Масса звезды. Внутреннее строение Солнца и звезд главной последовательности

The Hertzsprung-Russell Diagram (HR Diagram)

© Знания-сила

Диаграмма Герцшпрунга-Ре́ссела

Важнейшими физическими характеристиками звезды являются температура и абсолютная звездная величина. Температурные показатели тесно связаны с цветом звезды, а абсолютная звездная величина - со спектральным классом. Вспомним, что согласно используемой в настоящее время классификации, звёзды в соответствии с их спектрами, как уже было сказано в разделе сайта "Спектральные классы", делятся на семь основных спектральных классов. Они обозначены латинскими буквами O, B, A, F, G, K, М . Именно в этой последовательности температура звёзд понижается от нескольких десятков тысяч градусов для класса O (очень горячие звёзды) до 2000-3000 градусов для звёзд класса М .

Т.е. мера блеска, выражается количеством энергии, излучаемой звездой. Её можно вычислить теоретически, зная расстояние до звезды.

В 1913 году́ датский астроном Эйнар Герцшпрунг и американский Генри Норрис Ре́ссел независимо друг от друга пришли к одной идее построить теоретический график, связывающий два основных звездных параметра - температуру и абсолютную звёздную величину. В результате получилась диаграмма, которой были присвоены имена двух астрономов - диаграмма Герцшпрунга-Ре́ссела (сокр. HRD) , или, проще, диаграмма Г-Р. Как мы увидим далее, диаграмма Герцшпрунга-Ре́ссела помогает разобраться в эволюции звёзд. Кроме того, она широко применяется и для определения расстояний до звёздных скоплений.

Каждой точке на этой диаграмме соответствует звезда. По оси́ ординат (вертикальная ось) отложена светимость звезды, а по оси́ абсцисс (горизонтальная ось) температура её поверхности. Если по цве́ту звезды определить её температуру, то в нашем распоряжении будет одна из величин, нужных для построения диаграммы Г-Р. Если известно расстояние до звезды, то по её видимой яркости на небе можно определить светимость. Тогда в нашем распоряжении будут обе величины́, необходимые для построения диаграммы Г-Р, и мы сможем поставить на этой диаграмме точку, которая соответствует нашей звезде.

Солнце помещается на диаграмме напротив светимости 1, а поскольку температура поверхности Солнца составляет 5800 градусов, то оно оказывается почти в середине диаграммы Г-Р.

Звёзды, светимость которых больше солнечной, расположены на диаграмме выше. Например, число 1000 означает, что на этом уровне размещаются звёзды, светимость которых в 1000 раз больше светимости Солнца.

Звёзды с меньшей светимостью, как, например, Сириус B - белый карлик из системы Сириуса, - лежат ниже. Звёзды, которые горяче́е Солнца, как, например, Сириус А и Дзета Возничего В - горячая звезда из системы Дзета Возничего и Спи́ка из созвездия Девы, лежат слева от Солнца. Более холодные звёзды, как Бетельгейзе и красный сверхгигант из системы Дзета Возничего, лежат справа.

Поскольку холодные звёзды излучают красный свет, а горячие - белый или голубой, то на диаграмме справа расположены красные звёзды, а слева - белые или голубые. Вверху на диаграмме лежат звёзды с большой светимостью, а внизу - с малой.


Главная последовательность

Бóльшая часть звёзд на диаграмме Г-Р располагается в пределах диагональной полосы́, идущей из верхнего левого угла в нижний правый. Эта полоса́ называется "главной последовательностью" . Звёзды, располагающиеся на ней, называются "звёздами главной последовательности". Наше Солнце относится к звёздам главной последовательности и расположено в той её части, которая соответствует желтым звёздам. В верхней части главной последовательности расположены самые яркие и горячие звёзды, а справа внизу - самые тусклые и, как следствие, долгоживущие.

Звёзды главной последовательности находятся в самой "спокойной" и стабильной фазе своего существования, или, как принято говорить, фазе жизни.

Источником их энергии являются . По современным оценкам теории звездной эволюции, эта фаза составляет около 90% жизни любой звезды. Именно поэтому большинство звёзд принадлежит главной последовательности.

