Когда молния ударяет в землю. Мобильный телефон опасен в грозу

Всем хотелось знать, правда ли, что после удара молнии гражданин Китая грохнулся на землю, быстро вскочил, отряхнулся и хотел было двинуться дальше, но вторая молния сбила его с ног еще раз и опять без смертельного исхода. Похожих историй немало. В популярных книжках и журналах вам расскажут о массовом поражении футболистов на стадионе, пассажиров на автобусной остановке, едва ли не целого стада коров на пастбище. Истории жуткие. Десяток человек в больнице. Но в больнице же, - не на кладбище. Может быть опасность молнии сильно преувеличена, если человек в состоянии выдержать ее прямое воздействие? Только кто сказал, что воздействие прямое? Чаще всего это не так.

Разряд молнии сопровождается сильным электрическим током. Даже у средней по силе молнии он близок к 30 000 А, а у мощнейшей едва ли не на порядок больше. В конечном итоге этот ток растекается в грунте по всему объему Земли. Любой молниеприемник обязательно заземляют. Для этого у молниеотвода монтируют заземлитель. Его образует один или несколько подземных заземляющих электродов, вертикальных или горизонтальных. С металлических электродов ток попадает в землю, где, как в любом проводнике, действует закон Ома. Произведение тока на сопротивление дает напряжение, в данном случае напряжение на заземлителе:

Выражение вроде бы привычное, но все-таки не совсем, потому что речь идет о напряжении в земле, которое принято считать нулевым. Ведь для того и заземляют, чтобы не попасть под напряжение. А тут получается с ног на голову, причем не в переносном смысле, а в самом что ни на есть прямом. Напряжение действует на человека через ноги, нормально и твердо стоящие на земле. Такое требует объяснения. И начинать надо с самого простого. Насколько хорошим проводником считается грунт? Ответ кажется очевидным, - безусловно хорошим, если электрики и специалисты по технике безопасности всегда говорят о заземлении. В науке и технике привыкли к конкретным оценкам. Слова много-мало, хорошо-плохо сути дела не поясняют. Качество проводников оценивается их удельным сопротивлением. У хорошего грунта оно близко к 100 Ом*м - в миллиард раз больше, чем у черной стали! Сопоставление более чем убедительное. Выручает очень большой объем, по которому растекается в грунте ток молнии.

Не хочу, чтобы читатель поймал меня на качественном описании и потому сразу перейду к количественным оценкам. Для этого вместо привычного напряжения полезно воспользоваться еще одним параметром из школьной физики. Речь пойдет о напряженности электрического поля. Так называют величину падения напряжения в какой-то среде на единице длины, например, падение напряжения в грунте на длине 1 м. Кстати, длина 1 м - это примерная длина шага взрослого человека. Помните, напряженность измеряют в вольтах на метр. Если электрическое поле в грунте E гр равно 1 В/м, между ногами человека на длине l = 1 м будет действовать напряжение


Время оценить электрическое поле тока молнии в грунте. Представим, что она ударила в стержневой молниеотвод, заземлитель которого выполнен в виде полусферы диаметром d= 0,5 м (кастрюля или казан для плова средних размеров) и закопан в грунт, как это показано на рис. 1. Ток молнии I М будет симметрично стекать с поверхности металлической полусферы, где его плотность составит

Для средней по силе молнии с током 30 000 А в нашем случае получается j M ≈ 7,6×10 4 А/м 2 . Дальше полная аналогия с законом Ома. Чтобы получить напряженность в грунте E гр, надо умножить плотность тока на удельное сопротивление грунта ρ.

Если даже ориентироваться на высоко проводящий грунт (ρ ≈ 100 Ом*м), получается весьма впечатляющая величина 7 600 000 В/м. Напряжение на длине шага 1 м составит здесь почти восемь миллионов вольт. Трудно предположить, чтобы телевизионному китайцу удалось перенести такое без вреда для здоровья. Скорее всего, второй молнии не потребовалось бы.

Величина, которая здесь получена, называется специалистами шаговым напряжением (говорят еще - напряжение шага). Важно понимать, как она меняется в окрестности места удара молнии. Если грунт везде одинаковый, все определяется плотностью тока молнии. По мере удаления от полусферического заземлителя поверхность, через которую протекает ток в силу симметрии так и останется полусферической. а ее радиус r будет непрерывно нарастать. Вместе с ним увеличится площадь полусферической поверхности, "заполненной" током, и соответственно снизится его плотность.

Напряженность электрического поля тоже начнет быстро снижаться

На расстоянии r = 10 м от начальных миллионов в нашем примере останется чуть меньше 5 000 В/м. Это тоже чувствительно, но, как правило, не смертельно, потому что время действия высокого напряжения, как и длительность тока молнии, едва ли больше 0,1 миллисекунды. Высоковольтная подножка может легко сбить с ног, но сил, чтобы подняться, у человека скорее всего хватит.

Если читателю не надоели цифры и он добрался до этой строчки, дальше ему будет легко понять откуда взялась старая рекомендация не прятаться от грозы под большими деревьями. Из-за значительной высоты удар молнии в них наиболее вероятен. При ударе ток потечет по корневой системе дерева как по заземлителю. Вплотную с корнями электрическое поле особенно велико. Ясно, что стоять здесь не рекомендуется, сидеть и особенно лежать тоже, потому что длина человека вдвое больше длины его шага.

Если еще раз вернуться к цифрам, то надо признать, что они нисколько не завышены. Ток молнии даже в 100 000 А особой редкостью не назовешь, да и удельное сопротивление грунта может быть в десятки раз больше использованного в оценках. По этой причине опасное для жизни шаговое напряжение может удерживаться на достаточно большом расстоянии от точки удара молнии. Наконец, во внимание надо принять форму заземляющего электрода. Все оценки выше были сделаны для полусферического заземлителя. Его электрическое поле, как видно из приведенных формул, убывает очень быстро, - обратно пропорционально квадрату расстояния. Чаще же заземлители монтируют из протяженных шин или стержней, мало похожих на полусферу. Их электрическое поле убывает намного медленнее. В результате радиус опасного знакомства с молнией очень заметно увеличивается, иногда, до многих десятков метров. Так объясняют массовые поражения людей на пляже или на футбольном поле.


Перед вами результаты расчета шагового напряжения для типового заземляющего устройства, что рекомендован отечественным нормативом по молниезащите. Он состоит из горизонтальной шины длиной 10 м и трех вертикальных стержней по 5 м - два по краям шины и один у середины. Удельное сопротивление грунта 1000 Ом*м (неувлажненный песок), ток молнии 100 кА. Это мощная молния - у 98% грозовых разрядов ток меньше. Цифры на графике впечатляющие - сотни киловольт непосредственно у заземлителя, свыше 70 кВ на расстоянии 15 м и не меньше 10 кВ на расстоянии 40 м.

