Почему зигзагообразно летает мкс в космосе. Международная Космическая Станция ISS

Орбита это, прежде всего, трасса полета МКС вокруг Земли. Чтобы МКС могла летать по строго заданной орбите, а не улетела в далекий космос или упала обратно на Землю пришлось учитывать ряд таких факторов как ее скорость, массу станции, возможности ракет носителей, кораблей доставки, возможности космодромов и конечно же экономические факторы.

Орбита МКС - это низкая околоземная орбита, которая находится в космическом пространстве над Землей, где атмосфера присутствует в крайне разряженном состоянии и плотность частиц мала до такой степени, чтобы не оказывать существенное сопротивление полету. Высота орбиты МКС это основное требование полета для станции, чтобы избавиться от воздействия влияния атмосферы Земли, особенно ее плотных слоев. Это район термосферы на высоте примерно 330-430 км

При расчете орбиты для МКС учитывали ряд факторов.

Первым и основным фактором является воздействие радиации на человека, которая выше 500 км значительно повышена и это может сказаться на здоровье космонавтов, так как их установленная допустимая доза на полгода составляет 0,5 зиверта и не должна превышать один зиверт в сумме за все полеты.

Вторым весомым аргументом при расчете орбиты являются корабли доставки экипажей и грузов для МКС. Например «Союзы» и «Прогрессы» были сертифицированы для полетов на высоту 460 км. Американские космические корабли доставки «Шатлы» не могли летать даже до 390 км. и поэтому раньше при их использовании орбита МКС тоже не выходила за эти пределы 330-350 км. После прекращения полетов Шатлов высоту орбиты стали поднимать, чтобы свести до минимума атмосферное влияние.

Учтены также и экономические параметры. Чем выше орбита, тем дальше лететь, тем больше топлива и значит меньше необходимого груза смогут доставить корабли на станцию, значит и летать придется чаще.

Рассматривают также необходимую высоту с точки зрения поставленных научных задач и экспериментов. Для решения заданных научных задач и проводимых исследований на сегодняшний день высоты до 420 км пока достаточно.

Немаловажное место занимает и проблема космического мусора, который попадая на орбиту МКС, несет самую серьезную опасность.

Как уже говорилось, космическая станция должна летать так чтобы и не упасть и не вылететь со своей орбиты, то есть двигаться с первой космической скоростью, тщательно рассчитанной.

Немаловажным фактором является и расчет наклона орбиты и точка запуска. Идеальным экономическим фактором является запуск с экватора по часовой стрелке, так как здесь дополнительным показателем скорости присутствует скорость вращения Земли. Следующим сравнительно экономически дешевым показателем является запуск с наклоном равным широте, так как потребуется меньше топлива для маневров при запуске, учитывается и политический вопрос. Например, несмотря на то, что космодром Байконур расположен на широте 46 градусов, орбита МКС находится под углом 51,66. Ступени ракет при запуске на орбиту в 46 градусов могли бы упасть на территорию Китая или Монголии что обычно приводит к затратным конфликтам. При выборе космодрома для запуска МКС на орбиту международное сообщество решило использовать космодром Байконур, по причине наиболее подходящей стартовой площадки и траектория полета при таком запуске охватывает большую часть континентов.

Важным параметром космической орбиты является и масса летящего по ней объекта. Но масса МКС часто меняется из-за обновления ее новыми модулями и посещения ее кораблями доставки и поэтому ее спроектировали очень мобильной и с возможностью варьирования как по высоте, так и по направлениям с вариантами поворотов и маневрирования.

Высоту станции меняют по несколько раз в год, в основном для создания баллистических условий для стыковки посещаемых ее кораблей. Кроме изменения массы станции, происходит изменение скорости станции из-за трения с остатками атмосферы. Вследствие этого центрам управления полетом приходится корректировать орбиту МКС до необходимой скорости и высоты. Корректировка происходит при помощи включения двигателе кораблей доставки и реже включением двигателей основного базового служебного модуля «Звезда», на которых имеются ускорители. В нужный момент, при дополнительном включении двигателей скорость полета станции наращивается до расчетной. Изменение высоты орбиты рассчитывается в Центрах управления полетом и проводится в автоматическом режиме без участия космонавтов.