Согласно теории звездной эволюции, когда запасы водорода в недрах звезды заканчиваются, она покидает главную последовательность, отклоняясь вправо. При этом температура звезды всегда падает, а размер быстро возрастает. Начинается сложное, всё более ускоряющееся движение звезды по диаграмме.

Красные гиганты и белые карлики

Отдельно - правее и выше главной последовательности расположена группа звезд с очень высокой светимостью, причем, температура таких звёзд относительно низка́ - это так называемые красные звёзды-гиганты и сверхгиганты . Это холодные звёзды (приблизительно 3000°С), которые, однако, гораздо ярче звезд с такой же температурой, находящихся в главной последовательности. Один квадратный сантиметр поверхности холодной звезды излучает в секунду относительно малое количество энергии. Большая общая светимость звезды объясняется тем, что велика́ площадь её поверхности: звезда должна быть очень большой. Гига́нтами называют звёзды, диаметр которых больше диаметра Солнца в 200 раз.

Точно так же мы можем рассмотреть и левую нижнюю часть диаграммы. Там расположены горячие звёзды с низкой светимостью. Поскольку квадратный сантиметр поверхности горячего тела излучает в секунду много энергии, а звёзды из левого нижнего угла диаграммы имеют низкую светимость, то мы должны прийти к выводу, что они невелики по размерам. Слева внизу, таким образом, располага́ются белые карлики , очень плотные и компактные звёзды размерами в среднем в 100 раз меньше Солнца, диаметром, соизмеримым с диаметром нашей планеты. Одна из таких звезд, к примеру, - спутник Сириуса, называемый Сириус B .

Звёздные последовательности диаграммы Герцшпрунга-Ре́ссела в принятой условной нумерации

На диаграмме Герцшпрунга-Ре́ссела кроме рассмотренных нами выше последовательностей, астрономы фактически выделяют ещё несколько последовательностей, а главная последовательность имеет условный номер V . Перечислим их:

- последовательность ярких сверхгигантов,
Ib - последовательность слабых сверхгигантов,
II - последовательность ярких гигантов,
III - последовательность слабых гигантов,
IV - последовательность субгигантов,
V - главная последовательность,
VI - последовательность субка́рликов,
VII - последовательность белых карликов.

В соответствии с такой классификацией, наше Солнце с его спектральным классом G2 обозначают как G2V .

Таким образом, уже из общих соображений, зная свети́мость и температуру поверхности, можно оценить размер звезды. Температура говорит нам, сколько энергии излучает один квадратный сантиметр поверхности. Светимость, равная энергии, которую излучает звезда за единицу времени, позволяет узнать величину́ излучающей поверхности, а следовательно, и радиус звезды.

Необходимо также сделать огово́рку, что измерить интенсивность света, приходящего к нам от звёзд, не так-то просто. Атмосфера Земли пропускает не всё излучение. Коротковолно́вый свет, например, в ультрафиолетовой области спектра, не доходит до нас. Следует ещё отметить, что видимые звёздные величи́ны удаленных объектов ослабляются не только вследствие поглощения атмосферой Земли, но ещё и из-за поглощения света пыли́нками, имеющимися в межзвездном пространстве. Понятно, что от этого мешающего фактора нельзя избавить даже космический телескоп, который работает вне атмосферы Земли.