Когда в Москве восстанавливали храм Христа Спасителя, проектировщики учли, что при его значительной высоте надо ожидать практически ежегодного удара молнии. Не исключено, что этот удар произойдет в праздничный день, при большом стечении народа на паперти. Чтобы гарантировать безопасность прихожан, пришлось обеспечивать растекание тока молнии по очень разветвленной системе подземных шин, минимизировав тем самым шаговые напряжения.

Сильное электрическое поле в грунте несет еще одну неприятность. Когда напряженность поля поднимается до 1 МВ/м, в земле начинается ионизация. В определенных условиях это приводит к росту плазменного канала, который скользит вдоль поверхности грунта, слегка зарываясь в него. Каналы (а их может быть несколько, как на этой фотографии, полученной в лаборатории) могут продвигаться от места ввода тока молнии


на десятки метров. Фактически их надо рассматривать как продолжение молнии, только не в воздухе, а вдоль поверхности земли. Надо сказать, что они не становятся от этого менее опасными, потому что ток в канале составляет десятки процентов от тока молнии, а температура заведомо выше 6000 0 . Надеюсь, читателю не потребуется большого воображения, чтобы представить себе последствия контакта такого канала с зоной протечек топлива на нефтеналивной эстакаде или с подземным кабелем, например, телефонным либо управляющим микроэлектронной системой.

В засушливый 2010 г центральное телевидение передавало репортаж из полностью сгоревшей в грозу деревни в Омской области. Московская корреспондентка поинтересовалась у деревенских бабушек: “Почему не гасили?”. Те ответили хором; “Страшно было - стрелы огненные по земле ползали”. Взгляните еще раз на снимок. Правда, похоже? Опасались бабушки не напрасно. Электрическое поле у искровых каналов мало чем отличается от поля у металлических шин. Сближение с ними легко может закончиться гибелью.

Представленного достаточно, чтобы убедиться в изобретательности молнии. Вы устроили надежную защиту сверху при помощи молниеотводов, а она прорывается к вам обходным маневром, прокладывая себе путь вдоль поверхности земли. Вот почему практически все популярные статьи заканчиваются обращением не забывать о профессионалах. С грозными явлениями природы шутить рискованно и относится к ним легкомысленно недопустимо.

Э. М. Базелян , д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

Главным громоотводом Москвы без сомнения является Останкинская телебашня. Если в среднем по Москве и Московской области в один квадратный километр попадает одна молния за год, то в Останкинскую башню попадает 40-50 молний в год. Инженерам, обслуживающим башню, это приносит только дополнительные проблемы. Во-первых, необходимо обеспечить безопасность людей. Во-вторых, несмотря на установленную молниезащиту, удары молний продолжают изредка выводить из строя радио и метеорологическую аппаратуру. Ее приходится менять. А вот для ученых башня - прекрасный полигон по изучению этого удивительного природного явления. В течение многих лет наблюдения за грозовыми разрядами проводились специалистами Энергетического института им. Г.М. Кржижановского. Разряды молнии в башню фотографировались одновременно с нескольких зданий в окрестности Останкино. Рассматриваю эти фотографии. Каждый разряд по-своему красив и не похож на другой. Каким причудливым ломаным путем порой бежит молния к своей конечной точке. Иногда в башню попадает одновременно несколько молний, вплетая ее на мгновенье в свою ослепительную паутину. Очень неожиданным оказалось то, что далеко не всегда молния попадает в верхушку башни. На одном снимке видно, что молния попала в основание смотровой площадки. А в другом кадре молния бьет в основание башни. Статистический анализ данных показал, что 5-7 процентов всех ударов молнии поражают боковую поверхность башни гораздо ниже ее вершины. Это так называемые нисходящие молнии. Но самым поразительным оказалось то, что вблизи Останкинской башни нисходящие молнии бьют в землю так же часто, как и до ее строительства. Эти результаты заставили специалистов пересмотреть существовавшую теорию молниевого разряда и искать новые методы грозовой защиты. Стало ясно, что даже вершины высотных сооружений не являются надежным громоотводом. Именно поэтому длинная дорожка, ведущая к Останкинской башне, покрыта хорошо заземленной металлической крышей.

C точки зрения науки, молния - это вид электрического разряда, происходящего обычно при грозовых бурях. Существует несколько видов молний: разряды могут происходить между грозовым облаком и землей, между двумя облаками, внутри облака, уходить из облака в чистое небо. Они могут иметь разветвленный рисунок или представлять собой единый столб. Молнии, наблюдавшиеся во все времена, имели самые разнообразные формы - веревки, жгута, ленты, палки, цилиндра. Редкой формой является шаровая молния.
В принятой на сегодняшний день теории образования молний считается, что столкновения частиц в облаках приводят к появлению больших областей положительного и отрицательного зарядов. Когда большие противоположно заряженные области подходят достаточно близко друг к другу, некоторые электроны и ионы, пробегая между ними, создают канал, по которому за ними устремляются остальные заряженные частицы - происходит молниевый разряд. Воздух разогревается до 30 тысяч градусов - в пять раз больше, чем температура поверхности Солнца. Раскаленная среда взрывообразно расширяется и вызывает ударную волну, воспринимаемую как гром. Интересно, что молнии наблюдаются не только на Земле, но также в атмосферах Венеры, Юпитера и Сатурна. Одновременно на Земле происходит около 2000 грозовых бурь. Каждую секунду в поверхность Земли ударяет более 100 молний.
Наверное, многие замечают, что молния мерцает. Оказывается, что одна молния состоит обычно из нескольких разрядов, каждый из которых длится всего несколько десятков миллионных долей секунды. Молнии между тучей и землей бывают двух типов: положительные и отрицательные. Положительные разряды происходят только в 5% случаев, зато они более сильные. Считается, что именно положительные разряды приводят к возникновению лесных пожаров.
Однако многие вещи, связанные с образованием молний до сих пор не ясны. Иногда молнии творят очень странные, не поддающиеся объяснению вещи. Молния может оставить фотографический отпечаток на теле пораженного. Или сжечь на человеке белье, оставляя верхнее платье. Молния сбривает с человека все волосы до последнего. Или, например, полностью испаряет металлическое кольцо на руке… Известен жуткий и загадочный случай, произошедший в Японии. Учитель приказал школьникам в походе держаться за веревку. Ударившая в веревку молния убила каждого четного ребенка в ряду, оставив нечетных полностью невредимыми…

Является ли молния знаком Бога?

В наши дни принято избегать привлечения теологии к объяснению молний. Однако следует отметить, что молнии считались посланиями богов во многих культурах. Самым известным повелителем молний, наверное, является древнегреческий бог Зевс. В древних Афинах считалось, что место, где ударила молния, освящено Зевсом. Другим известным хозяином грома и молний является скандинавский бог Тор. Древние римляне считали, что убитый молнией человек в чем-то провинился перед богом Юпитером, и для него не проводили обряд погребения. Многие народы делали лекарства из камней, в которые попала молния. Римляне, индусы и индейцы Майя верили в то, что грибы вырастают в местах, где молния ударила в землю.

