Из чего состоит многоугольник. Соблюдение вашей конфиденциальности на уровне компании

§ 1 Понятие треугольника

В этом уроке Вы познакомитесь с такими фигурами как треугольник и многоугольник.

Если три точки, не лежащие на одной прямой, соединить отрезками, то получится треугольник. Треугольник имеет три вершины и три стороны.

Перед вами треугольник АВС, он имеет три вершины (точку А, точку В и точку С) и три стороны (АВ, АС и СВ).

Кстати, эти же стороны можно называть и по-другому:

АВ=ВА, АС=СА, СВ=ВС.

Стороны треугольника образуют в вершинах треугольника три угла. На рисунке вы видите угол А, угол В, угол С.

Таким образом, треугольник - это геометрическая фигура, образованнаятремя отрезками, которые соединяют три, не лежащие на одной прямой, точки.

§ 2 Понятие многоугольника и его виды

Кроме треугольников, существуют четырехугольники, пятиугольники, шестиугольники и так далее. Одним словом их можно назвать многоугольники.

На рисунке Вы видите четырехугольник DMKE.

Точки D, M, K и E являются вершинами четырехугольника.

Отрезки DM, MK, KE, ED являются сторонами данного четырехугольника. Так же, как и в случае с треугольником, стороны четырехугольника образуют в вершинах четыре угла, как Вы догадались, отсюда и название - четырехугольник. У данного четырехугольника вы видите на рисунке угол D, угол M, угол K и угол E.

А какие четырехугольники Вам уже известны?

Квадрат и прямоугольник! Каждый из них имеет по четыре угла и четыре стороны.

Еще один вид многоугольников - пятиугольник.

Точки O, P, X, Y, Т являются вершинами пятиугольника, а отрезки TO, OP, PX, XY, YT являются сторонами данного пятиугольника. У пятиугольника соответственно пять углов и пять сторон.

Как Вы считаете, сколько углов и сколько сторон у шестиугольника? Правильно, шесть! Рассуждая аналогичным образом, можно сказать, сколько сторон, вершин или углов имеет тот или иной многоугольник. И можно сделать вывод, что треугольник — это тоже многоугольник, у которого имеется ровно три угла, три стороны и три вершины.

Таким образом, на этом уроке Вы познакомились с такими понятиями как треугольник и многоугольник. Узнали, что треугольник имеет 3 вершины, 3 стороны и 3 угла, четырехугольник - 4 вершины, 4 стороны и 4 угла, пятиугольник - соответственно 5 сторон, 5 вершин,5 углов и так далее.

Список использованной литературы:

  1. Математика 5 класс. Виленкин Н.Я., Жохов В.И. и др. 31-е изд., стер. - М: 2013.
  2. Дидактические материалы по математике 5 класс. Автор - Попов М.А. - 2013 год
  3. Вычисляем без ошибок. Работы с самопроверкой по математике 5-6 классы. Автор - Минаева С.С. - 2014 год
  4. Дидактические материалы по математике 5 класс. Авторы: Дорофеев Г.В., Кузнецова Л.В. - 2010 год
  5. Контрольные и самостоятельные работы по математике 5 класс. Авторы - Попов М.А. - 2012 год
  6. Математика. 5 класс: учеб. для учащихся общеобразоват. учреждений / И. И. Зубарева, А. Г. Мордкович. - 9-е изд., стер. - М.: Мнемозина, 2009

Часть плоскости, ограниченная замкнутой ломаной линией, называется многоугольником.

Отрезки этой ломаной линии называются сторонами многоугольника. АВ, ВС, CD, DE, ЕА (рис. 1) - стороны многоугольника ABCDE. Сумма всех сторон многоугольника называется его периметром .

Многоугольник называется выпуклым , если он расположен по одну сторону от любой своей стороны, неограниченно продолженной за обе вершины.

Многоугольник MNPKO (рис. 1) не будет выпуклым, так как он расположен не по одну сторону прямой КР.

Мы будем рассматривать только выпуклые многоугольники.

Углы, составленные двумя соседними сторонами многоугольника, называются его внутренними углами, а вершины их - вершинами многоугольника .

Отрезок прямой, соединяющий две несоседние вершины многоугольника, называется диагональю многоугольника.

АС, AD - диагонали многоугольника (рис. 2).

Углы, смежные с внутренними углами многоугольника, называются внешними углами многоугольника (рис. 3).

В зависимости от числа углов (сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д.