Но и интенсивность света, прошедшего сквозь атмосферу, можно измерять по-разному. Человеческий глаз воспринимает лишь часть света, излуча́емого Солнцем и звездами. Световые лучи разной длины, имеющие разный цвет, не одинаково интенсивно воздействуют на сетчатку глаза, фотопластинку или электронный фото́метр. При определении светимости звёзд учитывают лишь свет, который воспринимается человеческим глазом. Следовательно, для измерений надо использовать инструменты, которые с помощью цветных фильтров имитируют цветовую чувствительность человеческого гла́за. Поэтому на диаграммах Г-Р часто вместо истинной светимости указывают светимость в видимой области спектра, воспринимаемой глазом. Её называют также визуальной светимостью. Величи́ны истинной (болометрической) и визуальной светимости могут различаться достаточно сильно. Так, например, звезда, масса которой в 10 раз больше солнечной, излучает примерно в 10 тысяч раз больше энергии, чем Солнце, в то время как в видимом диапазоне спектра она всего в 1000 раз ярче Солнца. По этой причине спектральный тип звезды сегодня часто заменяют на другой эквивалентный параметр, называемый "показателем цвета"; или "индексом цвета" , отображаемый на горизонтальной оси́ диаграммы. В современной астрофизике индекс цвета представляет собой, по сути, разницу между звёздными величинами звезды в различных диапазонах спектра (принято измерять разницу между звёздными величинами в синей и видимой части спектра, называ́емую B-V или B минус V от английского Blue и Visible ). Этот параметр показывает количественное распределение энергии, которую звезда излучает на разных дли́нах волн, а это напрямую связано с температурой поверхности звезды.

Диаграмма Г-Р обычно приводится в следующих координатах:
1. Светимость - эффективная температура.
2. Абсолютная звездная величина - показатель цвета.
3. Абсолютная звездная величина - спектральный класс.

Физический смысл диаграммы Г-Р

Физический смысл диаграммы Г-Р заключается в том, что после нанесения на неё максимального числа экспериментально наблюдаемых звёзд, по их расположе́нию можно определить закономерности их распределения по соотношению спектра и светимости. Если бы между свети́мостями и их температурами не было никакой зависимости, то все звёзды распределялись бы на такой диаграмме равномерно. Но на диаграмме обнаруживаются несколько закономерно распределенных группировок звёзд, только что рассмотренных нами, называемых последовательностями.

Диаграмма Герцшпрунга-Ре́ссела оказывает огромную помощь в изучении эволюции звезд на протяжении их существования. Если бы было возможным проследить за эволюцией звезды в течение всей её жизни, т.е. в течение нескольких сотен миллионов или даже нескольких миллиардов лет, мы бы увидели её медленное смещение по диаграмме Г-Р в соответствии с изменением физических характеристик. Передвижения звёзд по диаграмме в зависимости от возраста называют эволюционными треками.

Другими словами, диаграмма Г-Р помогает понять, как звёзды эволюционируют на протяжении всего своего существования. Обратным расчетом с помощью этой диаграммы можно вычислить расстояния до звезд.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

Наше Солнце имеет массу 1.99 × 10 27 тонн - в 330 тысяч раз тяжелее Земли. Но это далеко не предел. Самая тяжелая среди обнаруженных звезд, R136a1, весит как 256 Солнц. А , ближайшая к нам звезда, едва перевалила за десятую часть кряжести нашего светила. Масса звезды может быть удивительно разной - но есть ли ей границы? И почему она так важна астрономам?

Масса - одна из самых важных и необычных характеристик звезды. По ней астрономы могут точно сказать о возрасте звезды и дальнейшей ее судьбе. Более того, массивность определяет силу гравитационного сжатия светила - главного условия для того, чтобы ядро звезды «загорелось» в термоядерной реакции и начало . Поэтому масса является проходным критерием в категорию звезд. Слишком легкие объекты, вроде , не смогут толком светить - а слишком тяжелые переходят в категорию экстремальных объектов по типу .

И в то же время ученые едва могут вычислить массу звезды - единственным светилом, чья масса известна точно, является наше . Такую ясность помогла внести наша Земля. Зная массу планеты и скорость ее , можно вычислить и массу самой звезды на основании Третьего закона Кеплера, доработанного известным физиком Исааком Ньютоном. Иоганн Кеплер выявил связь между расстоянием от планеты до звезды и скоростью полного оборота планеты вокруг светила, а Ньютон дополнил его формулу массами звезды и планеты. Модифицированная версия Третьего закона Кеплера часто используется астрономами - причем не только для определения массы звезд, но и других космических объектов, составляющих вместе .

Про отдаленные светила пока приходится только догадываться. Самым совершенным (с точки зрения точности) является метод определения массы звездных систем. Его погрешность составляет «всего» 20–60%. Такая неточность критическая для астрономии - будь Солнце на 40% легче или тяжелее, жизнь на Земле не возникла бы.

