Как по названию вещества составить структурную формулу. Составления названий органических соединений по структурной формуле

Одной из самых главных задач в химии является правильное составление химических формул. Химическая формула — это письменное представление состава химического вещества с помощью латинского обозначения элемента и индексов. Для правильного составления формулы нам обязательно понадобится таблица Менделеева и знание простых правил. Они достаточно простые и запомнить их смогут даже дети.

Как составлять химические формулы

Основным понятием при составлении химических формул является «валентность «. Валентность — это свойство одного элемента удерживать определенное число атомов в соединении. Валентность химического элемента можно посмотреть в таблице Менделеева, а также нужно помнить и уметь применять простые общие правила.

  • Валентность металла всегда равна номеру группы, при условии, что он находится в главной подгруппе. Например, калий имеет валентность 1, а кальций — 2.
  • С неметаллами немного сложнее. Неметалл может иметь высшую и низшую валентности. Высшая валентность равна номеру группы. Низшую валентность можно определить вычтя номер группы элемента из восьми. При соединении с металлами неметаллы всегда имеют низшую валентность. Кислород всегда имеет валентность 2.
  • В соединении двух неметаллов низшую валентность имеет тот химический элемент, который находится в таблице Менделеева правее и выше. Однако, фтор всегда имеет валентность 1.
  • И еще одно важное правило при расстановке коэффициентов! Общее число валентностей одного элемента всегда должно быть равно общему количеству валентностей другого элемента!

Закрепим полученные знания на примере соединения лития и азота. Металл литий имеет валентность, равную 1. Неметалл азот располагается в 5 группе и имеет высшую валентность 5 и низшую — 3. Как мы уже знаем, в соединениях с металлами неметаллы всегда имеют низшую валентность, поэтому азот в данном случае будет иметь валентность равную трем. Расставляем коэффициенты и получаем искомую формулу: Li 3 N.

Вот так, достаточно просто, мы научились составлять химические формулы! А для лучшего запоминания алгоритма составления формул мы подготовили его графическое представление.

Инструкция

Полезный совет

Для определения валентности атомов при составлении структурных формул используйте периодическую систему. Показать точно расстояние атомов в молекуле поможет трехмерная структурная формула.

Источники:

  • структурная формула веществ
  • Составление формул комплексных соединений

Некоторые до сих пор с содроганием вспоминают школьные уроки химии, на которых нужно было составлять структурные формулы углеводородов и их изомеров. А между тем, ничего сверхсложного в этом нет. Достаточно руководствоваться при составлении формул определенным алгоритмом.

Инструкция

Ознакомьтесь с молекулярной формулой углеводорода. Исходя из нее, составьте формулу сначала неразветвленного углеродного скелета (углеродную цепь).

Уменьшите углеродную цепь на один атом. Расположите его как боковое ответвление углеродной цепи. Не забудьте, что атомы, которые располагаются у крайних атомов цепи, являться боковыми ответвлениями.

Определите, к какому краю ближе боковое ответвление. Пронумеруйте заново углеродную цепь, начиная с этого края. Расставьте атомы водорода в соответствии с углерода.

Определите, можно ли располагать боковое ответвление у прочих атомов углерода в цепи. В случае положительных выводов составьте формулы . Если же такая возможность отсутствует, уменьшите основную углеродную цепь еще на атом и расположите его в качестве еще одного бокового ответвления. Обратите внимание: возле одного углерода можно располагать не больше 2-х боковых ответвлений.

Расставьте порядковые номера над с того края, к которому ближе всего располагается боковое ответвление. Расположите возле каждого атома атомы водорода с учетом валентности углерода.

Снова проверьте, есть ли возможность боковые ответвления у прочих атомов углерода в основной цепи. Если такая возможность , то составьте формулы возможных изомеров, если нет - уменьшите углеродную цепь еще на атом и расположите его как боковое ответвление. Теперь пронумеруйте всю цепь атомов и снова попробуйте составить формулы изомеров. В том случае, если уже два боковых ответвления находятся на одинаковом удалении от краев цепи, начинайте нумерацию с края, у которого боковых ответвлений больше.

Продолжайте выполнять эти действия до тех пор, пока не исчерпаете все возможности для расположения боковых ответвлений.

Для удобства записи химического состава и структуры химического вещества были созданы определенные правила составления химических формул с помощью специальных символов-обозначений, чисел и вспомогательных знаков.