Может ли выжить человек при ударе молнии?

Да. Человек имеет значительные шансы на выживание во время удара молнии. Во-первых, хотя температура во время разряда очень высока, но длится он обычно недолго и не всегда приводит к серьезным ожогам. Во-вторых, основной ток молнии часто проходит по поверхности тела. Поэтому большинство пораженных молнией людей не умирает. По разным оценкам умирает от 5% до 30% пораженных. Ваши шансы на выживание значительно повышаются, если рядом находится человек, который умеет делать искусственное дыхание и массаж сердца. Часто жертвы удара молнии выглядят уже мертвыми, но на самом деле у них произошла остановка сердца. Немедленное применение искусственного дыхания и массажа сердца может вернуть их к жизни.

Может ли человек выжить после нескольких ударов молнии?

Да, такие примеры существуют. В 1918 году молния ударила американского майора Саммеpфоpда, свалив его с лошади. По инвалидности он уволился из армии и поселился в Ванкувеpе. Во второй раз молния настигла его в 1924 году, когда он сидел у реки с тремя приятелями - рыбаками. Ударившая в рядом стоящее дерево молния парализовала правую часть его туловища. В третий раз молния настигает Саммеpфоpда в 1930 году во время неожиданной бури. После этого его парализовало полностью, и через два года Саммеpфоpд скончался. Но на этом преследование не закончилось. Летом 1934 года молния попала в памятник на кладбище Ванкувеpа. Вы, наверное, уже догадались, что это был памятник офицеру Саммеpфоpду…
Американец по имени Рой Сэлливан, лесничий по профессии, попал в "Книгу рекордов Гиннесса" потому что выжил после семи ударов молнии, которые он испытал между 1942 и 1977 годами. Два раза волосы на его голове загорались, он получил несколько ожогов на теле, но остался жив! Он настоящий профессионал. Не вздумайте пытаться повторить такое.

Насколько безопасно находиться в самолете во время грозы?

По статистике, молнии попадают в самолеты, в среднем, три раза в год, но в наши дни это редко приводит к серьезным последствиям. Самая тяжелая авиационная катастрофа, вызванная молнией, произошла 8 декабря 1963 года над Эклтоном в штате Мэрилэнд, США. Тогда попавшая в самолет молния проникла в резервный бак горючего, что привело к воспламенению всего самолета. В результате этой катастрофы погибло 82 человека. После этой трагедии в конструкцию самолетов был внесен ряд изменений, и современные авиалайнеры теперь достаточно хорошо защищены от удара молнии. Однако грозовая буря по-прежнему представляет значительную опасность для самолетов из-за наличия в ней сильных восходящих и нисходящих потоков воздуха.

Спасет ли от молнии автомобиль?

Находиться в салоне машины во время молнии достаточно безопасно, если кузов и крыша сделаны из металла. Внутренняя отделка автомобиля из каучука и пластмассы служит хорошим изолятором, и основной ток молнии обычно проходит по внешнему металлическому корпусу машины. Однажды, сильная молния попала прямо в машину, ехавшую по шоссе в штате Айова, США. Поломанная машина остановилась, но водитель остался цел и невредим и только сильно испугался. Полностью вышла из строя электрическая система автомобиля, в металлическом корпусе было много маленьких дыр, а покрышки расплавились. Вокруг автомобиля образовался небольшой кратер около десяти сантиметров в глубину. Но самым значительным последствием для водителя, которого звали Род, оказалось то, что после этого случая знакомые стали, шутя, называть его Род-Молния.

Прежде всего, молния - явление очень красивое само по себе. Во-вторых, молнии регулируют в воздухе количество азота, который потребляется заводами. Но иногда молнии творят просто чудеса. Например, согласно статье, опубликованной в журнале Саентифик Америкэн в 1856 году, интенсивный молниевый разряд, ударивший в землю в городе Кэнсингтон, штат Нью Хэмпшир в США, образовал колодец шириной около 30 сантиметров и глубиной 3 метра, который вскоре наполнился чистой водой. Другой удивительный случай произошел с мужчиной, электриком по профессии, из города Гринвуд в Северной Каролине. После прямого удара молнии, который поразил его 31 год назад, он выжил, но после этого полностью перестал ощущать холод. Теперь он может часами находиться на улице в летней одежде при отрицательной температуре, не ощущая никакого дискомфорта. Известны истории о том, что к некоторым ослепшим людям после удара молнии возвращалось зрение. Существует опубликованное свидетельство того, что поражение молнией привело к улучшению интеллектуальных способностей человека, что было подтверждено психологическими тестами. Один джентльмен утверждал, что после удара молнией он стал "сверхсексуальным", потому как теперь его уже никто не может удовлетворить.

Меры безопасности

Что делать, если вы попали в грозу? Если вы оказались в грозу на открытой местности и не имеете возможности спрятаться в здании или машине, то отходите подальше от отдельно стоящих деревьев и высоких строений. Избегайте холмов и других возвышенностей. Находиться под группой из нескольких деревьев более безопасно, чем на открытой местности. Если поблизости есть канава, то прячьтесь в ней. Избавьтесь от металлических предметов. Если вам не удалось найти укрытие, то присядьте на корточки и обхватите руками колени. И обещайте, что в следующий раз будете более внимательными к прогнозам погоды, чтобы не попасть в такую переделку снова.
Находиться в доме во время молнии, в общем, достаточно безопасно. Не стоит только во время грозы разговаривать по телефону (исключая беспроводной и сотовый), держаться за металлические трубы, заниматься ремонтом электропроводки. Однако в редких случаях молния может попасть и внутрь дома. Так случилось, к примеру, с одним домом в Дании. Молния проникла через дымоход, отбила штукатурку на стенах гостиной, в клочья изорвала занавески и вдребезги разбила настенные часы, оставив при этом невредимой канарейку, сидевшую в клетке рядом с часами... затем молния, разбив 60 оконных рам и все зеркала, прошла через дверь на задний двор, убив там кошку и свинью.

Только ли грозы рождают молнии?

Обычно молнии появляются в грозовую бурю, чаще всего летом или весной. Редко, но бывает, что молнии бьют и зимой во время сильных снегопадов и буранов. Зимние молнии очень сильные и вызывают очень громкие и длинные раскаты грома. В некоторых случаях молнии также наблюдаются внутри гигантских облаков дыма над действующими вулканами. К примеру, удары молний и даже миниатюрные вихри дыма, напоминающие торнадо, сопровождали эффектное рождение вулкана на острове Сетси около Исландии. Известно, что молнии появляются также в гигантских клубах дыма, производимых лесными пожарами.

Где на Земле больше всего молний?