В случае измерения массы одиночных звезд, возле которых нет видимых объектов, чью орбиту можно использовать для вычислений, астрономы идут на компромисс. Сегодня читается, что масса звезд одного одинакова. Также ученым помогает связь массы со светимостью или звезды, поскольку обе эти характеристики зависимы от силы ядерных реакций и размеров звезды - непосредственных индикаторов массы.

Значение массы звезды

Секрет массивности звезд кроется не в качестве, а в количестве. Наше Солнце, как и большинство звезд , на 98% состоит из двух самых легких элементов в природе - водорода и гелия. Но при этом в нем собрано 98% массы всей !

Как такие легкие вещества могут собраться вместе в громадные горящие шары? Для этого нужно свободное от крупных космических тел пространство, много материала и начальный толчок - чтобы первые килограммы гелия и водорода начали притягиваться друг к другу. В и молекулярных облаках, где рождаются звезды, водороду и гелию ничто не мешает скапливаться. Их собирается так много, что гравитация начинает насильно сталкивать ядра атомов водорода. Это начинает термоядерную реакцию, в ходе которой водород превращается в гелий.

Логично, что чем больше масса звезды, тем больше ее светимость. Ведь в массивной звезде водородного «топлива» для термоядерной реакции куда больше, а гравитационное сжатие, активирующее процесс - сильнее. Доказательством служит самая массивная звезда, R136a1, упомянутая в начале статьи - будучи больше по весу в 256 раз, она светит в 8,7 миллионов раз ярче нашей звезды!

Но у массивности есть и обратная сторона: из-за интенсивности процессов водород быстрее «сгорает» в термоядерных реакциях внутри . Поэтому массивные звезды живут совсем недолго в космических масштабах - несколько сотен, а то и десятков миллионов лет.

  • Интересный факт: когда масса звезды превышает массу Солнца в 30 раз, прожить она сможет не больше 3 миллионов лет - вне зависимости от того, насколько ее масса больше 30-кратной солнечной. Это связано с превышением предела излучения Эддингтона. Энергия запредельной звезды становится настолько мощной, что вырывает вещество светила потоками - и чем массивнее звезда, тем сильнее становится потеря массы.

Выше мы рассмотрели основные физические процессы, связанные с массой звезды. А теперь попробуем разобраться, какие звезды можно «сделать» с их помощью.

Ранние спектральные классы) в правый нижний угол (низкие светимости, поздние спектральные классы) диаграммы. Звёзды главной последовательности имеют одинаковый источник энергии («горение» водорода, в первую очередь, CNO-цикл), в связи с чем их светимость и температура (спектральный класс) определяются их массой :

L = M 3,9 ,

где светимость L и масса M измеряются в единицах солнечной светимости и массы, соответственно. Поэтому начало левой части главной последовательности представлено голубыми звёздами с массами ~50 солнечных , а конец правой - красными карликами с массами ~0,0767 солнечных.

Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90 % времени эволюции большинства звёзд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов , нейтронных звёзд или чёрных дыр .

Участок главной последовательности звёздных скоплений является индикатором их возраста: так как темпы эволюции звёзд пропорциональны их массе, то для скоплений существует «левая» точка обрыва главной последовательности в области высоких светимостей и ранних спектральных классов, зависящая от возраста скопления, поскольку звёзды с массой, превышающий некий предел, заданный возрастом скопления, ушли с главной последовательности (см. рис., чётко видна точка ухода с главной последовательности на ветвь красных гигантов). Время жизни звезды на главной последовательности \tau_{\rm MS} в зависимости от начальной массы звезды M по отношению к современной массе Солнца \begin{smallmatrix}M_{\bigodot}\end{smallmatrix} можно оценить по эмпирической формуле:

\begin{smallmatrix} \tau_{\rm MS}\ \approx \ 6\cdot\ 10^{9} \text{лет} \cdot \left[ \frac{M_{\bigodot}}{M} + \ 0.14 \right]^{4} \end{smallmatrix}

Напишите отзыв о статье "Главная последовательность"

Примечания

См. также

Литература

Отрывок, характеризующий Главная последовательность

«Однако, кажется, никто не заметил», думал про себя Ростов. И действительно, никто ничего не заметил, потому что каждому было знакомо то чувство, которое испытал в первый раз необстреленный юнкер.
– Вот вам реляция и будет, – сказал Жерков, – глядишь, и меня в подпоручики произведут.
– Доложите князу, что я мост зажигал, – сказал полковник торжественно и весело.
– А коли про потерю спросят?
– Пустячок! – пробасил полковник, – два гусара ранено, и один наповал, – сказал он с видимою радостью, не в силах удержаться от счастливой улыбки, звучно отрубая красивое слово наповал.