Но особенно необходима маневренность МКС при возможной встрече космическим мусором. На космических скоростях даже маленький его кусочек может оказаться смертельно опасным как для самой станции, так и для ее экипажа. Опуская данные о щитах защиты от мелкого мусора на станции, коротко расскажем о проведении маневров МКС для уклонения от столкновения с мусором и изменению орбиты. Для этого вдоль трассы полета МКС создана зона-коридор с размерами на 2 км выше и плюс 2км ниже нее, а также на 25 км в длину и25 км в ширину и ведется постоянное наблюдение, чтобы в эту зону не попадал космический мусор. Это так называемая защитная зона для МКС. Чистота этой зоны рассчитывается заранее. У Стратегического командования вооруженных сил США USSTRATCOM на авиабазе Ванденберг имеется каталог космического мусора. Специалисты постоянно сравнивают перемещение движения мусора с движение по орбите МКС и следят, чтобы их пути не дай бог не пересеклись. Точнее они рассчитывают вероятность столкновения какого-то куска мусора в зоне полета МКС. Если столкновение возможно хотя бы с вероятностью 1/100000 или 1/10 000, то заранее за 28,5 часов об этом сообщается НАСА (Хьюстон Космический Центр имени Линдона Джонсона) в управление полетом МКС руководству по операциям с траекторией МКС Trajectory Operation Officer (сокращено ТОРО). Здесь в TORO за мониторами следят за месторасположением станции во времени, за космическими кораблями, идущими к ней на стыковку и за то, чтобы станция находилась в безопасности. Получив сообщение о возможном столкновении и координаты, ТОРО передает его Российскому центру управления полетами имени Королева, где баллистики готовят план возможного варианта маневров по исключению столкновения. Это план с новой трассой полета с координатами и точными последовательными действиями маневра по уклоненью от возможного столкновения с космическим мусором. Составленная новая орбита повторно проверяется на предмет не возникнут ли на новом пути опять какие то столкновения и при положительном ответе запускается в работу. Перевод на новую орбиту проводится с Центров управления полетами с Земли в компьютерном режиме автоматически без участия космонавтов и астронавтов.

Для этого у станции в центре масс модуля «Звезда» установлено 4 американских гиродина (СМG) Control Moment Gyroscope, размерами около метра и весом около300кг каждый. Это вращающиеся инерционные устройства, позволяющие станции правильно ориентироваться с высокой точностью. Работают они согласованно с российскими двигателями ориентации. В дополнение к этому российские и американские корабли доставки укомплектованы ускорителями которые при необходимости можно также использовать для перемещения и поворотов станции.

На случай если космический обломок будет обнаружен меньше чем за 28,5 часов и времени для расчетов и согласования новой орбиты на остается, то МКС дается возможность ухода от столкновения по заранее составленному стандартному автоматическому маневру выхода на новую орбиту называемого PDAM (Predetermined Debris Avoidance Maneuver). Если даже этот маневр будет опасен, то есть может вывести на новую опасную орбиту, то экипаж садится в заранее, всегда готовый и пристыкованный к станции космический корабль «Союз» и в полнейшей готовности к эвакуации ждет столкновения. В случае необходимости экипаж мгновенно эвакуируется. За всю историю полетов МКС было 3 таких случая, но они все слава богу закончились хорошо, без необходимости космонавтам эвакуироваться или как говорится не попали в один случай из 10000. От принципа «береженого бог бережет», здесь как никогда отступать нельзя.

Как мы уже знаем МКС представляет собой самый дорогостоящий (более 150 млрдов долларов) космический проект нашей цивилизации и является научным стартом к дальним космическим полетам, на МКС постоянно живут и работаю люди. Безопасность станции и находящиеся на ней люди стоят гораздо выше затраченных денег. В этом плане на первом месте стоит правильно рассчитанная орбита МКС, постоянное наблюдение за ее чистотой и умение МКС быстро и точно уклоняться и маневрировать в случаях необходимости.

Веб камера на Международной Космической Станции

Если картинки нет, предлагаем Вам посмотреть NASA TV, это интересно

Live broadcasting by Ustream

Ибуки (яп. いぶき Ибуки, Дыхание) — спутник дистанционного зондирования Земли, первый в мире космический аппарат, чьей задачей является мониторинг парниковых газов. Также спутник известен как The Greenhouse Gases Observing Satellite («Спутник для мониторинга парниковых газов»), сокращённо GOSAT. «Ibuki» оборудован инфракрасными датчиками, которые определяют плотность углекислого газа и метана в атмосфере. Всего на спутнике установлено семь различных научных приборов. «Ibuki» разработан японским космическим агентством JAXA и запущен 23 января 2009 года с космодрома Танэгасима. Запуск был осуществлён с помощью японской ракеты-носителя H-IIA.

Видео трансляция жизни на космической станции включает в себя внутренний вид модуля, в том случае когда космонавты находятся на дежурстве. Видео сопровождается живым звуком переговоров между МКС и ЦУП. Телевидение доступно только тогда, когда МКС находится в контакте с землёй на высокоскоростной связи. При потере сигнала зрители могут увидеть тестовую картинку или графическую карту мира, на которой показывается местонахождение станции на орбите в реальном времени. Из-за того, что МКС вращается вокруг Земли каждые 90 минут, восход или закат солнца происходят каждые 45 минут. Когда МКС находится в темноте, внешние камеры могут отображать черноту, но могут также показывать захватывающий вид городских огней внизу.