Инструкция

Химические формулы в написании уравнений химических , схематичного изображения химических процессов, связей. Для их используется так называемый язык , который представляет собой набор условных обозначений, таких как символы химических элементов, количество атомов каждого элемента в описываемом веществе и пр.

Символы химических элементов – одна или несколько букв латинского алфавита, из которых первая заглавная. Это схематичная запись полного называния элемента, например, Ca – это кальций или лат. Calcium.

Количество атомов выражается математическими числами, например, H_2 – это два атома водорода.

Существует несколько способов записи химической формулы : простейшая, эмпирическая, рациональная и . Простейшая записи отражает соотношение химических элементов с указанием атомной массы, которая указывается после знака химического элемента в виде нижнего индекса. Например, H_2O – простейшая формула молекулы воды, т.е. два атома водорода и один атом кислорода.

Эмпирическая отличается от простейшей тем, что отражает состав вещества, но не структуру молекул. Формула показывает количество атомов в одной молекуле, которое также изображается в виде нижнего индекса.

Различие между простейшей и эмпирической формулами показывает запись формулы бензола: CH и C_6H_6 соответственно. Т.е. простейшая формула показывает прямое соотношение атомов углерода и водорода, в то время как эмпирическая говорит, что в молекуле вещества содержится 6 атомов углерода и 6 – водорода.

Рациональная формула четко показывает наличие атомов элементов в соединении. Такие группы круглыми скобками, а их количество указывается нижним индексом после скобок. В формуле используются также квадратные скобки, в которые заключаются комплексные соединения атомов (соединений с нейтрально молекулой, ионом).

Структурная формула изображается графически в двух- или трехмерном пространстве. Химические связи между атомами изображаются в виде линий, при этом атомы указываются столько раз, сколько их участвует в соединении. Наиболее наглядно формулу вещества выражает трехмерное изображение, которые показывают взаимное расположение атомов и расстояния между ними.

Видео по теме

Углеводород – это органическое вещество, в состав которого входят только два элемента: углерод и водород. Он может быть предельным, непредельным с двойной или тройной связью, циклическим и ароматическим.

В веществах атомы связаны друг с другом в определённой последовательности, а между парами атомов (между химическими связями) имеются определённые углы. Всё это необходимо для характеристики веществ, так как от этого зависят их физические и химические свойства. Сведения о геометрии связей в веществах частично (иногда полностью) отражаются в структурных формулах.

В структурных формулах связь между атомами изображается чертой. Например:

Химическая формула воды H2O, а структурная H-O-H,

Химическая формула пероксида натрия Na2O2, а структурная Na-O-O–Na,

Химическая формула азотистой кислоты HNO2, а структурная H-O-N=O.

При изображении структурных формул чёрточками обычно показывают стехиометрическую валентность элементов. Структурные формулы, построенные по стехиометрическим валентностям, иногда называются графическими .Такие структурные формулы несут информацию о составе и порядке расположения атомов, но не содержат правильных сведений о химических связях между атомами.

Структурная формула - это графическое изображение химического строения молекулы вещества, в котором показывается порядок связи атомов, их геометрическое расположение. Кроме того, она наглядно показывает валентность атомов входящих в ее состав.

Для правильного написания структурной формулы того или иного химического вещества вы должны хорошо знать и представлять, что такое способность атомов образовывать определенное количество электронных пар с другими атомами. Ведь именно валентность поможет вам нарисовать химические связи. Например, дана молекулярная формула аммиака NH3. Вы должны написать структурную формулу. Учитывайте то, что водород всегда одновалентен, поэтому его атомы не могут быть связаны между собой, следовательно, они будут соединены с азотом.

Чтобы правильно написать структурные формулы органических соединений, повторите основные положения теории А.М. Бутлерова, согласно которой существуют изомеры – вещества с одинаковым элементарным составом, но с разными химическими свойствами. Например, изобутан и бутан. Молекулярная формула у них одинаковая: C4H10, а структурные – отличаются.

В линейной формуле каждый атом записывается отдельно, поэтому такое изображение занимает много места. Однако при составлении структурной формулы, вы можете указать общее число атомов водорода при каждом атоме углерода. А между соседними углеродами нарисуйте химические связи в виде линий.