Преследуемая стотысячною французскою армией под начальством Бонапарта, встречаемая враждебно расположенными жителями, не доверяя более своим союзникам, испытывая недостаток продовольствия и принужденная действовать вне всех предвидимых условий войны, русская тридцатипятитысячная армия, под начальством Кутузова, поспешно отступала вниз по Дунаю, останавливаясь там, где она бывала настигнута неприятелем, и отбиваясь ариергардными делами, лишь насколько это было нужно для того, чтоб отступать, не теряя тяжестей. Были дела при Ламбахе, Амштетене и Мельке; но, несмотря на храбрость и стойкость, признаваемую самим неприятелем, с которою дрались русские, последствием этих дел было только еще быстрейшее отступление. Австрийские войска, избежавшие плена под Ульмом и присоединившиеся к Кутузову у Браунау, отделились теперь от русской армии, и Кутузов был предоставлен только своим слабым, истощенным силам. Защищать более Вену нельзя было и думать. Вместо наступательной, глубоко обдуманной, по законам новой науки – стратегии, войны, план которой был передан Кутузову в его бытность в Вене австрийским гофкригсратом, единственная, почти недостижимая цель, представлявшаяся теперь Кутузову, состояла в том, чтобы, не погубив армии подобно Маку под Ульмом, соединиться с войсками, шедшими из России.
28 го октября Кутузов с армией перешел на левый берег Дуная и в первый раз остановился, положив Дунай между собой и главными силами французов. 30 го он атаковал находившуюся на левом берегу Дуная дивизию Мортье и разбил ее. В этом деле в первый раз взяты трофеи: знамя, орудия и два неприятельские генерала. В первый раз после двухнедельного отступления русские войска остановились и после борьбы не только удержали поле сражения, но прогнали французов. Несмотря на то, что войска были раздеты, изнурены, на одну треть ослаблены отсталыми, ранеными, убитыми и больными; несмотря на то, что на той стороне Дуная были оставлены больные и раненые с письмом Кутузова, поручавшим их человеколюбию неприятеля; несмотря на то, что большие госпитали и дома в Кремсе, обращенные в лазареты, не могли уже вмещать в себе всех больных и раненых, – несмотря на всё это, остановка при Кремсе и победа над Мортье значительно подняли дух войска. Во всей армии и в главной квартире ходили самые радостные, хотя и несправедливые слухи о мнимом приближении колонн из России, о какой то победе, одержанной австрийцами, и об отступлении испуганного Бонапарта.
Князь Андрей находился во время сражения при убитом в этом деле австрийском генерале Шмите. Под ним была ранена лошадь, и сам он был слегка оцарапан в руку пулей. В знак особой милости главнокомандующего он был послан с известием об этой победе к австрийскому двору, находившемуся уже не в Вене, которой угрожали французские войска, а в Брюнне. В ночь сражения, взволнованный, но не усталый(несмотря на свое несильное на вид сложение, князь Андрей мог переносить физическую усталость гораздо лучше самых сильных людей), верхом приехав с донесением от Дохтурова в Кремс к Кутузову, князь Андрей был в ту же ночь отправлен курьером в Брюнн. Отправление курьером, кроме наград, означало важный шаг к повышению.

Главная последовательность (ГП) - наиболее населенная область на диаграмме Гецшпрунга - Рессела (ГР). Основная масса звезд на диаграмме ГР расположена вдоль диагонали на полосе, идущей от правого нижнего угла диаграммы в левый верхний угол. Эта полоса и называется главной последовательностью.