Молнии рождаются почти во всех частях света, однако они имеют свои излюбленные места. Наблюдения с метеорологических спутников показывает, что молнии, в основном, возникают над сушей, хотя она и составляет только четвертую часть поверхности Земли. Чемпионом по количеству молний среди климатически зон являются тропики. Очень большое количество молний способны также производить некоторые среднеширотные бури. Самым грозовым местом на Земле считается город Тороро в Уганде, где в году 251 грозовой день. Очень много молний в аномальной зоне на Медведицкой гряде в Поволжье.

Гром среди ясного неба

Существует миф, что молния может ударить только во время дождя. На самом деле, разряд молнии может отходить на расстояние до десяти километров от области, где идет дождь. Видимо, отсюда и возникло выражение "гром среди ясного неба". Недавно проведенные исследования смертей в результате ударов молнии показывают, что большинство несчастных случаев происходит уже после грозового ливня. Во время грозы люди обычно прячутся от дождя, но как только он проходит, они выходят из укрытий. Однако опасность удара молнии сохраняется около десяти и даже более минут после окончания дождя. Помните, что если вы слышите гром, значит, вы все еще находитесь на опасно близком расстоянии от грозы.

Согласно проведенным исследованиям, молнии чаще ударяют в дубы, чем в деревья других пород. Что касается людей, то статистика утверждает, что молнии гораздо чаще поражают мужчин, чем женщин. В Великобритании за период двух десятилетий 85% погибших в результате удара молнии были мужчины. Недавнее исследование смертей от молнии, проведенное в штате Флорида, США, показывает, что среди погибших мужчин было 87%.
Удивительная история произошла с мужьями болгарской женщины Марты Маикия. В 1935 году американский турист Рандольф Истман во время грозы попросился переждать стихию в ее доме. Через неделю они поженились, но спустя 2 месяца мужчину убила молния. Позднее Марта Маикия повторно вышла замуж, теперь уже за француза по имени Шарль Морто. И во время путешествия по Испании второй муж также был поражен молнией. Марту начал лечить от депрессии немецкий врач. Они поженились в Берлине, а во время поездки к французской границе в автомобиль врача ударила, как и следовало ожидать, молния. Третий муж был убит на месте. Насколько известно, четвертый раз Марта никого не осчастливила своей странной любовью…

Что такое шаровая молния?

До сих пор никто в точности не может ответить на этот вопрос. Шаровая молния является одним из самых загадочных природных явлений. Первое упоминание о шаровой молнии приходит к нам из VI века: епископ Григорий Турский писал тогда о появлении огненного шара во время церемонии освящения часовни. С тех пор накоплены тысячи свидетельств очевидцев, но явление шаровой молнии по-прежнему остается необъяснимым.
Обобщение большого количества свидетельств позволило составить усредненный "портрет" шаровой молнии. Чаще всего она имеет форму шара, но рассказывают также о грушевидных, овальных и медузообразных молниях. Размер ее в большинстве случаев составляет от 5 до 30 сантиметров, время "жизни" обычно около 10 секунд, но иногда - более минуты; передвигается она со скоростью 0,5-1 метр в секунду. Цвет - обычно красный, оранжевый или желтый, гораздо реже - голубой, белый или синий. В помещение шаровая молния может проникнуть не только через открытое окно или дверь. Иногда, она, деформируясь, просачивается в узкие щели или даже проходит сквозь стекло, не оставляя в нем никаких следов. Поведение шаровой молнии непредсказуемо. Иногда она просто исчезает, а в других случаях взрывается, принося иногда значительный ущерб. Существует гипотеза, что шаровая молния возникает как следствие разряда линейной молнии. Однако в 20% случаев шаровую молнию наблюдали при ясной погоде.
Загадочный и трагический случай произошел в 1978 году с группой альпинистов в горах Западного Кавказа. В палатку, в которой лежали пять человек, ночью проникла шаровая молния в виде ярко-желтого теннисного мяча. Сначала шар медленно двигался на высоте одного метра над полом, а потом начал нападать на спящих альпинистов, прожигая спальные мешки. В больнице у пострадавших обнаружили жестокие раны. Но это не были ожоги - местами были вырваны куски мышц буквально до костей. Одного альпиниста шар убил. Мастер спорта международного класса по альпинизму В. Кавуненко заявил нечто странное: "Здесь орудовала не шаровая молния... Огненный зверь долго и упорно издевался над нами..."
Но не всегда встречи человека с шаровой молнией заканчиваются трагически. Иногда шар появляется среди группы людей, не причиняя никому вреда. В 1996 году в Глостершире, Англия шаровая молния залетела в заводской цех. Она проплыла вдоль перекрытий крыши и станков, светясь голубым и оранжевым светом и разбрасывая искры. Затем, ударила в окно и распалась. Все произошло в течение 2 секунд. В результате была повреждена телефонная система завода, а рабочие только сильно испугались.
Курьезный случай произошел с одним мальчиком-пастушком. Наслушавшись от взрослых, что молнию можно отогнать веткой, он около 10 минут успешно наступал на нее, пока "гостья" не ретировалась…
На сегодняшний день существует более ста гипотез, претендующих на объяснение физической сути шаровой молнии. Однако ни одну из них не удается подтвердить с достаточной степенью надежности. Экзотическое поведение шаровой молнии дает простор для самых необузданных фантазий. Часто в описаниях очевидцев встречается отношение к молнии как к живому существу. Есть мнение, что молния является аналогом НЛО или существом из параллельного мира с непостижимым разумом и логикой.

15. Перенапряжения прямого удара молнии
Перенапряжениями специалисты называют любые кратковременные повышения напряжения в электрической сети над его номинальным уровнем. Здесь будут рассмотрены перенапряжения, которые вызывает ток молнии в месте удара. Самая простая ситуация – молнию принимает на себя специально установленный стержневой молниеотвод . Ее ток I через молниеприемник, а затем через токоотводы попадает в заземлитель и растекается в земле. При этом на сопротивлении заземления R з выделяется напряжение U R = I молR з. Это очень большое напряжение. Например, при I мол = 100 кА и R з = 10 Ом получается U R = 1000 кВ. Примерно такой же потенциал будет в ближайшей окрестности молниеотвода. Расположенный поблизости подземный кабель примет почти тот же потенциал и, если не предпринять специальных мер, передаст его по кабелю внутрь защищаемого здания, вызвав повреждения изоляции, которую на столь высокое напряжение не рассчитывали.
Воспроизведем еще одну практически значимую ситуацию, положив, что металлическая мачта молниеотвода одновременно выполняет функцию осветительной мачты и потому на ней крепятся изоляторы воздушной линии, питающей светильники. Потенциал мачты в месте крепления изоляторов светильников заметно выше, чем U R, потому что к падению напряжения на заземлителе добавляется падение напряжения на индуктивности мачты (или шин токоотводов, которые по ней проложены, если сама мачта непроводящая). Амплитуда напряжения на индуктивности L равна U L = L (di /dt )max, где выражение в скобках определяет скорость роста тока на фронте импульса. В оценке на усредненную длительность фронта импульса первого компонента молнии T f » 5 мкс для тока 100 кА, легко получить (di /dt )max » I мол/T f = 2´1010 А/с, что для индуктивности L = 30 мкГн (мачта высотой ~ 30 м) дает U L = L (di /dt )max = 600 кВ. Суммарная величина U мол = U R + U L возрастает, таким образом, в разобранном примере до 1600 кВ. Силовой провод находится под потенциалом осветительной сети (220/380 В), пренебрежимо малым по сравнению с U мол и потому практически все напряжение U мол действует на изоляцию силовой цепи относительно земли, в итоге перекрывая ее. Это типичный пример грозовых перенапряжений, в равной степени опасных и для низковольтных сетей, и для линий электропередачи высокого напряжением, где в роли молниеприемка выступает опора или молниезащитный трос линии.