Международная космическая станция , сокр. МКС (англ. International Space Station, сокр. ISS) — пилотируемая орбитальная станция, используемая как многоцелевой космический исследовательский комплекс. МКС — совместный международный проект, в котором участвуют 15 стран: Бельгия, Бразилия,Германия, Дания, Испания, Италия, Канада, Нидерланды, Норвегия, Россия, США, Франция, Швейцария, Швеция, Япония.Управление МКС осуществляется: российским сегментом — из Центра управления космическими полётами в Королёве, американским сегментом — из Центра управления полётами в Хьюстоне. Между Центрами идёт ежедневный обмен информацией.

Средства связи
Передача телеметрии и обмен научными данными между станцией и Центром управления полётом осуществляется с помощью радиосвязи. Кроме того, средства радиосвязи используются во время операций по сближению и стыковке, их применяют для аудио- и видеосвязи между членами экипажа и с находящимися на Земле специалистами по управлению полётом, а также родными и близкими космонавтов. Таким образом, МКС оборудована внутренними и внешними многоцелевыми коммуникационными системами.
Российский сегмент МКС поддерживает связь с Землёй напрямую с помощью радиоантенны «Лира», установленной на модуле «Звезда». «Лира» даёт возможность использовать спутниковую систему ретрансляции данных «Луч». Эту систему использовали для сообщения со станцией «Мир», но в 1990-х годах она пришла в упадок и в настоящее время не применяется. Для восстановления работоспособности системы в 2012 году был запущен «Луч-5А». На начало 2013 года запланирована установка на российский сегмент станции специализированной абонентской аппаратуры после чего он станет одним из основных абонентов спутника «Луч-5А». Также ожидаются запуски ещё 3 спутников «Луч-5Б», «Луч-5В» и «Луч-4».
Другая российская система связи, «Восход-М», обеспечивает телефонную связь между модулями «Звезда», «Заря», «Пирс», «Поиск» и американским сегментом, а также УКВ-радиосвязь с наземными центрами управления, используя для этого внешние антенны модуля «Звезда».
В американском сегменте для связи в S-диапазоне (передача звука) и Ku-диапазоне (передача звука, видео, данных) применяются две отдельные системы, расположенные на ферменной конструкции Z1. Радиосигналы от этих систем передаются на американские геостационарные спутники TDRSS, что позволяет поддерживать практически непрерывный контакт с центром управления полётами в Хьюстоне. Данные с Канадарм2, европейского модуля «Коламбус» и японского «Кибо» перенаправляются через эти две системы связи, однако американскую систему передачи данных TDRSS со временем дополнят европейская спутниковая система (EDRS) и аналогичная японская. Связь между модулями осуществляется по внутренней цифровой беспроводной сети.
Во время выходов в открытый космос космонавты используют УКВ-передатчик дециметрового диапазона. УКВ-радиосвязью также пользуются во время стыковки или расстыковки космические аппараты «Союз», «Прогресс», HTV, ATV и «Спейс шаттл» (правда шаттлы применяют также передатчики S- и Ku-диапазонов посредством TDRSS). С её помощью эти космические корабли получают команды от центра управления полётами или от членов экипажа МКС. Автоматические космические аппараты оборудованы собственными средствами связи. Так, корабли ATV используют во время сближения и стыковки специализированную систему Proximity Communication Equipment (PCE), оборудование которой располагается на ATV и на модуле «Звезда». Связь осуществляется через два полностью независимых радиоканала S-диапазона. PCE начинает функционировать, начиная с относительных дальностей около 30 километров, и отключается после стыковки ATV к МКС и перехода на взаимодействие по бортовой шине MIL-STD-1553. Для точного определения относительного положения ATV и МКС используется система лазерных дальномеров, установленных на ATV, делающая возможной точную стыковку со станцией.
Станция оборудована примерно сотней портативных компьютеров ThinkPad от IBM и Lenovo, моделей A31 и T61P. Это обычные серийные компьютеры, которые однако были доработаны для применения в условиях МКС, в частности, в них переделаны разъёмы, система охлаждения, учтено используемое на станции напряжение 28 Вольт, а также выполнены требования безопасности для работы в невесомости. С января 2010 года на станции для американского сегмента организован прямой доступ в Интернет. Компьютеры на борту МКС соединены с помощью Wi-Fi в беспроводную сеть и связаны с Землёй со скоростью 3 Мбит/c на закачку и 10 Мбит/с на скачивание, что сравнимо с домашним ADSL-подключением.