Написание изомеров начните с углеводорода нормального строения, то есть с неразветвленной цепью углеродных атомов. Затем сократите на один атом углерода, который присоедините к другому, внутреннему углероду. Исчерпав все варианты написания изомеров с данной длиной цепи, сократите ее еще на один углеродный атом. И опять присоедините его к внутреннему углеродному атому цепи. Например, структурные формулы н-пентана, изопентана, тетраметилметана. Таким образом, углеводород с молекулярной формулой C5H12 имеет три изомера. Про явления изомерии и гомологии узнайти подробнее в следующих статьях!


На основе этих идей А. М. Бутлеров разработал принципы построения графических формул химических веществ. Для этого требуется знать валентность каждого элемента, которую изображают на рисунке в виде соответствующего числа чёрточек. Пользуясь этим правилом, легко установить, возможно или невозможно существование вещества с определённой формулой. Так, существует соединение, называемое метаном и имеющее формулу СН 4 . Соединение с формулой СН 5 невозможно, так как для пятого водорода у углерода уже не найдётся свободной валентности.

Рассмотрим сначала принципы строения наиболее просто устроенных органических соединений. Их называют углеводородами, так как в их состав входят только атомы углерода и водорода (рис. 138). Самым простым из них является упомянутый метан, в котором есть всего один атом углерода. Прибавим к нему ещё один такой же атом и посмотрим, как будет выглядеть молекула вещества, называемого этаном. У каждого атома углерода одна валентность занята его собратом – другим углеродным атомом. Теперь надо заполнить водородом оставшиеся валентности. У каждого атома осталась по три свободных валентных связи, к которым и присоединим по одному атому водорода. Получилось вещество, имеющее формулу С 2 Н 6 . Прибавим к нему ещё один атом углерода.


Рис. 138. Полные и сокращённые структурные формулы органических соединений

Теперь мы видим, что у среднего атома осталось только две свободных валентности. К ним мы присоединим по атому водорода. А к крайним углеродным атомам добавим, как и прежде, по три атома водорода. Получим пропан – соединение с формулой С 3 Н 8 . Такую цепочку можно продолжать, получая всё новые и новые углеводороды.

Но углеродные атомы необязательно должны располагаться в молекуле в линейном порядке. Допустим, что мы хотим добавить к пропану ещё один углеродный атом. Оказывается, это можно сделать двумя способами: присоединить его либо к крайнему, либо к среднему атому углерода пропана. В первом случае мы получим бутан с формулой С 4 Н 10 . Во втором случае общая, так называемая эмпирическая, формула будет такой же, но изображение на рисунке, называемое структурной формулой , будет выглядеть иначе. И название вещества будет несколько иное: не бутан, а изобутан.

Вещества, имеющие одну и ту же эмпирическую, но разные структурные формулы, называют изомерами , а способность вещества существовать в виде различных изомеров – изомерией . Мы, например, употребляем в пищу различные вещества, имеющие одну и ту же формулу С 6 Н 12 О 6 , но структурные формулы они имеют различные и носят разные названия: глюкоза, фруктоза или галактоза.

Углеводороды, которые мы рассмотрели, называют предельными. В них все атомы углерода связаны между собой одинарной связью. Но так как атом углерода четырёхвалентен и имеет четыре валентных электрона, то теоретически он может образовывать двойные, тройные и даже четверные связи. Четверные связи между атомами углерода в природе не существуют, тройные встречаются редко, а вот двойные присутствуют во многих органических веществах, в том числе и в углеводородах. Соединения, в которых имеются двойные или тройные связи между атомами углерода, называют непредельными или ненасыщенными углеводородами. Возьмём снова молекулу углеводорода, содержащую два атома углерода, но соединим их с помощью двойной связи (см. рис. 138). Мы видим, что теперь у каждого атома углерода осталось по две свободных связи, к каждой из которых он может присоединить по одному атому водорода. Получаемое соединение имеет формулу С 2 Н 4 и называется этиленом. Этилен, в отличие от этана, имеет меньше атомов водорода при том же числе углеродных атомов. Поэтому углеводороды, имеющие двойную связь, и называют ненасыщенными в том смысле, что они не насыщены водородом.

Составления названий органических соединений по структурной формуле.

Выполним обратное задание. Составим название органического соединения по ее структурной формуле. (Прочитайте правила составления названий органических соединений. Составите название органического соединения по структурной формуле.)

4. Многообразие органических соединений.