16. Индуцированные перенапряжения от молнии
Это самый распространенный вид перенапряжений, за который ответственно электромагнитное поле молнии. Здесь будут рассмотрены раздельно последствия изменения магнитного поля тока молнии и последствия изменения заряда, который несет ее приближающийся к земле канал. В какой-то степени такое деление - условность, но оно удобно для понимания сути дела.
Если произвольный контур помещен в магнитное поле B , в контуре будет наведена ЭДС магнитной индукции U маг » -S A B. Здесь A B =dB /dt – скорость изменения магнитного потока, пронизывающего контур площади S . Пусть, например, этот контур создан витой парой проводов, которые связаны с компьютером. Тогда площадь контура очень небольшая, порядка 10 см2 (в расчете на кабель длиной в несколько метров). Допустим еще, что провод проходит по стене здания на расстоянии r = 1 м от параллельного ему токоотвода, который отводит к земле ток молнии от молниеприемника. Оценка сверху должна ориентироваться на предельно высокую скорость роста тока молнии A I. Действующие нормативные документы дают величину A I = 2∙1011 А/с. Скорость роста магнитного поля, которая ей соответствует, оценивается при этом как
,
где m0 = 4p∙10-7 Гн/м – магнитная проницаемость вакуума. В рассматриваемом примере Ф B » 4∙104 В/м2 и потому U маг = -B » 40 В. Не нужно пренебрегать полученной величиной. Она на порядок больше рабочего напряжения современной микросхемы и наверняка выведет ее из строя.
Представление о другом масштабе перенапряжений дают оценки для воздушной линии электропередачи напряжением 220/380 В. Здесь площадь контура, образованного фазным и нулевым проводом, легко достигает S = 100 м2. Даже далекий разряд молнии на расстоянии r = 100 м от линии приводит к средней скорости роста магнитного поля ~ 400 В/м2, что дает перенапряжение в 40 кВ, безусловно опасное и для трансформаторной подстанции, и для потребителей, которых та питает.
Теперь об электрической составляющей наведенных перенапряжений. Ее вызывает переток электрического заряда, который наводится электрическим полем канала молнии. Заряд канала достаточно весом, около 0,5 – 1 мКл на метр длины, а электрическое поле у земли, которое он возбуждает, многократно превышает электрическое поле грозового облака. Оценка по полю E мол » 200 кВ/м не будет слишком завышена. Теперь представьте проводник электрической емкостью С , размещенный над землей на высоте h. Это может быть горизонтальный провод (например, антенна), металлический корпус какого-то агрегата или строительная конструкция. Потенциал от заряда канала молнии на высоте h , равный U эл = E молh наведет на заземленном проводнике заряд Q = CU эл. После удара молнии в землю, когда заряд ее канала нейтрализуется и электрическое поле исчезнет, наведенный заряд стечет с проводника в землю через сопротивление заземления R з. Ток от стекающего заряда создаст падение напряжения на проводнике относительно земли. Это может быть вполне приличная величина. Если, например, емкость объекта С = 1000 пкФ (провод длиной около 100 м), а высота его подвеса над землей 5 м, то заряд канала молнии создаст в месте размещения объекта потенциал до U эл = E молh = 200´5 = 1000 кВ. В результате наведенный заряд составит Q = CU эл = 10-9´106 = 10-3 Кл. При нейтрализации приземной части канала молнии за время Dt » 1 мкс по сопротивлению заземления проводника протечет ток i » Q /Dt = 10-3/10-6 = 1000 А, который вызовет падение напряжения на сопротивлении заземления R з = 10 Ом величиной U эл = i R з = 1000´10 = 10 кВ.

17. Занос высокого потенциала
Таким не очень благозвучным и не вполне точным словосочетанием в молниезащите называют доставку к защищаемому объекту высокого напряжения по его надземным или подземным коммуникациям. Сам объект может быть и не поражен прямым ударом молнии. Пусть молния ударила совсем в другое сооружение, в дерево или даже просто в землю. Растекаясь в земле у пораженного сооружения, ток молнии создаст на его заземлителе очень высокое напряжение, U з = I молR з. (например, 300 кВ, если R з.= 10 Ом, а I мол = 30 кА). Под таким же напряжением окажется металлическая оболочка коммуникации, которая связана с тем же заземлителем. Волна напряжения может распространяться по коммуникации на большие расстояния, особенно если она наземная и лишена утечки электрических зарядов в грунт. Но даже в подземном исполнении коммуникация может транспортировать волну высокого напряжения на расстояние в сотни метров без заметного затухания. Чем выше удельное сопротивление грунта, тем эффективнее транспортировка. В скальных породах, сухих песках или в вечно мерзлых грунтах занос высокого потенциала опасен даже на расстояниях в несколько километров.
Особо нужно отметить современные коммуникации из пластиковых труб. Внутри их электролит (в крайнем случае, водопроводная вода, которая тоже неплохой проводник), вполне пригодный для передачи высокого напряжения на большие расстояния, а снаружи высококачественный пластик, надежно изолирующий внутреннюю среду от контактов с грунтом. Теперь утечки в грунт исключаются полностью. Легко представить последствия прикосновения человека к металлическому крану такой коммуникации. Стоя на земле с нулевым потенциалом, он окажется под действием полного напряжения, которое передано по жидкостному каналу.

18. Перенапряжения от распространения тока молнии по металлически оболочкам
Металлическую оболочку обоснованно считают эффективным электромагнитным экраном. Тем не менее, она не спасает полностью от воздействия грозовых перенапряжений на внутренние цепи. Причину возникновения перенапряжений легко уяснить из следующего рисунка. Ток молнии, распространяясь по металлической оболочке длины l , создает на ней падение напряжения DU = R 0lI , где R 0 – сопротивление

единицы длины оболочки. Внутренний провод связан с началом оболочки и потому принимает ее потенциал в месте контакта. Потенциал другого конца оболочки из-за падения напряжения от тока I на DU меньше. Значит между концом внутреннего проводника и концом оболочки будет действовать напряжение U э = DU = R 0lI . Следующая оценка позволяет понять, о каких значениях здесь может идти речь. Пусть длина стальной оболочки l = 100 м, а площадь ее сечения – 100 мм2. Тогда погонное сопротивление составит R 0 = 0,001 Ом/м, что при токе молнии I = 100 кА приведет к перенапряжению U э = R 0lI = 0,001´100´100 = 10 кВ. Этого вполне достаточно для повреждения изоляции осветительного кабеля 220/380 В.
Более строгий анализ показывает, что металлическая оболочка не спасает полностью и от перенапряжениях в двухпроводных системах. Дело в том, что потенциал, принимаемый внутренним проводником, зависит от его внутреннего расположения. Все проводники равноценны только в оболочке круглого сечения. Если же сечение оболочки некруговое (например, это прямоугольный короб), потенциалы проводников будут различными и между ними появится напряжение. Как, правило, оно на порядки ниже только что оцененной величины, но и этого бывает достаточно для повреждения микросхемы, к которой подходит кабельная пара.