Высота орбиты
Высота орбиты МКС постоянно изменяется. За счет остатков атмосферы происходит постепенное торможение и снижение высоты. Все приходящие корабли помогают поднять высоту за счет своих двигателей. Одно время ограничивались компенсацией снижения. В последнее время высота орбиты неуклонно повышается. 10 фев 2011 — Высота полета Международной Космической Станции составила порядка 353 километров над уровнем моря. 15 июня 2011 увеличилась на 10,2 километра и составила 374,7 километра. 29 июня 2011 высота орбиты составила 384,7 километра. Для того, чтобы влияние атмосферы снизить до минимума, станцию надо было поднять до 390—400 км, но на такую высоту не могли подниматься американские шаттлы. Поэтому станция удерживалась на высотах 330—350 км путем периодической коррекции двигателями. В связи с окончанием программы полёта шаттлов, это ограничение снято.

Часовой пояс
На МКС используется всемирное координированное время (UTC), оно практически точно равноотстоит от времён двух центров управления в Хьюстоне и Королёве. Через каждые 16 восходов/закатов закрываются иллюминаторы станции, чтобы создать иллюзию ночного затемнения. Команда обычно просыпается в 7 часов утра (UTC), экипаж обычно работает около 10 часов каждый будний день и около пяти часов каждую субботу. Во время визитов шаттлов экипаж МКС обычно следует Mission Elapsed Time (MET) — общему полётному времени шаттла, которое не привязано к конкретному часовому поясу, а считается исключительно от времени старта космического челнока. Экипаж МКС заранее сдвигает время своего сна перед прибытием челнока и возвращается к прежнему режиму после его отбытия.

Атмосфера
На станции поддерживается атмосфера, близкая к земной. Нормальное атмосферное давление на МКС — 101,3 килопаскаля, такое же, как на уровне моря на Земле. Атмосфера на МКС не совпадает с атмосферой, поддерживаемой в шаттлах, поэтому после пристыковки космического челнока происходит выравнивание давлений и состава газовой смеси по обе стороны шлюза. Примерно с 1999 по 2004 годы в NASA существовал и разрабатывался проект IHM (Inflatable Habitation Module), в котором планировалось использование давления атмосферы на станции для развертывания и создания рабочего объёма дополнительного обитаемого модуля. Корпус этого модуля предполагалось изготовить из кевларовой ткани с герметичной внутренней оболочкой из газонепроницаемого синтетического каучука. Однако, в 2005 годупо причине нерешенности большинства проблем, поставленных в проекте (в частности, проблемы защиты от частиц космического мусора), программа IHM была закрыта.

Микрогравитация
Притяжение Земли на высоте орбиты станции составляет 90 % от притяжения на уровне моря. Состояние невесомости обусловлено постоянным свободным падением МКС, которое, согласно принципу эквивалентности, равнозначно отсутствию притяжения. Среда на станции зачастую описывается как микрогравитация, из-за четырёх эффектов:

Тормозящее давление остаточной атмосферы.

Вибрационные ускорения из-за работы механизмов и перемещения экипажа станции.

Коррекция орбиты.

Неоднородность гравитационного поля Земли приводит к тому, что разные части МКС притягиваются к Земле с разной силой.

Все эти факторы создают ускорения, достигающие значений 10-3…10-1 g.

Наблюдение за МКС
Размеры станции достаточны для её наблюдения невооружённым глазом с поверхности Земли. МКС наблюдается как достаточно яркая звезда, довольно быстро идущая по небу приближенно с запада на восток (угловая скорость около 1 градуса в секунду.) В зависимости от точки наблюдения, максимальное значение её звёздной величины, может принимать значение от?4 до 0. Европейское космическое агентство, совместно с сайтом «www.heavens-above.com», предоставляет возможность всем желающим узнать расписание пролётов МКС над определённым населённым пунктом планеты. Зайдя на страницу сайта, посвящённую МКС, и введя латиницей название интересующего города, можно получить точное время и графическое изображение траектории полёта станции над ним, на ближайшие дни. Также расписание пролетов можно посмотреть на www.amsat.org. Траекторию полёта МКС в реальном времени можно увидеть на сайте Федерального Космического Агентства. Также можно использовать программу «Heavensat» (или «Orbitron»).

Пилотируемый орбитальный многоцелевой космический исследовательский комплекс

Международная космическая станция (МКС), созданная для проведения научных исследований в космосе. Строительство было начато в 1998 году и ведется при сотрудничестве аэрокосмических агентств России, США, Японии, Канады, Бразилии и Евросоюза, по плану должно быть завершено к в 2013 году. Вес станции после завершения ее строительства составит приблизительно 400 тонн. МКС вращается вокруг Земли на высоте около 340 километров, совершая 16 оборотов в сутки. Ориентировочно станция проработает на орбите до 2016-2020 годов.