Нижний правый угол занят холодными звездами с малой светимостью и малой массой, начиная со звезд порядка 0.08 солнечной массы, а верхний левый угол занимают горячие звезды, имеющие массу порядка 60-100 солнечных масс и большую светимость (вопрос об устойчивости звезд с массами больше 60-120М sun остается открытым, хотя, по-видимому, в последнее время имеются наблюдения таких звезд).

Фаза эволюции, соответствующая главной последовательности, связана с выделением энергии в процессе превращения водорода в гелий , и так как все звезды ГП имеют один источник энергии, то положение звезды на диаграмме ГР определяется ее массой и в малой степени химическим составом.

Основное время жизни звезда проводит на главной последовательности и поэтому главная последовательность - наиболее населенная группа на диаграмме ГР (до 90% всех звезд лежат на ней).

Главная последовательность

Зависимость масса-светимость для главной последовательности

Для звезд главной последовательности существует апроксимационное соотношение, известное как зависимость масса-светимость. Это соотношение было выведено из наблюдательного определения масс и светимостей звезд главной последовательности, но оно также подтверждается расчетами звездных моделей для звезд ГП. Светимость звезды грубо пропорциональна ее массе в степени 3.5 или 4:

L~ M 3.5-4

Таким образом, звезда в два раза массивней Солнца имеет светимость в 11 раз большую, чем Солнце. Наиболее массивные звезды главной последовательности примерно в 60 раз массивней Солнца. Это соответствует светимости почти в миллион раз больше солнечной.

Для наиболее массивных звезд L~M .

Время жизни на главной последовательности

Звезды проводят большую часть своей жизни на главной последовательности. В общем, более массивные звезды живут более быстрой жизнью, чем менее массивные. Казалось бы, что звезды, имеющие большее количество водорода для горения должны были бы расходовать его дольше, но это не так, потому что они используют свои ресурсы быстрее.

Оценим время жизни звезды на ГП. Упрощенно, оно равно отношению энергии, которая может быть излучена к выделению звездой энергии в единицу времени (это светимость L).

Энергия, излучаемая звездой за время t, равна произведению светимости на это время:

E=Lt.

Согласно уравнению Эйнштейна:

E=Mc 2 .

Комбинируя эти два выражения, получаем:

t=Mc 2 /L,

учитывая закон масса-светимость, получаем:

t=c 2 /M 2.5-3 ,

или в солнечных единицах:

t/t sun =1/(M/M sun) 2/5-3 .

Таким образом, если расчетное время жизни Солнца на главной последовательности составляет 10 10 лет, то звезда в 10 раз массивней Солнца будет жить в 1000 раз меньше т.е. 10 7 лет. Так как для наиболее массивных звезд L~M, то по мере увеличения их массы время жизни перестает увеличиваться и стремится к величине ~3.5 млн. лет, что очень мало по космическим масштабам.

Поверхностная температура, светимость и время жизни для звезд главной последовательности

Таблица звезд главной последовательности

спектральный класс

температура (К)

светимость (L/L sun)

масса (M/M sun)

радиус (R/R sun)

O9.5 Ориона С 33,000 30,000 18.0 5.90
B0 Южного Креста 30,000 16,000 16.0 5.70
B2 Спика 22,000 8,300 10.5 5.10
B5 Ахернар 15,000 750 5.40 3.70
B8 Регул 12,500 130 3.50 2.70
A0 Сириус А 9,500 63 2.60 2.30
A2 Фомальгаут 9,000 40 2.20 2.00
A5 Альтаир 8,700 24 1.90 1.80
F5 Процион 6,400 4,0 1.35 1.20
G0 Центавра A 5,900 1.45 1.08 1.05
G2 Солнце 5800 1.000 1.00 1.00
G5 Кассиопеи 5,600 0.70 0.95 0.91
G8 Кита 5,300 0.44 0.85 0.87
K0 Поллукс 5,100 0.36 0.83 0.83
K2 Эридана 4,830 0.28 0.78 0.79
K5 Центавра B 4,370 0.18 0.68 0.74
M2 Лаланд 21185 3,400 0.03 0.33 0.36
M4 Росс 128 3,200 0.0005 0.20 0.21
M6 Вольф 359 3,000 0.0002 0.10 0.12

И.Миронова

предыдущая

Звезды - это огромные шары, состоящие из светящейся плазмы. В пределах нашей галактики насчитывается огромное их количество. Звезды играли важную роль в развитии науки. Также они отмечались в мифах многих народов, служили в качестве инструментов навигации. Когда были изобретены телескопы, а также открыты законы движения небесных тел и гравитация, ученые поняли: все звезды похожи на Солнце.