19. Защитное действие молниеотводов
С времен Франклина и Ломоносова принято, что молния направляется к наиболее высокому сооружению на земной поверхности. Это положение можно принять и сегодня, но с принципиальной оговоркой: молния с наибольшей вероятностью направляется к наиболее высокому сооружению. Вероятность поражения менее высокого тоже ненулевая. Из самых общих соображений понятно, что эта вероятность снижается с увеличением разности высот. Значит, для надежной защиты высота молниеотвода должна быть больше высоты защищаемого объекта. Чем больше требуемая надежность, тем выше должен быть молниеотвод.
Выбор молниеотводов часто производят по их зонам защиты. Предполагается, что надежность защиты не будет ниже указанной величины, если объект целиком размещен внутри зоны защиты. Для стержневого молниеотвода зону защиты представляют в виде конуса, вершина которого лежит на вертикальной оси стержня. Из сказанного выше следует, что вершина зоны должна располагаться ниже вершины молниеприемника, если гарантируемая надежность защиты больше 0,5. Чтобы убедиться в этом достаточно предположить два расположенных вплотную заземленных стержня равной высоты, посчитав один из них молниеотводом, а другой объектом. Ясно, что за большой срок наблюдения стержни примут на себя равное число ударов молнии (50%-ная надежность защиты). Чтобы обеспечить надежность 0,9 или 0,99 стержень, обозначенный молниеотводом, обязательно должен стать выше, чтобы принимать на себя большую часть молний. Сказанное в равной степени справедливо и для тросовых молниеотводов.

Даже при очень большой разности высот молниеотвод не может обеспечить идеальной защиты. На снимке, который здесь представлен, молния промахнулась мимо вершины Останкинской телебашни на 202 м. Такой случай не уникален.
На практике оперируют надежностью защиты 0,9 или 0,99 (к защищаемому объекту прорывается одна молния из 10 или из 100), редко – 0,999. Для одиночного стержневого молниеотвода высотой h £ 30 м радиус зоны защиты с надежностью 0,9 на уровне земли равен примерно r 0 = 1,5h . а с надежностью 0,99 r 0 = 0,95h . Применение системы из многих молниеотводов заметно расширяет зону защиты. При разумном расположении защищаемый объем может быть в несколько раз больше суммы зон защиты каждого из молниеотводов в отдельности. Этим широко пользуются специалисты.
Если правильно рассчитать и установить молниеотвод на крыше своего дома или около него, можно почти не беспокоиться о прожогах кровли. Даже при надежности защиты 0,9 к дому относительно небольшой высоты прорвется меньше одной молнии за 100 лет. К сожалению, на электромагнитные воздействия молнии такой молниеотвод почти не повлияет. Именно эти воздействия становятся главной причиной аварийных ситуаций.

20. Защита от электромагнитных воздействий молнии
Для современной техники – это самая важная проблема. Фирмы со штатом в тысячи человек разрабатывают и выпускают аппаратуру для защиты от электромагнитных воздействий силовых электрических цепей, телефонных линий, каналов телевидения и даже средств охраны вашего дома от нежелательных “гостей”.
Защитные устройства независимо от их конструкции часто называют ограничителями перенапряжения. Представьте какую-нибудь двухпроводную электрическую цепь, которая входит в Ваш дом. Пусть это будет, например, сеть 220 В. У вас не возникнет проблем, если величину грозовых перенапряжений в сети ограничить уровнем, безопасным для изоляции внутренней проводки и включенной в сеть аппаратуры (например, телевизора, СВЧ-печи или компьютера). При рабочем напряжении 220 В изоляция кратковременно выдержит увеличение напряжения в 3 – 5 раз, вряд ли больше. Значит, на входе в дом надо поставить устройство, которое не даст перенапряжению подняться выше.
Механическая система здесь непригодна из-за своей инерционности. Любое механическое реле срабатывает за единицы-десятки миллисекунд, а грозовое перенапряжение, вызванное током молнии, нарастает примерно в 100 раз быстрее. Нужное быстродействие обеспечивается только полупроводниковыми или газоразрядными приборами. Сегодня успешно используют и те, и другие.
Принципиальная идея такова. В месте входа воздушной сети в дом параллельно проводам установлена шайба, спеченная из оксида цинка. Ее толщина подобрана так, что при напряжении 220 В она практически не пропускает тока и ведет себя как совершенный изолятор, не влияя на электрическую цепь. Однако при появлении грозового перенапряжения проводимость шайбы очень быстро нарастает. За доли микросекунды она приближается к проводимости металлического проводника. Возникшее таким образом короткое замыкание не пропускает перенапряжение к аппаратуре внутри здания и она остается неповрежденной. Когда же ток молнии затухает и перенапряжение исчезает, оксидно-цинковая шайба за те же доли микросекунды возвращается в непроводящее состояние. За столь малое время ее работы автоматы и предохранители не успевают сработать и электроснабжение дома не нарушается.
Примерно так же работают и другие полупроводниковые устройства, варисторы. Меняется только их рабочее напряжение (оно может быть и очень низким для защиты микропроцессорной техники), а принцип действия остается неизменным). Благодаря простоте конструкции полупроводниковые ограничители перенапряжения (ОПН) широко распространены. Их удается смонтировать в малогабаритном корпусе, примерно таком же, как бытовые автоматы, и легко крепить на линейке обычной коммутирующей аппаратуры. Тем не менее, сегодня специалисты все чаще обращаются к старым и давно известным газоразрядным приборам. В них защищаемая цепь замыкается не полупроводниковой шайбой, а после пробоя специального искрового промежутка малой длины.
Газонаполненные разрядники с искровыми промежутками – более сложный прибор, чем полупроводниковый ограничитель. В нем обязательно предусматривают устройство для обрыва дуги с током короткого замыкания электрической сети. Сама по себе эта дуга погаснуть не может, ее гасит специальное дутье. Зато искровой разрядник более надежен, а главное, - он совершенно не страдает от случайного не очень сильного, но длительного повышения напряжения в электрической сети, скажем, когда из-за перекоса фаз держится 270 – 300 В вместо нормальных 220 В. От такого перенапряжения оксидно-цинковая шайба чуть-чуть приоткрывается, начинает пропускать ток, перегревается и выходит из строя. Ничего похожего искровому разряднику не грозит.