Ежедневно количество добытых и описанных химиками органических веществ возрастает почти на тысячу. Сейчас их известно около 20 миллионов (неорганических соединений существует в десятки раз меньше).
Причиной многообразия органических соединений является уникальность атомов Карбона, а именно:
- достаточно высокая валентность - 4;

Возможность создания простых, двойных и тройных ковалентных связей;

Способность сочетаться друг с другом;

Возможность образования линейных цепей, разветвленных, а также замкнутых, которые называют циклами.

Среди органических веществ наибольшее соединений Карбона с Гидрогеном; их называют углеводородами. Это название происходит от старых названий элементов - "углерод" и "водород".

Современная классификация органических соединений базируется на теории химического строения. В основу классификации положены особенности строения углеродной цепи углеводородов, поскольку они просты по составу и в большинстве известных органических веществ углеводородные радикалы составляют основную часть молекулы.
5. Классификация насыщенных углеводородов.
Органические соединения можно классифицировать:
1) по структуре их карбонового каркаса. В основе такой классификации лежат четыре главных класса органических соединений (алифатические соединения, алициклические соединения, ароматические соединения и гетероциклические соединения);

2) по функциональным группам.



Ациклические (нециклические, цепные) соединения назы­вают также жирными или алифатическими. Эти названия связаны с тем, что одними из первых хорошо изученных соединений такого типа были природные жиры.

Среди разнообразия органических соединений можно выделить группы веществ, которые сходны по своим свойствам и отличаются между собой на группу - СН 2 .

Ø Соединения, сходные по химическим свойствам и состав которых отличается между собой на группу - СН 2 , называются гомологами.

Ø Гомологи, расположенные в порядке возрастания их относительной молекулярной массы, образуют гомологический ряд.

Ø Группа - СН2 2 , называется гомологической разностью.

Примером гомологического ряда может быть ряд насыщенных углеводородов (алканов). Самый простой его представитель - метан СН 4 . Окончание -ан характерно для названий предельных углеводородов. Далее идут этан С 2 Н 6 , пропан СзН 8 , бутан С 4 Н 10 . Начиная с пятого углеводорода, название образуется из греческого числительного, указывающего число углеродных атомов в молекуле, и окончание -ан . Это пентан С 5 Н 12 , гексан С 6 Н 14 , гептан С 7 Н 16 , октан С 8 Н 18 , нонан СдН 20 , декан С 10 Н 22 и т. д.
Формулу любого следующего гомолога можно получить добавлением к формуле предыдущего углеводорода гомологической разности.
Четыре С-Н связи, например, в метане, равноценны и размещены симметрично (тетраэдрично) под углом 109 0 28 относительно друг друга. Это объясняется тем, что одна 2s и три 2p-орбитали объединяются так, чтобы образовать четыре новые (идентичные) орбитали, способные дать более прочные связи. Эти орбитали направлены к вершинам тетраэдра - такого размещения, когда орбитали максимально удалены друг от друга. Такие новые орбитали называются sp 3 – гибридизоваными атомными орбиталями.

Наиболее удобной номенклатурой, что дает возможность называть любые соединения, является систематическа я номенклатура органических соединений.
Чаще всего систематические названия основываются на принципе замещения, то есть любое соединение рассматривается как неразветвленный углеводород - ациклический или циклический, в молекуле которого один или несколько атомов Водорода замещены другими атомами и группами, в том числе углеводородными остатками. С развитием органической химии систематическая номенклатура постоянно совершенствуется и дополняется, за этим следит комиссия по номенклатуре Международного союза теоретической и прикладной химии (Internation Union of Pure and Applied Chemistry - IUPAC).

Номенклатура алканов и их производных названия первым десяти членам ряда насыщенных углеводородов уже дано. Чтобы подчеркнуть, что алкан имел неразветвленный углеродный цепь, часто к названию добавляют слово нормальный (н-), например:

При отрыве атома водорода от молекулы алкана образуются одновалентные частицы, которые называют углеводородными радикалами (сокращенно обозначают буквой R.

Названия одновалентных радикалов происходят от названий соответствующих углеводородов с заменой окончания -ан на -ил (-ил). Вот соответствующие примеры:

Контроль знаний:

1. Что изучает органическая химия?
2. Как отличить органические вещества от неорганических?
3. Элемент обязанностью входит в состав органических соединений?
4. Перелечите типы органических реакций.
5. Запишите изомеры бутана.