Два многоугольника называются равными, если их можно совместить наложением.

Вписанные и описанные многоугольники

Если все вершины многоугольника лежат на окружности, то многоугольник называется вписанным в окружность, а окружность - описанной около многоугольника (рис).

Если все стороны многоугольника являются касательными к окружности, то многоугольник называется описанным около окружности, а окружность называется вписанной в многоугольник (рис).

Подобие многоугольников

Два одноимённых многоугольника называются подобными, если углы одного из них соответственно равны углам другого, а сходственные стороны многоугольников пропорциональны.

Одноимёнными называются многоугольники, имеющие одинаковое число сторон (углов).

Сходственными называются стороны подобных многоугольников, соединяющие вершины соответственно равных углов (рис).

Так, например, чтобы многоугольник ABCDE был подобен многоугольнику A’B’C’D’E’, необходимо, чтобы: ∠A = ∠A’ ∠B = ∠B’ ∠С = ∠С’ ∠D = ∠D’ ∠Е = ∠Е’ и, кроме того, AB / A’B’ = BC / B’C’ = CD / C’D’ = DE / D’E’ = EA / E’A’ .

Отношение периметров подобных многоугольников

Сначала рассмотрим свойство ряда равных отношений. Пусть имеем, например, отношения: 2 / 1 = 4 / 2 = 6 / 3 = 8 / 4 =2.

Найдем сумму предыдущих членов этих отношений, затем - сумму их последующих членов и найдём отношение полученных сумм, получим:

$$ \frac{2 + 4 + 6 + 8}{1 + 2 + 3 + 4} = \frac{20}{10} = 2 $$

То же самое мы получим, если возьмём ряд каких-нибудь других отношений, например: 2 / 3 = 4 / 6 = 6 / 9 = 8 / 12 = 10 / 15 = 2 / 3 Найдем сумму предыдущих членов этих отношений и сумму последующих, а затем найдём отношение этих сумм, получим:

$$ \frac{2 + 4 + 5 + 8 + 10}{3 + 6 + 9 + 12 + 15} = \frac{30}{45} = \frac{2}{3} $$

В том и другом случае сумма предыдущих членов ряда равных отношений относится к сумме последующих членов этого же ряда, как предыдущий член любого из этих отношений относится к своему последующему.

Мы вывели это свойство, рассмотрев ряд числовых примеров. Оно может быть выведено строго и в общем виде.

Теперь рассмотрим отношение периметров подобных многоугольников.

Пусть многоугольник ABCDE подобен многоугольнику A’B’C’D’E’ (рис).

Из подобия этих многоугольников следует, что

AB / A’B’ = BC / B’C’ = CD / C’D’ = DE / D’E’ = EA / E’A’

На основании выведенного нами свойства ряда равных отношений можем написать:

Сумма предыдущих членов взятых нами отношений представляет собой периметр первого многоугольника (Р), а сумма последующих членов этих отношений представляет собой периметр второго многоугольника (Р’), значит, P / P’ = AB / A’B’ .

Следовательно, периметры подобных многоугольников относятся как их сходственные стороны.

Отношение площадей подобных многоугольников

Пусть ABCDE и A’B’C’D’E’ - подобные многоугольники (рис).

Известно, что ΔAВС ~ ΔA’В’С’ ΔACD ~ ΔA’C’D’ и ΔADE ~ ΔA’D’E’.

Кроме того,

;

Так как вторые отношения этих пропорций равны, что вытекает из подобия многоугольников, то

Используя свойство ряда равных отношений получим:

Или

где S и S’ - площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S / S’ = (AВ / A’В’) 2

Площадь произвольного многоугольника

Пусть требуется вычислить площадь произвольного четырёхугольника АВDС (рис).

Проведём в нём диагональ, например АD. Получим два треугольника АВD и АСD, площади которых вычислять умеем. Затем находим сумму площадей этих треугольников. Полученная сумма и будет выражать площадь данного четырёхугольника.

Если нужно вычислить площадь пятиугольника, то поступаем таким же образом: из одной какой-нибудь вершины проводим диагонали. Получим три треугольника, площади которых можем вычислить. Значит, можем найти и площадь данного пятиугольника. Так же поступаем при вычислении площади любого многоугольника.

Площадь проекции многоугольника

Напомним, что углом между прямой и плоскостью называется угол между данной прямой и ее проекцией на плоскость (рис.).