21. Почему молния не в ладах с дилетантами
Прочитанные главки дают представление о разностороннем вооружении молнии. В конце концов, какое-нибудь ее оружие может сработать. Человеку не легче, если он, справившись с защитой своего сооружения от прямого удара молнии, пострадает от заноса высокого потенциала, грозовых перенапряжений в электрической сети или сбоев электронного оборудования, пославшего ложную команду. Защита от молнии должна быть комплексной и обязательно совместимой с технологическим назначением объекта. Полумеры здесь мало подходят. Более того, не исключена ситуация, когда недальновидное решение может усугубить опасные воздействия молнии. Вот почему проект по молниезащите должен подготовить специалист. Он должен внимательно оценить опасность всех возможных воздействий высокотемпературного канала, тока и электромагнитного поля молнии. Во внимание должно быть приняты не только конструктивные особенности защищаемого объекта, но и его окружение на поверхности земли и даже подземные коммуникации. Дилетанту такое не по силам.
Очень важно, чтобы средства защиты от молнии не “навешивались” на уже смонтированный объект, а разрабатывались еще на стадии проекта. Только тогда удастся максимально совместить элементы молниезащиты с конструктивными деталями защищаемого объекта и тем самым сберечь немалые деньги. Не редкость, когда совершенно незначительное изменение конструкции объекта, не сказывающееся на его технологических функциях, влечет за собой очень резкое повышение молниестойкости. На такие решения способны только высоко квалифицированные специалисты.

После этой телепередачи “Новостей” с популярностью высоковольтников не могли соперничать даже поп-звезды. Всем хотелось знать, правда ли, что после удара молнии гражданин Китая грохнулся на землю, быстро вскочил, отряхнулся и хотел было двинуться дальше, но вторая молния сбила его с ног еще раз и опять без смертельного исхода. Похожих историй немало. В популярных книжках и журналах вам расскажут о массовом поражении футболистов на стадионе, пассажиров на автобусной остановке, едва ли не целого стада коров на пастбище. Истории жуткие. Десяток человек в больнице. Но в больнице же, - не на кладбище. Может быть опасность молнии сильно преувеличена, если человек в состоянии выдержать ее прямое воздействие? Только кто сказал, что воздействие прямое? Чаще всего это не так.

Разряд молнии сопровождается сильным электрическим током. Даже у средней по силе молнии он близок к 30 000 А, а у мощнейшей едва ли не на порядок больше. В конечном итоге этот ток растекается в грунте по всему объему Земли. Любой молниеприемник обязательно заземляют. Для этого у молниеотвода монтируют заземлитель . Его образует один или несколько подземных заземляющих электродов, вертикальных или горизонтальных. С металлических электродов ток попадает в землю, где, как в любом проводнике, действует закон Ома. Произведение тока на сопротивление дает напряжение, в данном случае напряжение на заземлителе:

Выражение вроде бы привычное, но все-таки не совсем, потому что речь идет о напряжении в земле, которое принято считать нулевым. Ведь для того и заземляют, чтобы не попасть под напряжение. А тут получается с ног на голову, причем не в переносном смысле, а в самом что ни на есть прямом. Напряжение действует на человека через ноги, нормально и твердо стоящие на земле. Такое требует объяснения. И начинать надо с самого простого. Насколько хорошим проводником считается грунт? Ответ кажется очевидным, - безусловно хорошим, если электрики и специалисты по технике безопасности всегда говорят о заземлении. В науке и технике привыкли к конкретным оценкам. Слова много-мало, хорошо-плохо сути дела не поясняют. Качество проводников оценивается их удельным сопротивлением. У хорошего грунта оно близко к 100 Ом*м – в миллиард раз больше, чем у черной стали! Сопоставление более чем убедительное. Выручает очень большой объем, по которому растекается в грунте ток молнии.

Не хочу, чтобы читатель поймал меня на качественном описании и потому сразу перейду к количественным оценкам. Для этого вместо привычного напряжения полезно воспользоваться еще одним параметром из школьной физики. Речь пойдет о напряженности электрического поля. Так называют величину падения напряжения в какой-то среде на единице длины, например, падение напряжения в грунте на длине 1 м. Кстати, длина 1 м – это примерная длина шага взрослого человека. Помните, напряженность измеряют в вольтах на метр. Если электрическое поле в грунте E гр равно 1 В/м, между ногами человека на длине l = 1 м будет действовать напряжение

Время оценить электрическое поле тока молнии в грунте. Представим, что она ударила в стержневой молниеотвод, заземлитель которого выполнен в виде полусферы диаметром d= 0,5 м (кастрюля или казан для плова средних размеров) и закопан в грунт, как это показано на рис. 1. Ток молнии I М будет симметрично стекать с поверхности металлической полусферы, где его плотность составит

Для средней по силе молнии с током 30 000 А в нашем случае получается j M ≈ 7,6×10 4 А/м 2 . Дальше полная аналогия с законом Ома. Чтобы получить напряженность в грунте E гр, надо умножить плотность тока на удельное сопротивление грунта ρ.

Если даже ориентироваться на высоко проводящий грунт (ρ ≈ 100 Ом*м), получается весьма впечатляющая величина 7 600 000 В/м. Напряжение на длине шага 1 м составит здесь почти восемь миллионов вольт. Трудно предположить, чтобы телевизионному китайцу удалось перенести такое без вреда для здоровья. Скорее всего, второй молнии не потребовалось бы.

Величина, которая здесь получена, называется специалистами шаговым напряжением (говорят еще – напряжение шага). Важно понимать, как она меняется в окрестности места удара молнии. Если грунт везде одинаковый, все определяется плотностью тока молнии. По мере удаления от полусферического заземлителя поверхность, через которую протекает ток в силу симметрии так и останется полусферической. а ее радиус r будет непрерывно нарастать. Вместе с ним увеличится площадь полусферической поверхности, "заполненной" током, и соответственно снизится его плотность.

Напряженность электрического поля тоже начнет быстро снижаться

На расстоянии r = 10 м от начальных миллионов в нашем примере останется чуть меньше 5 000 В/м. Это тоже чувствительно, но, как правило, не смертельно, потому что время действия высокого напряжения, как и длительность тока молнии, едва ли больше 0,1 миллисекунды. Высоковольтная подножка может легко сбить с ног, но сил, чтобы подняться, у человека скорее всего хватит.

Если читателю не надоели цифры и он добрался до этой строчки, дальше ему будет легко понять откуда взялась старая рекомендация не прятаться от грозы под большими деревьями. Из-за значительной высоты удар молнии в них наиболее вероятен. При ударе ток потечет по корневой системе дерева как по заземлителю. Вплотную с корнями электрическое поле особенно велико. Ясно, что стоять здесь не рекомендуется, сидеть и особенно лежать тоже, потому что длина человека вдвое больше длины его шага.

