяжения приводит к тому, что частицы начинают формировать звездное вещество. Когда скопление газа плотное, интенсивное сжатие приводит к тому, что образуются звездное скопление. Когда размеры газового облака незначительны, сжатие приводит к образованию одиночной звезды.

Краткая характеристика происходящего заключается в том, что будущее светило проходит два этапа — быстрое и медленное сжатие до состояния протозвезды. Говоря простым и понятным языком, быстрое сжатие является падением звездного вещества к центру протозвезды. Медленное сжатие происходит уже на фоне образовавшегося центра протозвезды. В течение последующих сотен тысяч лет новое образование сокращается в размерах, а его плотность увеличивается в миллионы раз. Постепенно протозвезда становится непрозрачной из-за высокой плотности звездного вещества, а продолжающееся сжатие запускает механизм внутренних реакций. Рост внутреннего давления и температур приводит к образованию у будущей звезды собственного центра тяжести.

В таком состоянии протозвезда пребывает миллионы лет, медленно отдавая тепло и постепенно сжимаясь, уменьшаясь в размерах. В результате вырисовываются контуры новой звезды, а плотность его вещества становится сравнима с плотностью воды.

В среднем плотность нашей звезды составляет 1,4 кг/см3 — практически такая же, как плотность воды в соленом Мертвом море. В центре Солнце имеет плотность 100 кг/см3. Звездное вещество находится не в жидком состоянии, а пребывает в виде плазмы.

Под воздействием огромного давления и температуры приблизительно в 100 миллионов К начинаются термоядерные реакции водородного цикла. Сжатие прекращается, масса объекта возрастает, когда энергия гравитации переходит в термоядерное горение водорода. С этого момента новая звезда, излучая энергию, начинает терять массу.

Вышеописанный вариант образования звезды — всего лишь примитивная схема, которая описывает начальный этап эволюции и рождения звезды. Сегодня такие процессы в нашей галактике и во всей Вселенной практически незаметны ввиду интенсивного истощения звездного материала. За всю сознательную историю наблюдений за нашей Галактикой были отмечены лишь единичные появления новых звезд. В масштабах Вселенной эта цифра может быть увеличена в сотни и в тысячи раз.

Большую часть своей жизни протозвезды скрыты от человеческого глаза пылевой оболочкой. Излучение ядра можно наблюдать только в инфракрасном диапазоне, который является единственной возможностью видеть рождение звезды. К примеру, в Туманности Ориона в 1967 году ученые-астрофизики в инфракрасном диапазоне обнаружили новую звезду, температура излучения которой составляла 700 градусов Кельвина. Впоследствии выяснилось, что местом рождения протозвезд являются компактные источники, которые имеются не только в нашей галактике, но и в других отдаленных от нас уголках Вселенной. Помимо инфракрасного излучения места рождения новых звезд отмечены интенсивными радиосигналами.

Процесс изучения и схема эволюции звезд

Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.

Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.

Изучая спектральный анализ энергии Солнца и других звезд, ученые пришли к выводу, что эволюция звезд и планет имеет общие корни. Все космические тела имеют однотипный, сходный химический состав и произошли из одной и той же материи, возникшей в результате Большого Взрыва.

Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины — квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента — водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.

Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы — гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.

Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны — более 3-4 млн. тонн каждую секунду.

Нетрудно подсчитать, сколько за все годы своего существования наша звезда потеряла в весе. Это будет громадная цифра, однако из-за своей огромной массы и высокой плотности такие потери в масштабах Вселенной выглядят ничтожными.

Стадии эволюции звезд

Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.

Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:

  • нормальные звезды (желтые карлики);
  • звезды-карлики;
  • звезды-гиганты.

Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.

Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.

Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).

Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории — эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.