Теорема. Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла, образованного плоскостью многоугольника и плоскостью проекции.

Каждый многоугольник можно разбить на треугольники, сумма площадей которых равна площади многоугольника. Поэтому теорему достаточно доказать для треугольника.

Пусть ΔАВС проектируется на плоскость р . Рассмотрим два случая:

а) одна из сторон ΔАВС параллельна плоскости р ;

б) ни одна из сторон ΔАВС не параллельна р .

Рассмотрим первый случай : пусть [АВ] || р .

Проведем через (АВ) плоскость р 1 || р и спроектируем ортогонально ΔАВС на р 1 и на р (рис.); получим ΔАВС 1 и ΔА’В’С’ .

По свойству проекции имеем ΔАВС 1 (cong) ΔА’В’С’, и поэтому

S Δ ABC1 = S Δ A’B’C’

Проведем ⊥ и отрезок D 1 C 1 . Тогда ⊥ , a \(\overbrace{CD_1C_1}\) = φ есть величина угла между плоскостью ΔАВС и плоскостью р 1 . Поэтому

S Δ ABC1 = 1 / 2 | AB | | C 1 D 1 | = 1 / 2 | АВ | | CD 1 | cos φ = S Δ ABC cos φ

и, следовательно, S Δ A’B’C’ = S Δ ABC cos φ.

Перейдем к рассмотрению второго случая . Проведем плоскость р 1 || р через ту вершину ΔАВС, расстояние от которой до плоскости р наименьшее (пусть это будет вершина А).

Спроектируем ΔАВС на плоскости р 1 и р (рис.); пусть его проекциями будут соответственно ΔАВ 1 С 1 и ΔА’В’С’.

Пусть (ВС) ∩ p 1 = D. Тогда

S Δ A’B’C’ = S ΔAB1 C1 = S ΔADC1 - S ΔADB1 = (S ΔADC - S ΔADB) cos φ = S Δ ABC cos φ

Другие материалы

Свойства многоугольников

Многоугольник - это геометрическая фигура, обычно определяется как замкнутая ломаная без самопересечений (простой многоугольник (рис. 1а)), однако иногда самопересечения допускаются (тогда многоугольник не является простым).

Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника. Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, при этом угол считается со стороны многоугольника. В частности угол может превосходить 180° если многоугольник невыпуклый.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разница между 180° и внутренним углом. Из каждой вершины -угольника при > 3 выходят - 3 диагонали, поэтому общее число диагоналей -угольника равно.

Многоугольник с тремя вершинами называется треугольником, с четырьмя - четырёхугольником, с пятью - пятиугольником и т.д.

Многоугольник с n вершинами называется n- угольником.

Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.

Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий:

  • 1. он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (т.е. продолжения сторон многоугольника не пересекают других его сторон);
  • 2. он является пересечением (т.е. общей частью) нескольких полуплоскостей;
  • 3. любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и пентагон.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности

Правильный многоугольник - это многоугольник, у которого все углы и все стороны равны между собой.

Свойства многоугольников:

1 Каждая диагональ выпуклого -угольника, где >3, разлагает его на два выпуклых многоугольника.

2 Сумма всех углов выпуклого -угольника равна.

Д-во: Теорему докажем методом математической индукции. При = 3 она очевидна. Предположим, что теорема верна для -угольника, где <, и докажем ее для -угольника.

Пусть- данный многоугольник. Проведем диагональ этого многоугольника. По теореме 3 многоугольник разложен на треугольник и выпуклый -угольник (рис. 5). По предположению индукции. С другой стороны, . Складывая эти равенства и учитывая, что ( - внутренний луч угла ) и (- внутренний луч угла), получаем.При получаем: .

3 Около любого правильного многоугольника можно описать окружность, и притом только одну.

Д-во: Пусть правильный многоугольник, а и - биссектрисы углов, и (рис. 150). Так как, то, следовательно, * 180° < 180°. Отсюда следует, что биссектрисы и углов и пересекаются в некоторой точке О. Докажем, что O = ОА 2 = О =… = ОА п . Треугольник О равнобедренный, поэтому О = О . По второму признаку равенства треугольников, следовательно, О = О . Аналогично доказывается, что О = О и т.д. Таким образом, точка О равноудалена от всех вершин многоугольника, поэтому окружность с центром О радиуса О является описанной около многоугольника.