Определение

К звездам главной последовательности относят все те, внутри которых водород превращается в гелий. Так как этот процесс свойственен большей части звезд, к этой категории относится большинство наблюдаемых человеком светил. К примеру, Солнце также относится к данной группе. Альфа Ориона, или, к примеру, спутник Сириуса не принадлежат к звездам главной последовательности.

Группы звезд

Впервые вопросом сопоставления звезд с их спектральными классами занялись ученые Э. Герцшпрунг и Г. Рассел. Они создали диаграмму, на которой отображался спектр и светимость звезд. Впоследствии данная диаграмма была названа в их честь. Большая часть светил, расположенных на ней, называется небесными телами главной последовательности. В эту категорию входят звезды, начиная от голубых сверхгигантов, и заканчивая белыми карликами. Светимость Солнца на данной диаграмме принимается за единицу. В последовательность входят звезды различной массы. Ученые выделили следующие категории светил:

  • Сверхгиганты - I класс светимости.
  • Гиганты - II класс.
  • Звезды главной последовательности - V класс.
  • Субкарлики - VI класс.
  • Белые карлики - VII класс.

Процессы внутри светил

С точки зрения структуры Солнце может быть разделено на четыре условные зоны, в пределах которых происходят различные физические процессы. Энергия излучения звезды, а также внутренняя тепловая возникают глубоко внутри светила, передаваясь на внешние слои. Строение звезд главной последовательности схоже со структурой светила Солнечной системы. Центральной частью любого светила, относящейся на диаграмме Герцшпрунга-Рассела к данной категории, является ядро. Там постоянно происходят ядерные реакции, в процессе которых гелий превращается в водород. Для того чтобы ядра водорода смогли столкнуться друг с другом, их энергия должна быть выше энергии отталкивания. Поэтому такие реакции протекают только при очень высоких температурах. Внутри Солнца температура достигает 15 миллионов градусов по Цельсию. По мере удаления от ядра звезды она снижается. На внешней границе ядра температура составляет уже половину от значения в центральной части. Также снижается и плотность плазмы.

Ядерные реакции

Но не только по внутреннему строению звезды главной последовательности похожи на Солнце. Светила данной категории отличаются также и тем, что ядерные реакции внутри них происходят путем трехступенчатого процесса. Иначе он называется протон-протонным циклом. На первой фазе два протона сталкиваются между собой. В результате этого столкновения появляются новые частицы: дейтерий, позитрон и нейтрино. Далее протон сталкивается с частицей нейтрино, и возникает ядро изотопа гелия-3, а также квант гамма-излучения. На третьей ступени процесса два ядра гелия-3 сливаются между собой, и происходит образование обычного водорода.

В процессе этих столкновений во время ядерных реакций постоянно производятся элементарные частицы нейтрино. Они преодолевают нижние слои светила, и летят в межпланетное пространство. Нейтрино также регистрируются и на земле. Количество, которое регистрируется учеными при помощи приборов, несоизмеримо меньше, чем их должно быть по предположению ученых. Эта проблема является одной из крупнейших загадок в физике Солнца.

Лучистая зона

Следующим слоем в строении Солнца и звезд главной последовательности является лучистая зона. Ее границы простираются от ядра и до тонкого слоя, находящегося на границе конвективной зоны - тахоклина. Свое название лучистая зона получила от способа, при помощи которого энергия переносится от ядра к внешним слоям звезды - излучения. Фотоны, которые постоянно производятся в ядре, двигаются в этой зоне, сталкиваясь с ядрами плазмы. Известно, что скорость этих частиц равна скорости света. Но несмотря на это, фотонам требуется порядка миллиона лет, чтобы достичь границы конвективной и лучистой зон. Такая задержка происходит из-за постоянного столкновения фотонов с ядрами плазмы и их переизлучения.