Cпустя 10 лет после первого космического полета, совершенного Юрием Гагариным, в апреле 1971 года была выведена на орбиту первая в мире космическая орбитальная станция "Салют-1". Долговременные обитаемые станции (ДОС) были необходимы для научных исследований. Их создание явилось необходимым этапом при подготовке будущих полетов человека к другим планетам. В ходе выполнения программы "Салют" с 1971 по 1986 год СССР имел возможность апробировать основные архитектурные элементы космических станций и впоследствии использовать их в проекте новой долговременной орбитальной станции - "Мир".

Распад Советского Союза привел к сокращению финансирования космической программы, поэтому Россия в одиночку не могла не только построить новую орбитальную станцию, но и поддерживать работоспособность станции "Мир". Тогда у американцев опыт создания ДОС практически отсутствовал. В 1993 году вице-президент США Альберт Гор и премьер-министр России Виктор Черномырдин подписали соглашение о космическом сотрудничестве "Мир - Шаттл". Американцы согласились финансировать постройку последних двух модулей станции "Мир": "Спектр" и "Природа". Кроме того, США с 1994 по 1998 год совершили 11 полетов к "Миру". Также договор предусматривал создание совместного проекта - Международной космической станции (МКС). Кроме Федерального космического агентства России (Роскосмоса) и Национального аэрокосмического агентства США (NASA), в проекте приняли участие Японское агентство аэрокосмических исследований (JAXA), Европейское космическое агентство (ESA, в него входят 17 стран-участниц), Канадское космическое агентство (CSA), а также космическое агентство Бразилии (AEB). Заинтересованность в участии в проекте МКС высказывали Индия и Китай. 28 января 1998 года в Вашингтоне было подписано окончательное соглашение о начале строительства МКС.

МКС имеет модульную структуру: разные ее сегменты созданы усилиями стран - участниц проекта и имеют свою определенную функцию: исследовательскую, жилую или используются как хранилища. Некоторые из модулей, например американские модули серии Unity, являются перемычками или служат для стыковки с транспортными кораблями. В достроенном виде МКС будет состоять из 14 основных модулей общим объемом 1000 кубометров, на борту станции будет постоянно находиться экипаж из 6 или 7 человек.

Вес МКС после завершения ее строительства, по планам, составит более 400 тонн. По габаритам станция примерно соответствует футбольному полю. На звездном небе ее можно наблюдать невооруженным глазом - иногда станция является самым ярким небесным телом после Солнца и Луны.

МКС вращается вокруг Земли на высоте около 340 километров, совершая вокруг нее 16 оборотов в сутки. На борту станции проводятся научные эксперименты по следующим направлениям:

  • Исследования новых медицинских методов терапии и диагностики и средств жизнеобеспечения в условиях невесомости
  • Исследования в области биологии, функционирования живых организмов в космическом пространстве под воздействием солнечной радиации
  • Опыты по изучению земной атмосферы, космических лучей, космической пыли и темной материи
  • Исследование свойств материи, в том числе сверхпроводимость.

Первый модуль станции - "Заря" (весит 19,323 тонн) - был выведен на орбиту ракетой-носителем "Протон-К" 20 ноября 1998 года. Данный модуль использовался на раннем этапе строительства станции как источник электроэнергии, также для управления ориентацией в пространстве и поддержания температурного режима. Впоследствии эти функции были переданы другим модулям, а "Заря" стала использоваться как склад.

Модуль "Звезда" является главным жилым модулем станции, на его борту находятся системы жизнеобеспечения и управления станцией. К нему пристыковываются российские транспортные корабли "Союз" и "Прогресс". Модуль с опозданием в два года был выведен на орбиту ракетой-носителем "Протон-К" в 12 июля 2000 года и состыкован 26 июля с "Зарей" и ранее выведенным на орбиту американским стыковочными модулем Unity-1.

Стыковочный модуль "Пирс" (весит 3,480 тонн) был запущен на орбиту в сентябре 2001 года, служит для стыковки кораблей "Союз" и "Прогресс", а также для выхода в открытый космос. В ноябре 2009 года со станцией состыковался почти идентичный "Пирсу" модуль "Поиск".

Россия планирует пристыковать к станции Многофункциональный лабораторный модуль (МЛМ), после запуска в 2012 году он должен стать самым большим лабораторным модулем станции весом более 20 тонн.

На МКС уже имеются лабораторные модули США (Destiny), ЕКА (Columbus) и Японии (Кибо). Они и основные узловые сегменты Harmony, Quest и Unnity были выведены на орбиту шаттлами.