Докажем теперь, что описанная окружность только одна. Рассмотрим какие-нибудь три вершины многоугольника, например, А 2 , . Так как через эти точки проходит только одна окружность, то около многоугольника нельзя описать более чем одну окружность.

  • 4 В любой правильный многоугольник можно вписать окружность и притом только одну.
  • 5 Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.
  • 6 Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.
  • 7 Симметрия:

Говорят, что фигура обладает симметрией (симметрична), если существует такое движение (не тождественное), переводящее эту фигуру в себя.

  • 7.1. Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.
  • 7.2. Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120°.

7.3 У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота.

При четном n одни оси симметрии проходят через противоположные вершины, другие - через середины противоположных сторон.

При нечетном n каждая ось проходит через вершину и середину противоположной стороны.

Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.

8 Подобие:

При подобии и -угольник переходит в -угольник, полуплоскость - в полуплоскость, поэтому выпуклый n -угольник переходит в выпуклый n -угольник.

Теорема: Если стороны и углы выпуклых многоугольников иудовлетворяют равенствам:

где - коэффициент подия

то эти многоугольники подобны.

  • 8.1 Отношение периметров двух подобных многоугольников равно коэффициенту подобия.
  • 8.2. Отношение площадей двух выпуклых подобных многоугольников равно квадрату коэффициента подобия.

многоугольник треугольник периметр теорема

В курсе гео-мет-рии мы изу-ча-ем свой-ства гео-мет-ри-че-ских фигур и уже рас-смот-ре-ли про-стей-шие из них: тре-уголь-ни-ки и окруж-но-сти. При этом мы об-суж-да-ли и кон-крет-ные част-ные слу-чаи этих фигур, такие как пря-мо-уголь-ные, рав-но-бед-рен-ные и пра-виль-ные тре-уголь-ни-ки. Те-перь при-шло время по-го-во-рить о более общих и слож-ных фи-гу-рах - мно-го-уголь-ни-ках .

С част-ным слу-ча-ем мно-го-уголь-ни-ков мы уже зна-ко-мы - это тре-уголь-ник (см. Рис. 1).

Рис. 1. Тре-уголь-ник

В самом на-зва-нии уже под-чер-ки-ва-ет-ся, что это фи-гу-ра, у ко-то-рой три угла. Сле-до-ва-тель-но, в мно-го-уголь-ни-ке их может быть много, т.е. боль-ше, чем три. На-при-мер, изоб-ра-зим пя-ти-уголь-ник (см. Рис. 2), т.е. фи-гу-ру с пятью уг-ла-ми.

Рис. 2. Пя-ти-уголь-ник. Вы-пук-лый мно-го-уголь-ник

Опре-де-ле-ние. Мно-го-уголь-ник - фи-гу-ра, со-сто-я-щая из несколь-ких точек (боль-ше двух) и со-от-вет-ству-ю-ще-го ко-ли-че-ства от-рез-ков, ко-то-рые их по-сле-до-ва-тель-но со-еди-ня-ют. Эти точки на-зы-ва-ют-ся вер-ши-на-ми мно-го-уголь-ни-ка, а от-рез-ки - сто-ро-на-ми . При этом ни-ка-кие две смеж-ные сто-ро-ны не лежат на одной пря-мой и ни-ка-кие две несмеж-ные сто-ро-ны не пе-ре-се-ка-ют-ся.

Опре-де-ле-ние. Пра-виль-ный мно-го-уголь-ник - это вы-пук-лый мно-го-уголь-ник, у ко-то-ро-го все сто-ро-ны и углы равны.

Любой мно-го-уголь-ник раз-де-ля-ет плос-кость на две об-ла-сти: внут-рен-нюю и внеш-нюю. Внут-рен-нюю об-ласть также от-но-сят кмно-го-уголь-ни-ку .

Иными сло-ва-ми, на-при-мер, когда го-во-рят о пя-ти-уголь-ни-ке , имеют в виду и всю его внут-рен-нюю об-ласть, и гра-ни-цу. А ко внут-рен-ней об-ла-сти от-но-сят-ся и все точки, ко-то-рые лежат внут-ри мно-го-уголь-ни-ка, т.е. точка тоже от-но-сит-ся к пя-ти-уголь-ни-ку (см. Рис. 2).

Мно-го-уголь-ни-ки еще ино-гда на-зы-ва-ют n-уголь-ни-ка-ми, чтобы под-черк-нуть, что рас-смат-ри-ва-ет-ся общий слу-чай на-ли-чия ка-ко-го-то неиз-вест-но-го ко-ли-че-ства углов (n штук).