6. Какие соединения называются насыщенными?
7. Которые номенклатуры вам известны? В чем заключается их суть?
8. Что такое изомеры? Приведите примеры.
9. Что такое структурная формула?
10. Запишите шестой представитель алканов.
11. Как классифицируют органические соединения?
12. Какие способы разрыва связи вам известны?

13. Перелечите типы органических реакций.

ДОМАШНЕЕ ЗАДАНИЕ

Проработать: Л1. Стр.4-6 Л1. Стр.8-12,пересказ конспекта лекции №8.

Лекция № 9.

Тема: Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (на примере метана и этана): горение, замещение, разложение и дегидрирование. Применение алканов на основе свойств.

алканы,гомологический ряд алканов, крекинг, гомологи, гомологическая разность, строение алканов: тип гибридизации – sр 3 .

План изучения темы

1. Насыщенные углеводороды: состав, строение, номенклатура.

2.Типы химических реакций, характерные для органических соединений.

3.Физические свойства (на примере метана).

4. Получение предельных углеводородов.

5. Химические свойства.

6.Применение алканов.

1. Насыщенные углеводороды: состав, строение, номенклатура.
Углеводороды - простейшие органические соединения, состоящие из двух элементов: углерода и водорода.



Алканами или насыщенными углеводородами (международное название), называют углеводороды, в молекулах которых атомы Углерода соединены друг с другом простыми (ординарными) связями, а валентности углеродных атомов, которые не принимают участия в их взаимном сочетании, образуют связи с атомами Водорода.

Алканы образуют гомологический ряд соединений, отвечающих общей формуле С n Н 2n+2, где: п - число атомов углерода.
В молекулах насыщенных углеводородов атомы углерода связаны между собой простой (одинарной) связью, а остальные валентностей насыщены атомами водорода. Алканы называют также парафинами.

Для названия предельных углеводородов применяют в основном систематическую и рациональную номенклатуры.

Правила систематической номенклатуры.

Общее (родовое) название предельных углеводородов - алканы. Названия первых четырех членов гомологического ряда метана тривиальные: метан, этан, пропан, бутан. Начиная с пятого названия образованы от греческих числительных с добавлением суффикса –ан (этим подчеркивается сходство всех предельных углеводородов с родоначальником этого ряда - метаном). Для простейших углеводородов изостроения сохраняются их несистематические названия: изобутан, изопентан, неопентад.

По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода - метана, в молекуле которого один или несколько водородных атомов замещены на радикалы. Эти заместители (радикалы) называют по старшинству (от менее сложных к более сложным). Если эти заместители одинаковые, то указывают их количество. В основу названия включают слово "метан":

Свою номенклатуру имеют и радикалы (углеводородные радикалы). Одновалентные радикалы называют алкилами и обозначают буквойR илиAlk .
Их общая формула C n H 2n+ 1 .

Названия радикалов составляют из названий соответствующих углеводородов заменой суффикса -ан на суффикс -ил (метан - метил, этан - этил, пропан - пропил и т.д.).

Двухвалентные радикалы называют, заменяя суффикс -ан на -илиден (исключение - радикал метилен ==СН 2).

Трехвалентные радикалы имеют суффикс -илидин (исключение - радикал метин ==СН).

В таблице приведены названия первых пяти углеводородов, их радикалов, возможных изомеров и соответствующие им формулы.

Формула Название
углеводорода радикала углеводорода радикала
метан метил
этан этил
пропан пропил изопропил
н-бутан метилпропан (изо-бутан) н-бутил метилпропил (изо-бутил) трет-бутил
н-пентан н-пентил
метилбутан (изопентан) метилбутил (изопентил)
диметилпропан (неопентан) диметилпропил (неопентил)

2.Типы химических реакций, характерные для органических соединений
1) Реакции окисления (горения):

Такие реакции характерны для всех представителей гомологических рядов 2) Реакции замещения:

Такие реакции характерны для алканов, аренов (при определенных условиях), а также возможные для представителей других гомологичных рядов.

3) Реакции отщепления : Такие реакции возможны для алканов, алкенов.

4) Реакции присоединения:

Такие реакции возможны для алкенов, алкинов, аренов.

Простейшая органическое вещество - метан - имеет молекулярную формулу СН 4 . Структурная формула метана:


Электронная формула метана:

Молекула метана имеет форму тетраэдра : в центре - атом Углерода, в вершинах - атомы Водорода, соединения направлены к вершинам тетраэдра под углом.