Тахоклин

Солнце и звезды главной последовательности также имеют тонкую зону, по-видимому, играющую важную роль в формировании магнитного поля светил. Она называется тахоклин. Ученые предполагают, что именно здесь происходят процессы магнитного динамо. Он заключается в том, что потоки плазмы вытягивают магнитные силовые линии и увеличивают общую напряженность поля. Также есть предположения, что в зоне тахоклина происходит резкая смена химического состава плазмы.

Конвективная зона

Эта область представляет собой самый внешний слой. Его нижняя граница располагается на глубине 200 тыс. км., а верхняя достигает поверхности светила. В начале конвективной зоны температура еще достаточно высока, она достигает порядка 2 млн градусов. Однако этот показатель уже недостаточен для того, чтобы происходил процесс ионизации атомов углерода, азота, кислорода. Эта зона получила свое название из-за способа, с помощью которого происходит постоянный перенос вещества из глубоких слоев во внешние - конвекции, или перемешивания.

В презентации о звездах главной последовательности можно указать тот факт, что Солнце является рядовой звездой в нашей галактике. Поэтому ряд вопросов - например, об источниках его энергии, строении, а также образовании спектра - является общим как для Солнца, так и для других звезд. Наше светило является уникальным в отношении своего расположения - это самая близкая к нашей планете звезда. Поэтому ее поверхность и подвергается детальному изучению.

Фотосфера

Видимая оболочка Солнца называется фотосферой. Именно она излучает практически всю энергию, которая приходит на Землю. Состоит фотосфера из гранул, представляющих собой продолговатые облака из горячего газа. Здесь можно также наблюдать и небольшие пятнышки, которые называются факелами. Их температура приблизительно на 200 о С выше, чем окружающая масса, поэтому они отличаются по яркости. Факелы могут существовать до нескольких недель. Эта устойчивость возникает вследствие того, что магнитное поле звезды не дает вертикальным потокам ионизированных газов отклоняться в горизонтальном направлении.

Пятна

Также на поверхности фотосферы иногда появляются темные области - зародыши пятен. Нередко пятна могут разрастаться до диаметра, который превышает диаметр Земли. как правило, появляются группами, затем разрастаются. Постепенно они дробятся на более мелкие участки, пока не исчезают вовсе. Пятна появляются по обе стороны солнечного экватора. Каждые 11 лет их количество, а также занимаемая пятнами площадь, достигают максимума. По наблюдаемому перемещению пятен Галилей смог обнаружить вращение Солнца. В дальнейшем это вращение было уточнено при помощи спектрального анализа.

До сих пор ученые ломают голову над тем, почему период увеличения солнечных пятен составляет именно 11 лет. Несмотря на пробелы в знаниях, информация о солнечных пятнах и периодичности других аспектов деятельности звезды дают ученым возможность делать важные прогнозы. С помощью изучения этих данных можно делать предсказания о наступлении магнитных бурь, нарушений в сфере радиосвязи.

Отличия от других категорий

Называется количество энергии, которое испускается светилом в одну единицу времени. Эта величина может быть вычислена по количеству энергии, которая достигает поверхности нашей планеты, при условии, если известно расстояние звезды до Земли. Светимость звезд главной последовательности больше, чем у холодных звезд с малой массой, и меньше горячих звезд, масса которых составляет от 60 до 100 солнечных.

Холодные звезды находятся в нижнем правом углу относительно большинства светил, а горячие - в левом верхнем углу. При этом у большинства звезд, в отличие от красных гигантов и белых карликов, масса зависит от показателя светимости. Большую часть своей жизни каждая звезда проводит именно на главной последовательности. Ученые считают, что более массивные звезды живут гораздо меньше, чем те, что обладают малой массой. На первый взгляд, должно быть наоборот, ведь у них больше водорода для горения, и они должны его расходовать дольше. Однако звезды, относящиеся к массивным, расходуют свое топливо гораздо быстрее.



Понравилась статья? Поделитесь с друзьями!