За первые 10 лет работы МКС посетило более 200 человек из 28 экспедиций, что является рекордом для космических станций (на "Мире" побывало только 104 человека). МКС стал первым примером коммерциализации космических полетов. Роскосмос совместно с компанией Space Adventures впервые отправил на орбиту космических туристов. Кроме того, в рамках контракта на закупку Малайзией российского вооружения Роскосмос в 2007 году организовал полет на МКС первого малайзийского космонавта - шейха Музафара Шукора (Muszaphar Shukor).

Среди наиболее серьезных происшествий на МКС можно назвать катастрофу при посадке шаттла Columbia ("Коламбия", "Колумбия") 1 февраля 2003 года. Хотя Columbia не стыковалась с МКС, проводя самостоятельную исследовательскую миссию, эта катастрофа привела к тому, что полеты шаттлов были прекращены и возобновились только в июле 2005 года. Это отодвинуло сроки завершения строительства станции и сделало российские корабли "Союз" и "Прогресс" единственным средством доставки космонавтов и грузов на станцию. Помимо этого, в российском сегменте станции в 2006 году произошло задымление, а также был зафиксирован отказ работы компьютеров в российских и американских сегментах в 2001 и дважды в 2007 году. Осенью 2007 года экипаж станции занимался починкой разрыва солнечной батареи, случившегося при ее установке.

По соглашению каждому участнику проекта принадлежат его сегменты на МКС. Россия владеет модулями "Звезда" и "Пирс", Япония - модулем "Кибо", ЕКА - модулем Columbus. Солнечные панели, которые после завершения строительства станции будут генерировать 110 киловатт в час, и остальные модули принадлежат NASA.

Окончание строительства МКС намечено на 2013 год. Благодаря новому оборудованию, доставленному на борт МКС экспедицией шаттла Endeavour ("Индевор") в ноябре 2008 года, экипаж станции будет увеличен в 2009 году с 3 до 6 человек. Изначально планировалось, что станция МКС должна проработать на орбите до 2010 года, в 2008 году называлась другая дата - 2016 или 2020 год. По мнению экспертов, МКС, в отличие от станции "Мир", не будут топить в океане, предполагается использовать ее в качестве базы для сборки межпланетных кораблей. Несмотря на то, что в NASA высказывались за уменьшение финансирования станции, глава агентства Майкл Гриффин пообещал выполнить все обязательства США для завершения ее строительства. Однако после войны в Южной Осетии многие эксперты, в том числе и Гриффин, заявляли, что охлаждение отношений между Россией и США может привести к тому, что Роскосмос прекратит сотрудничество с NASA и американцы лишатся возможности отправлять на станцию свои экспедиции. В 2010 году президент США Барак Обама объявил о прекращении финансирования программы "Созвездие", которая должна была заменить шаттлы. В июле 2011 года шаттл "Атлантис" совершил свой последний полет, после чего американцы в течение неопределенного срока должны были полагаться на российских, европейских и японских коллег для доставки на станцию грузов и астронавтов. В мае 2012 года с МКС впервые состыковался корабль Dragon, принадлежавший частной американской компании SpaceX.

Выбор некоторых параметров орбиты Международной космической станции . К примеру, станция может находиться на высоте от 280 до 460 километров, и из-за этого она постоянно испытывает затормаживающее воздействие верхних слоёв атмосферы нашей планеты. Каждые сутки МКС теряет примерно по 5 см/с скорости и 100 метров высоты. Поэтому периодически приходится поднимать станцию, сжигая топливо грузовиков ATV и «Прогресс». Почему же нельзя поднять станцию выше, чтобы избежать этих затрат?

Заложенный при проектировании диапазон и текущее реальное положение диктуются сразу несколькими причинами. Каждый день астронавты и космонавты , и за отметкой 500 км её уровень резко повышается . А предел за полугодовое пребывание установлен всего на ползиверта, на всю карьеру отведён всего лишь зиверт. Каждый зиверт увеличивает риск онкологических заболеваний на 5,5 процента.

На Земле от космических лучей мы защищены радиационным поясом магнитосферы нашей планеты и атмосферой, но они работают слабее в ближнем космосе. В некоторых частях орбиты (Южно-атлантическая аномалия является таким пятном повышенной радиации) и за её пределами иногда могут проявляться странные эффекты : в закрытых глазах появляются вспышки. Это космические частицы проходят через глазные яблоки, другие толкования утверждают, что частицы возбуждают ответственные за зрение части мозга. Подобное может не только мешать спать, но и в лишний раз неприятно напоминает о высоком уровне радиации на МКС.

Кроме того, «Союзы» и «Прогрессы», которые сейчас являются основными кораблями смены экипажа и снабжения, сертифицированы на работу на высоте до 460 км. Чем выше находится МКС, тем меньше груза можно будет доставить. Меньше смогут принести и ракеты, которые отправляют новые модули для станции. С другой стороны, чем ниже МКС, тем сильнее она тормозится, то есть больше доставляемого груза должно быть топливом для последующей коррекции орбиты.