Истощение запасов водорода приведет к тому, что под воздействием гравитации ядро солнца начнет стремительно сжиматься. Плотность ядра станет очень высокой, в результате чего термоядерные процессы переместятся в прилегающие к ядру слои. Подобное состояние называется коллапсом, который может быть вызван прохождением термоядерных реакций в верхних слоях звезды. В результате высокого давления запускаются термоядерные реакции с участием гелия.

Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты — это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.

В результате такой трансформации сократится расстояние от Земли до Солнца, так что Земля попадет в зону влияния солнечной короны и начнет «жариться» в ней. Температура на поверхности планеты вырастет в десятки раз, что приведет к исчезновению атмосферы и к испарению воды. В результате планета превратится в безжизненную каменистую пустыню.

Финальные стадии эволюции звезд

Достигнув фазы красного гиганта, нормальная звезда под влиянием гравитационных процессов становится белым карликом. Если масса звезды примерно равна массе нашего Солнца, все основные процессы в ней будут происходить спокойно, без импульсов и взрывных реакций. Белый карлик будет умирать долго, выгорая дотла.

В случаях, когда звезда изначально имела массу больше солнечной в 1,4 раза, белый карлик не будет финальной стадией. При большой массе внутри звезды начинаются процессы уплотнения звездного вещества на атомном, молекулярном уровне. Протоны превращаются в нейтроны, плотность звезды увеличивается, а ее размеры стремительно уменьшаются.

Известные науке нейтронные звезды имеют диаметр в 10-15 км. При таких малых размерах нейтронная звезда имеет колоссальную массу. Один кубический сантиметр звездного вещества может весить миллиарды тонн.

В том случае, если мы имели изначально дело со звездой большой массы, финальный этап эволюции принимает другие формы. Судьба массивной звезды – черная дыра — объект с неизученной природой и непредсказуемым поведением. Огромная масса звезды способствует увеличению гравитационных сил, приводящих в движение силы сжатия. Приостановить этот процесс не представляется возможным. Плотность материи растет до тех пор, пока не превращается в бесконечность, образуя сингулярное пространство (теория относительности Эйнштейна). Радиус такой звезды в конечном итоге станет равен нулю, став черной дырой в космическом пространстве. Черных дыр было бы значительно больше, если бы в космосе большую часть пространства занимали массивные и сверхмассивные звезды.

Следует отметить, что при трансформации красного гиганта в нейтронную звезду или в черную дыру, Вселенная может пережить уникальное явление — рождение нового космического объекта.

Рождение сверхновой – самая впечатляющая финальная стадия эволюции звезд. Здесь действует естественный закон природы: прекращение существование одного тела дает начало новой жизни. Период такого цикла, как рождение сверхновой, в основном касается массивных звезд. Израсходовавшиеся запасы водорода приводят к тому, что в процесс термоядерного синтеза включается гелий и углерод. В результате этой реакции давление снова растет, а в центре звезды образуется ядро железа. Под воздействием сильнейших гравитационных сил центр массы смещается в центральную часть звезды. Ядро становится настолько тяжелым, что неспособно противостоять собственной гравитации. Как следствие, начинается стремительное расширение ядра, приводящее к мгновенному взрыву. Рождение сверхновой — это взрыв, ударная волна чудовищной силы, яркая вспышка в бескрайних просторах Вселенной.

Следует отметить, что наше Солнце не является массивной звездой, поэтому подобная судьба ее не грозит, не стоит бояться такого финала и нашей планете. В большинстве случаев взрывы сверхновых происходят в далеких галактиках, с чем и связано их достаточно редкое обнаружение.

В заключение

Эволюция звезд — это процесс, который растянут по времени на десятки миллиардов лет. Наше представление о происходящих процессах — всего лишь математическая и физическая модель, теория. Земное время является лишь мгновением в огромном временном цикле, которым живет наша Вселенная. Мы можем только наблюдать то, что происходило миллиарды лет назад и предполагать, с чем могут столкнуться последующие поколения землян.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них



Понравилась статья? Поделитесь с друзьями!