Опре-де-ле-ние. Пе-ри-метр мно-го-уголь-ни-ка - сумма длин сто-рон мно-го-уголь-ни-ка.

Те-перь надо по-зна-ко-мить-ся с ви-да-ми мно-го-уголь-ни-ков. Они де-лят-ся на вы-пук-лые и невы-пук-лые . На-при-мер, мно-го-уголь-ник, изоб-ра-жен-ный на Рис. 2, яв-ля-ет-ся вы-пук-лым, а на Рис. 3 невы-пук-лым.

Рис. 3. Невы-пук-лый мно-го-уголь-ник

2. Выпуклые и невыпуклые многоугольники

Опре-де-ле-ние 1. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при про-ве-де-нии пря-мой через любую из его сто-рон весь мно-го-уголь-ник лежит толь-ко по одну сто-ро-ну от этой пря-мой. Невы-пук-лы-ми яв-ля-ют-ся все осталь-ные мно-го-уголь-ни-ки .

Легко пред-ста-вить, что при про-дле-нии любой сто-ро-ны пя-ти-уголь-ни-ка на Рис. 2 он весь ока-жет-ся по одну сто-ро-ну от этой пря-мой, т.е. он вы-пук-лый. А вот при про-ве-де-нии пря-мой через в че-ты-рех-уголь-ни-ке на Рис. 3 мы уже видим, что она раз-де-ля-ет его на две части, т.е. он невы-пук-лый.

Но су-ще-ству-ет и дру-гое опре-де-ле-ние вы-пук-ло-сти мно-го-уголь-ни-ка.

Опре-де-ле-ние 2. Мно-го-уголь-ник на-зы-ва-ет-ся вы-пук-лым , если при вы-бо-ре любых двух его внут-рен-них точек и при со-еди-не-нии их от-рез-ком все точки от-рез-ка яв-ля-ют-ся также внут-рен-ни-ми точ-ка-ми мно-го-уголь-ни-ка.

Де-мон-стра-цию ис-поль-зо-ва-ния этого опре-де-ле-ния можно уви-деть на при-ме-ре по-стро-е-ния от-рез-ков на Рис. 2 и 3.

Опре-де-ле-ние. Диа-го-на-лью мно-го-уголь-ни-ка на-зы-ва-ет-ся любой от-ре-зок, со-еди-ня-ю-щий две не со-сед-ние его вер-ши-ны.

3. Теорема о сумме внутренних углов выпуклого n-угольника

Для опи-са-ния свойств мно-го-уголь-ни-ков су-ще-ству-ют две важ-ней-шие тео-ре-мы об их углах: тео-ре-ма о сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка и тео-ре-ма о сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка . Рас-смот-рим их.

Тео-ре-ма. О сумме внут-рен-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон).

До-ка-за-тель-ство 1. Изоб-ра-зим на Рис. 4 вы-пук-лый n-уголь-ник.

Рис. 4. Вы-пук-лый n-уголь-ник

Из вер-ши-ны про-ве-дем все воз-мож-ные диа-го-на-ли. Они делят n-уголь-ник на тре-уголь-ни-ка, т.к. каж-дая из сто-рон мно-го-уголь-ни-ка об-ра-зу-ет тре-уголь-ник, кроме сто-рон, при-ле-жа-щих к вер-шине . Легко ви-деть по ри-сун-ку, что сумма углов всех этих тре-уголь-ни-ков как раз будет равна сумме внут-рен-них углов n-уголь-ни-ка. По-сколь-ку сумма углов лю-бо-го тре-уголь-ни-ка - , то сумма внут-рен-них углов n-уголь-ни-ка:

До-ка-за-тель-ство 2. Воз-мож-но и дру-гое до-ка-за-тель-ство этой тео-ре-мы. Изоб-ра-зим ана-ло-гич-ный n-уголь-ник на Рис. 5 и со-еди-ним любую его внут-рен-нюю точку со всеми вер-ши-на-ми.

Мы по-лу-чи-ли раз-би-е-ние n-уголь-ни-ка на n тре-уголь-ни-ков (сколь-ко сто-рон, столь-ко и тре-уголь-ни-ков). Сумма всех их углов равна сумме внут-рен-них углов мно-го-уголь-ни-ка и сумме углов при внут-рен-ней точке, а это угол . Имеем:

Что и тре-бо-ва-лось до-ка-зать.