Научные задачи могут быть выполнены на высоте в 400-460 километров. Наконец, на положение станции влияет космический мусор - вышедшие из строя спутники и их обломки, которые имеют огромную скорость относительно МКС, что делает столкновение с ними фатальным.

В Сети есть ресурсы, позволяющие следить за параметрами орбиты Международной космической станции. Можно получить относительно точные текущие данные , либо отследить их динамику . На момент написания этого текста МКС находилась на высоте примерно в 400 километров.

Разгонять МКС могут элементы, расположенные в задней части станции: это грузовики «Прогресс» (чаще всего) и ATV, при необходимости - служебный модуль «Звезда » (крайне редко). На иллюстрации до ката работает европейский ATV. Станцию поднимают часто и понемногу: коррекция происходит примерно раз в месяц маленькими порциями порядка 900 секунд работы двигателя, у «Прогрессов» используют двигатели поменьше, чтобы не сильно влиять на ход экспериментов.

Двигатели могут включить единожды, таким образом увеличится высота полёта на другой стороне планеты. Такие операции используют для маленьких подъёмов, поскольку меняется эксцентриситет орбиты.

Также возможна коррекция с двумя включениями, при которой второе включение сглаживает орбиту станции до окружности.

Некоторые параметры диктуются не только научными данными, но и политикой. Космическому аппарату возможно придать любую ориентацию, но при запуске более экономичным будет использовать скорость, которую даёт вращение Земли. Таким образом, дешевле запускать аппарат на орбиту с наклоном, равным широте, а манёвры потребуют дополнительного расхода топлива: больше для движения к экватору, меньше при движении к полюсам. Наклон орбиты МКС в 51,6 градуса может показаться странным: аппараты НАСА, запускаемые с мыса Канаверал, традиционно имеют наклонение примерно в 28 градусов.

Когда обсуждалось местоположение будущей станции МКС, то решили, что будет более экономичным отдать предпочтение российской стороне. Также такие параметры орбиты позволяют видеть больше поверхности Земли.

Но Байконур находится на широте в приблизительно 46 градусов, почему же тогда обычным для российских запусков является наклонение в 51,6 °? Дело в том, что к востоку есть сосед, который не слишком обрадуется, если на него что-то будет падать. Поэтому орбиту наклоняют к 51,6 °, чтобы при запуске никакие части космического аппарата ни при каких обстоятельствах не могли упасть на Китай и Монголию.

Наблюдение с веб-камер МКС за поверхностью Земли и самой Станцией онлайн. Атмосферные явления, стыковки кораблей, выходы в открытый космос, работа внутри американского сегмента - все в режиме реального времени. Параметры МКС, траектория полета и местоположение на карте мира.

На видеоплеере Роскосмоса сейчас:
Выравнивание давления, открытие люков, встреча экипажей после стыковки корабля «Союз МС-12» с МКС 15.03.2019.

Трансляция с веб-камер МКС

Видеоплееры NASA №1 и №2 ведут трансляцию изображений с веб-камер МКС онлайн с непродолжительными перерывами.

Видеоплеер NASA №1

Видеоплеер NASA №2

Карта с орбитой МКС

Видеоплеер NASA ТВ

Важные события на МКС онлайн: стыковки и расстыковки, смены экипажей, выходы в открытый космос, видеоконференции с Землей. Научные программы на английском языке. Трансляция записей с камер МКС.

Видеоплеер Роскосмоса

Выравнивание давления, открытие люков, встреча экипажей после стыковки корабля «Союз МС-12» с МКС 15.03.2019.

Описание видеоплееров

Видеоплеер NASA №1
Трансляция онлайн без звука с кратковременными перерывами. Очень редко наблюдалась трансляция записи.

Видеоплеер NASA №2
Трансляция онлайн, иногда со звуком, с кратковременными перерывами. Трансляция записи не наблюдалась.

Видеоплеер NASA ТВ
Трансляция записей научных программ на английском языке и видео с камер МКС, а также некоторых важных событий на МКС онлайн: выходов в открытый космос, видеоконференций с Землей на языке участников.

Видеоплеер Роскосмоса
Интересные видеоролики оффлайн, а также значимые события, связанные с МКС, иногда транслируемые Роскосмосом онлайн: старты космических кораблей, стыковки и расстыковки, выходы в открытый космос, возвращение экипажей на Землю.

Особенности трансляции с веб-камер МКС

Трансляция с Международной Космической Станции онлайн ведется с нескольких веб-камер, установленных внутри американского сегмента и снаружи Станции. Звуковой канал в обычные дни подключается редко, но всегда сопровождает такие важные события, как стыковки с транспортными кораблями и кораблями со сменным экипажем, выходы в открытый космос, проведение научных экспериментов.