3. Физические свойства метана . Газ без цвета и запаха, легче воздуха, мало растворим в воде. В природе метан образуется при гниении растительных остатков без доступа воздуха.

Метан является основной составной частью природного газа.

Алканы практически нерастворимы в воде, потому что их молекулы малополярные и не взаимодействуют с молекулами воды, но хорошо растворяются в неполярных органических растворителях, таких как бензен, тетрахлорметан. Жидкие алканы легко смешиваются друг с другом.

4.Получение метана.

1) С натрий ацетата:

2) Синтезом из углерода и водорода (400-500 и повышенное давление):

3) С алюминий карбида(в лабораторных условиях):

4) Гидрирование (присоединение водорода) непредельных углеводородов:

5) Реакция Вюрца, что служит для увеличения карбонной цепи:

5. Химические свойства метана:

1) Не вступают в реакции присоединения.
2) Горят:

3) Разлагаются при нагревании:

4) Вступают в реакции галогенирование (реакции замещения):

5) При нагревании и под действием катализаторов происходит крекинг - гемолитический разрыв С-С связей. При этом образуются алканы и низшие алканы, например:

6) При дегидрирование метана и этилена образуется ацетилен:

7) Горения:- при достаточном количестве кислорода образуется углекислый газ и вода:

- при недостаточном количестве кислорода образуется угарный газ и вода:

- или углерод и вода:

Смесь метана с воздухом взрывоопасна.
8) Термическое разложение без доступа кислорода на углерод и водород:

6.Применение алканов:

Метан в больших количествах расходуется в качестве топлива. Из него получают водород, ацетилен, сажу. Он используется в органических синтезах, в частности, для получения формальдегида, метанола, муравьиной кислоты и других синтетических продуктов.

При обычных условиях первые четыре члена гомологического ряда алканов - газы.

Нормальные алканы от пентана до гептадекана - жидкости, начиная с и выше - твердые вещества. По мере увеличения числа атомов в цепи, т.е. с ростом относительной молекулярной массы, возрастают температуры кипения и плавления алканов.

Низшие члены гомологического ряда используются для получения соответствующих непредельных соединений реакцией дегидрирования. Смесь пропана и бутана используется в качестве бытового топлива. Средние члены гомологического ряда применяются как растворители и моторные топлива.
Большое промышленное значение имеет окисление высших предельных углеводородов - парафинов с числом углеродных атомов 20-25. Этим путем получают синтетические жирные кислоты с различной длиной цепи, которые используются для производства мыл, различных моющих средств, смазочных материалов, лаков и эмалей.

Жидкие углеводороды используются как горючее (они входят в состав бензина и керосина). Алканы широко используются в органическом синтезе.

Контроль знаний:

1. Какие соединения называются насыщенные?
2. Которые номенклатуры вам известны? В чем заключается их суть?
3. Что такое изомеры? Приведите примеры.
4. Что такое структурная формула?
5. Запишите шестой представитель алканов.
6. Что такое гомологический ряд и гомологическая разница.
7. Назовите правила, которыми пользуются, когда называют соединения.
8. Определите формулу парафина, 5,6 г которого (н. у.) имеют массу 11г.

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л1. Стр. 25-34,пересказ конспекта лекции №9.

Лекция № 10.

Тема: Алкены . Этилен, его получение (дегидрированием этана и дегидратацией этанола). Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Полиэтилен , его свойства и применение. Применение этилена на основе свойств.

Алкины. Ацетилен , его получение пиролизом метана и карбидным способом. Химические свойства ацетилена: горение, обесцвечивание бромной воды , присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств. Реакция полимеризации винилхлорида. Поливинилхлорид и его применение.

Основные понятия и термины по теме: алкены и алкины,гомологический ряд, крекинг, гомологи, гомологическая разность, строение алкенов и алкинов: тип гибридизации.

План изучения темы

(перечень вопросов, обязательных к изучению):

1Ненасыщенные углеводороды: состав.

2.Физические свойства этилена и ацетилена.

3.Строение.

4.Изомерия алкенов и алкинов.

5.Получение непредельных углеводородов.

6.Химические свойства.