До-ка-за-но.

По до-ка-зан-ной тео-ре-ме видно, что сумма углов n-уголь-ни-ка за-ви-сит от ко-ли-че-ства его сто-рон (от n). На-при-мер, в тре-уголь-ни-ке , а сумма углов . В че-ты-рех-уголь-ни-ке , а сумма углов - и т.д.

4. Теорема о сумме внешних углов выпуклого n-угольника

Тео-ре-ма. О сумме внеш-них углов вы-пук-ло-го мно-го-уголь-ни-ка (n -уголь-ни-ка).

Где - ко-ли-че-ство его углов (сто-рон), а , …, - внеш-ние углы.

До-ка-за-тель-ство. Изоб-ра-зим вы-пук-лый n-уголь-ник на Рис. 6 и обо-зна-чим его внут-рен-ние и внеш-ние углы.

Рис. 6. Вы-пук-лый n-уголь-ник с обо-зна-чен-ны-ми внеш-ни-ми уг-ла-ми

Т.к. внеш-ний угол свя-зан со внут-рен-ним как смеж-ные, то и ана-ло-гич-но для осталь-ных внеш-них углов. Тогда:

В ходе пре-об-ра-зо-ва-ний мы вос-поль-зо-ва-лись уже до-ка-зан-ной тео-ре-мой о сумме внут-рен-них углов n-уголь-ни-ка .

До-ка-за-но.

Из до-ка-зан-ной тео-ре-мы сле-ду-ет ин-те-рес-ный факт, что сумма внеш-них углов вы-пук-ло-го n-уголь-ни-ка равна от ко-ли-че-ства его углов (сто-рон). Кста-ти, в от-ли-чие от суммы внут-рен-них углов.

Далее мы более по-дроб-но будем ра-бо-тать с част-ным слу-ча-ем мно-го-уголь-ни-ков - че-ты-рех-уголь-ни-ка-ми. На сле-ду-ю-щем уроке мы по-зна-ко-мим-ся с такой фи-гу-рой, как па-рал-ле-ло-грамм, и об-су-дим его свой-ства.

ИСТОЧНИК

http://interneturok.ru/ru/school/geometry/8-klass/chyotyrehugolniki/mnogougolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/pryamougolnye-treugolniki

http://interneturok.ru/ru/school/geometry/8-klass/povtorenie/treugolniki-2

http://nsportal.ru/shkola/geometriya/library/2013/10/10/mnogougolniki-urok-v-8-klasse

https://im0-tub-ru.yandex.net/i?id=daa2ea7bbc3c92be3a29b22d8106e486&n=33&h=190&w=144

Виды многоугольников:

Четырехугольники

Четырехугольники , соответственно, состоят из 4-х сторон и углов.

Стороны и углы, расположенные напротив друг друга, называются противоположными .

Диагонали делят выпуклые четырехугольники на треугольники (см. на рисунке).

Сумма углов выпуклого четырехугольника равна 360° (по формуле: (4-2)*180°).

Параллелограммы

Параллелограмм - это выпуклый четырехугольник с противоположными параллельными сторонами (на рис. под номером 1).

Противоположные стороны и углы в параллелограмме всегда равны.

А диагонали в точке пересечения делятся пополам.

Трапеции

Трапеция - это тоже четырехугольник, и в трапеции параллельны только две стороны, которые называются основаниями . Другие стороны - это боковые стороны .

Трапеция на рисунке под номером 2 и 7.

Как и в треугольнике:

Если боковые стороны равны, то трапеция - равнобедренная ;

Если один из углов прямой, то трапеция - прямоугольная.

Средняя линия трапеции равна полусумме оснований и параллельна им.

Ромб

Ромб - это параллелограмм, у которого все стороны равны.

Помимо свойств параллелограмма, ромбы имеют своё особое свойство - диагонали ромба перпендикулярны друг другу и делят углы ромба пополам .

На рисунке ромб под номером 5.

Прямоугольники

Прямоугольник - это параллелограмм, у которого каждый угол прямой (см. на рис. под номером 8).

Помимо свойств параллелограмма, прямоугольники имеют своё особое свойство - диагонали прямоугольника равны .

Квадраты

Квадрат - это прямоугольник, у которого все стороны равны (№4).

Обладает свойствами прямоугольника и ромба (так как все стороны равны).



Понравилась статья? Поделитесь с друзьями!