Если еще раз вернуться к цифрам, то надо признать, что они нисколько не завышены. Ток молнии даже в 100 000 А особой редкостью не назовешь, да и удельное сопротивление грунта может быть в десятки раз больше использованного в оценках. По этой причине опасное для жизни шаговое напряжение может удерживаться на достаточно большом расстоянии от точки удара молнии. Наконец, во внимание надо принять форму заземляющего электрода. Все оценки выше были сделаны для полусферического заземлителя. Его электрическое поле, как видно из приведенных формул, убывает очень быстро, - обратно пропорционально квадрату расстояния. Чаще же заземлители монтируют из протяженных шин или стержней, мало похожих на полусферу. Их электрическое поле убывает намного медленнее. В результате радиус опасного знакомства с молнией очень заметно увеличивается, иногда, до многих десятков метров. Так объясняют массовые поражения людей на пляже или на футбольном поле.

Перед вами результаты расчета шагового напряжения для типового заземляющего устройства, что рекомендован отечественным нормативом по молниезащите. Он состоит из горизонтальной шины длиной 10 м и трех вертикальных стержней по 5 м – два по краям шины и один у середины. Удельное сопротивление грунта 1000 Ом*м (неувлажненный песок), ток молнии 100 кА. Это мощная молния – у 98% грозовых разрядов ток меньше. Цифры на графике впечатляющие – сотни киловольт непосредственно у заземлителя, свыше 70 кВ на расстоянии 15 м и не меньше 10 кВ на расстоянии 40 м.

Когда в Москве восстанавливали храм Христа Спасителя, проектировщики учли, что при его значительной высоте надо ожидать практически ежегодного удара молнии. Не исключено, что этот удар произойдет в праздничный день, при большом стечении народа на паперти. Чтобы гарантировать безопасность прихожан, пришлось обеспечивать растекание тока молнии по очень разветвленной системе подземных шин, минимизировав тем самым шаговые напряжения.

Сильное электрическое поле в грунте несет еще одну неприятность. Когда напряженность поля поднимается до 1 МВ/м, в земле начинается ионизация. В определенных условиях это приводит к росту плазменного канала, который скользит вдоль поверхности грунта, слегка зарываясь в него. Каналы (а их может быть несколько, как на этой фотографии, полученной в лаборатории) могут продвигаться от места ввода тока молнии

на десятки метров. Фактически их надо рассматривать как продолжение молнии, только не в воздухе, а вдоль поверхности земли. Надо сказать, что они не становятся от этого менее опасными, потому что ток в канале составляет десятки процентов от тока молнии, а температура заведомо выше 6000 0 . Надеюсь, читателю не потребуется большого воображения, чтобы представить себе последствия контакта такого канала с зоной протечек топлива на нефтеналивной эстакаде или с подземным кабелем, например, телефонным либо управляющим микроэлектронной системой.

В засушливый 2010 г центральное телевидение передавало репортаж из полностью сгоревшей в грозу деревни в Омской области. Московская корреспондентка поинтересовалась у деревенских бабушек: “Почему не гасили?”. Те ответили хором; “Страшно было – стрелы огненные по земле ползали”. Взгляните еще раз на снимок. Правда, похоже? Опасались бабушки не напрасно. Электрическое поле у искровых каналов мало чем отличается от поля у металлических шин. Сближение с ними легко может закончиться гибелью.

Представленного достаточно, чтобы убедиться в изобретательности молнии. Вы устроили надежную защиту сверху при помощи молниеотводов, а она прорывается к вам обходным маневром, прокладывая себе путь вдоль поверхности земли. Вот почему практически все популярные статьи заканчиваются обращением не забывать о профессионалах. С грозными явлениями природы шутить рискованно и относится к ним легкомысленно недопустимо.

Э. М. Базелян , д.т.н., профессор
Энергетический институт имени Г.М. Кржижановского, г. Москва

Надеемся, что в дальнейшем этот сайт выполнит роль элементарного учебника по самообороне от молнии. Мы планируем постоянно размещать здесь статьи о реальных опасностях грозового электричества и современных средствах молниезащиты. Они призваны помочь разобраться в существе проблемы и оценить доступные вам пути ее решения.

Существует распространенный стереотип, утверждающий, что молния бьет сверху вниз. Это далеко не так, ведь помимо наземных, существуют еще внутриоблачные молнии и даже молнии, которые существуют только в ионосфере.

Молния представляет собой огромный электрический разряд, ток в котором может достигать сотен тысяч ампер, а напряжение - сотен миллионов ватт. Длина некоторых молний в атмосфере может достигать десятков километров.

Природа молнии

Впервые физическую природу молний описал американский ученый Бенджамин Франклин. В начале 1750-х годов он провел эксперимент по изучению атмосферного электричества. Франклин дождался наступления грозовой погоды и запустил в небо воздушного змея. В змея ударила молния, и Бенджамин пришел к выводу об электрической природе молний. Ученому повезло - примерно в то же время российский исследователь Г. Рихман, тоже изучавший атмосферное электричество, погиб от удара молнии в сконструированный им аппарат.

Полнее всего изучены процессы образования молний в грозовых облаках. Если молния проходит в самом облаке, ее называют внутриоблачной. А если ударяет в землю, она называется наземной.

Наземные молнии

Процесс формирования наземной молнии включает в себя несколько этапов. Сначала электрическое поле в атмосфере достигает своих критических значений, происходит ионизация и наконец, образуется искровой разряд, который ударяет из грозового облака в землю.

Строго говоря, молния бьет сверху вниз лишь отчасти. Сначала из облака по направлению к земле устремляется начальный разряд. Чем ближе он подходит к земной поверхности, тем больше усиливается напряженность электрического поля. Из-за этого навстречу к приближающейся молнии с поверхности Земли выбрасывается ответный заряд. После этого по соединяющему небо и землю ионизированному каналу выбрасывается главный разряд молнии. Он действительно бьет сверху вниз.

Внутриоблачные молнии

Внутриоблачные молнии обычно гораздо больше наземных. Их длина может составлять до 150 км. Чем ближе местность расположена к экватору, тем чаще в ней возникают внутриоблачные молнии. Если в северных широтах соотношение внутриоблачных и наземных молний примерно одинаково, в экваториальной полосе внутриоблачные молнии составляют примерно 90% всех грозовых разрядов.

Спрайты, эльфы и джеты

Помимо обычных грозовых молний, существуют такие малоизученные явления как эльфы, джеты и спрайты. Спрайты представляют собой подобия молний, которые появляются на высоте до 130 км. Джеты формируются в нижних слоях ионосферы и представляют собой разряды в виде синих . Разряды-эльфы тоже имеют конусообразную форму и могут достигать диаметра в несколько сотен километров. Обычно эльфы появляются на высоте около 100 км.



Понравилась статья? Поделитесь с друзьями!