1.Ненасыщенные углеводороды: состав:

Углеводороды с общей формулой СnH 2 n и СnH 2 n -2 , в молекулах которых между атомами углерода имеется двойная связь или тройная связь называются непредельными. Углеводороды с двойной связью относятся к непредельным ряда этилена (называют этиленовыми углеводородами, или алкенами) , с тройной – ряда ацетилена.

2.Физические свойства этилена и ацетилена:

Этилен и ацетилен - это бесцветные газы. Они плохо растворяются в воде, но хорошо в бензине, эфире и других неполярных растворителях. Температура кипения тем больше, чем больше их молекулярная масса. В сравнении с алканами, алкины имеют более высокие температуры кипения. Плотность алкинов меньше плотности воды.

3.Строение ненасыщенных углеводородов:

Изобразим строение молекул этилена и ацетилена структурно. Если углерод считать четырехвалентным, то исходя из молекулярной формулы этилена, у него не все валентности востребованы, а у ацетилена лишними оказываются четыре связи. Изобразим структурные формулы этих молекул:

На образование двойной связи атом углерода затрачивает по два электрона, а на тройную связь по три электрона. В формуле это обозначается в виде двух или трех точек. Каждая черточка – это пара электронов.


электронная формула.

Экспериментально доказано, что в молекуле с двойной связью одна из них относительно легко разрывается, соответственно с тройной связью легко разрываются две связи. Мы можем продемонстрировать это на опыте.

Демонстрация опыта:

1.Смесь спирта с H 2 SO 4 нагреваем в пробирке с песком. Газ пропускаем через раствор KMnO 4 , затем поджигаем.

Обесцвечивание раствора происходит по причине присоединения атомов по месту разрыва кратных связей.

3СН 2 =СН 2 +2КМnO 4 +4H 2 O → 2MnO 2 +3C 2 H 4 (OH) 2 +2KOH

Электроны, образующие кратные связи, в момент взаимодействия с КМnO 4 распариваются, образуются непарные электроны, легко вступающие во взаимосвязь с другими атомами с неспаренными электронами.

Этилен и ацетилен являются первыми в гомологических рядах алкенов и алкинов.

Этен. На плоской горизонтальной поверхности, которая демонстрирует плоскость перекрывания гибридных облаков (σ – связи) лежат 5 σ –связей. Перпендикулярно этой поверхности лежат Р –облака негибридные, они образуют одну π-связь.

Этин. В этой молекуле две π -связи, которые лежат в плоскости, перпендикулярной плоскости σ –связи и взаимно перпендикулярно друг другу. π-связи непрочные, т.к. имеют небольшую область перекрывания.

4.Изомерия алкенов и алкинов.

В ненасыщенных углеводородах кроме изомерии по углеродному скелету появляется новый вид изомерии - изомерия по положению кратной связи . Положения кратной связи указывается цифрой в конце названия углеводорода.

Например:
бутен-1;
бутин-2.

Считают атомы Карбона с той стороны, к которой ближе кратная связь.

Например:
4-метилпентен-1

Для алкенов и алкинов изомерия зависит от положения кратной связи и строения углеродной цепи. Поэтому в названии цифрой следует указать положение боковых цепей и положение кратной связи.

изомерия кратной связи: СН3-СН2-СН=СН2 СН3-СН=СН-СН3
бутен-1 бутен-2
Для непредельных углеводородов характерна пространственная или стереоизомерия. Она называется цис-, трансизомерией.

Подумайте, какое из этих соединений может иметь изомер.

Цистрансизомерия возникает только в случае, если каждый атом углерода при кратной связи соединен с разными атомами или группами атомов. Поэтому в молекуле хлорэтена (1) как бы мы не повернули атом хлора, молекула будет такой же. Другое дело в молекуле дихлорэтена (2), где положение атомов хлора относительно кратной связи может быть различным.

Физические свойства углеводорода зависят не только от количественного состава молекулы, но и от ее строения.

Так, цисизомер 2 – бутена имеет температуру плавления – 138ºС, а его трансизомер – 105,5ºС.

Этен и этин : промышленные способы их получения связаны с дегидрированием предельных углеводородов.

5.Получение непредельных углеводородов:

1. Крекинг нефтепродуктов . В процессе термического крекинга предельных углеводородов наряду с образованием алканов происходит образование алкенов.

2.Дегидрирование предельных углеводородов. При пропускании алканов над катализатором при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

3.Дегидратация с пиртов (отщепление воды). Воздействие водоотнимающих средств (Н2804, Аl203) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:

Эту реакцию называют внутримолекулярной дегидратацией (в отличие от межмолекулярной дегидратации, которая приводит к образованию простых эфиров)

4.Дегидрогалогенировани е (отщепление галогеноводорода).

При взаимодействии галогеналкана со щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода. Реакция идет в присутствии катализаторов (платины или никеля) и при нагревании. В зависимости от степени дегидрирования можно получить алкены или алкины, а также осуществить переход от алкенов к алкинов:

Обратите внимание, что в результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева:Водород в реакциях разложения отщепляется от того атома Углерода, у которого наименьшее количество атомов Водорода:


(Водород отщепляется от , но не от ).
5. Дегалогенирование. При действии цинка на дибромпроиз-водное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:

6. В промышленности ацетилен в основном получают термическим разложением метана:

6.Химические свойства.

Химические свойства непредельных углеводородов связаны прежде всего с наличием π – связи в молекуле . Область перекрывания облаков в этой связи мала, поэтому она легко разрывается, а углеводороды насыщаются другими атомами. Для непредельных углеводородов характерны реакции присоединения.

Для этилена и его гомологов характерны реакции, идущие с разрывом одной из двойных соединений и присоединением атомов по месту разрыва, то есть реакции присоединения.
1) Горение (в достаточном количестве кислорода или воздуха):


2) Гидрирование (присоединение водорода):


3) Галогенирование (присоединение галогенов):



4) Гидро галогенирование (присоединение галогеноводородов):


Качественной реакцией на непредельные углеводороды:

1) являются обесцвечивание бромной воды или 2) раствора калий перманганата.

При взаимодействии бромной воды с ненасыщенными углеводородами происходит присоединение брома по месту разрыва кратных связей и, соответственно, исчезновения окраски, которое было обусловлено растворенным бромом:

Правило Марковникова : Водород присоединяется к тому атому Углерода, который связан с большим числом атомов Водорода . Это правило можно показать на реакциях гидратации несимметричных алкенов и гидро- галогенирование:

2-хлорпропан

При взаимодействии галогеноводородов с алкинами присоединения второй молекулы галогеноводню идет в соответствии с правилом Марковникова:


Для ненасыщенных соединений характерны реакции полимеризации.

Полимеризация - это последовательное соединение молекул низкомолекулярного вещества с образованием высокомолекулярного вещества. При этом соединение молекул происходит по месту разрыва двойных связей. Например, полимеризация этена:

Продукт полимеризации называется полимером, а исходное вещество, вступающее в реакцию, -мономером ; повторяющиеся в полимере группировки называются структурными или элементарными звеньями ; число элементарных звеньев в макромолекуле называется степенью полимеризации.
Название полимера складывается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол. В зависимости от степени полимеризации тех же мономеров можно получать вещества с различными свойствами. Например, полиэтилен с короткими цепями является жидкостью, что имеет смазочные свойства. Полиэтилен с длиной цепи в 1500-2000 звеньев - твердый, но гибкий пластический материал, идущий на изготовление пленки, посуды, бутылок. Полиэтилен с длиной цепи в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, трубы. В расплавленном состоянии полиэтилена можно придать любую форму, которая сохраняется после отверждения. Такое свойство называется термопластичностью.

Контроль знаний:

1. Какие соединения называются ненасыщенные?

2. Изобразить все возможные изомеры для углеводорода с двойной связью состава С 6 Н 12 и С 6 Н 10 . Дать им названия. Составить уравнение реакции горения пентена, пентина.

3. Решить задачу: Определить объем ацетилена, который можно получить из карбида кальция массой 100 г, массовой долей 0,96, если выход составляет 80% ?

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л1. Стр. 43-47,49-53, Л1. Стр. 60-65, пересказ конспекта лекции №10.

Лекция № 11.

Тема: Единство химической организации живых организмов. Химический состав живых организмов. Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Представление о водородной связи. Химические свойства этанола : горение, взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Вредное воздействие спиртов на организм человека. Понятие о предельных многоатомных спиртах . Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты . Применение глицерина .

Альдегиды. Получение альдегидов окислением соответствующих спиртов. Химические свойства альдегидов: окисление в соответствующую кислоту и восстановление в соответствующий спирт. Применение формальдегида и ацетальдегида на основе свойств.

Основные понятия и термины



Понравилась статья? Поделитесь с друзьями!