Периодически направление веб-камер на МКС меняется, как и качество передаваемого изображения, которое может меняться в течение времени даже при трансляции с одной и той же веб-камеры. Во время работ в открытом космосе изображение чаще передается с камер, установленных на скафандрах астронавтов.

Стандартная или серая заставка на экране Видеоплеера NASA №1 и стандартная или синяя заставка на экране Видеоплеера NASA №2 говорят о временном прекращении видеосвязи Станции c Землей, аудиосвязь может продолжаться. Черный экран - пролет МКС над ночной зоной.

Звуковое сопровождение подключается редко, обычно, на Видеоплеере NASA №2. Иногда включают запись - это видно по несоответствию передаваемой картинки с положением Станции на карте и отображению текущего и полного времени транслируемого видеоролика на полосе прогресса. Полоса прогресса появляется справа от значка динамика при наведении курсора на экран видеоплеера.

Нет полосы прогресса - значит видео с текущей веб-камеры МКС транслируется онлайн . Видите Черный экран ? - сверьтесь с !

При зависании видеоплееров NASA обычно помогает простое обновление страницы .

Местоположение, траектория и параметры МКС

Текущее положение Международной Космической Станции (International Space Station) на карте обозначает условный значок МКС.

В левом верхнем углу карты отображаются текущие параметры Станции - координаты, высота орбиты, скорость движения, время до восхода или заката.

Условные обозначения параметров МКС (единицы измерения по умолчанию):

  • Lat: широта в градусах;
  • Lng: долгота в градусах;
  • Alt: высота в километрах;
  • V: скорость в км/час;
  • Время до восхода или заката солнца на Станции (на Земле смотрите границу светотени по карте).

Скорость в км/ч, конечно, впечатляет, но более наглядна ее величина в км/с. Чтобы изменить единицу измерения скорости МКС, нажмите на шестеренки в левом верхнем углу карты. В открывшемся окне на панели сверху нажмите на значок с одной шестеренкой и в списке параметров вместо km/h выберите km/s . Здесь же можно изменить и другие параметры карты.

Всего на карте мы видим три условных линии, на одной из которых расположен значок текущего положения МКС - это текущая траектория перемещения Станции. Две другие линии обозначают две следующие орбиты МКС, над точками которых, расположенных на одной долготе с текущем положением Станции, МКС пролетит, соответственно, через 90 и 180 минут.

Масштаб карты изменяется кнопками «+» и «-» в левом верхнем углу или обычной прокруткой, когда курсор расположен на поверхности карты.

Что можно увидеть через веб-камеры МКС

Американское космическое агентство NASA ведет трансляцию с веб-камер МКС онлайн. Часто изображение передается с камер, направленных на Землю, и во время пролета МКС над дневной зоной можно наблюдать облака, циклоны, антициклоны, в ясную погоду земную поверхность, поверхность морей и океанов. Подробности ландшафта можно хорошо рассмотреть, когда транслирующая веб-камера направлена вертикально на Землю, но иногда бывает хорошо видно и когда она направлена на горизонт.

При пролете МКС над материками в ясную погоду хорошо видны русла рек, озера, снежные шапки на горных хребтах, песчаная поверхность пустынь. Острова в морях и океанах проще наблюдать только в самую безоблачную погоду, так как с высоты МКС они внешне мало отличаются от облаков. Гораздо проще на поверхности мирового океана обнаружить и наблюдать кольца атоллов , которые при небольшой облачности видны хорошо.

Когда один из видеоплееров транслирует изображение с веб-камеры NASA, направленной вертикально на Землю, обратите внимание, как по отношению к спутнику по карте перемещается транслируемая картинка. Так будет проще поймать отдельные объекты для наблюдения: острова, озера, русла рек, горные массивы, проливы.

Иногда изображение онлайн передается с веб-камер, направленных внутрь Станции, тогда мы можем наблюдать за американским сегментом МКС и действиями астронавтов в режиме реального времени.

Когда на Станции происходят какие-то события, например, стыковки с транспортными кораблями или кораблями со сменным экипажем, выход в открытый космос, трансляция с МКС ведется с подключением звука. В это время мы можем слышать переговоры членов экипажа Станции между собой, с Центром Управления Полетом или со сменным экипажем на приближающемся для стыковки корабле.

О приближающихся событиях на МКС можно узнать из сообщений средств массовой информации. Кроме того, с помощью веб-камер могут транслироваться онлайн некоторые научные эксперименты, проводимые на МКС.

К сожалению, веб-камеры установлены только в американском сегменте МКС, и мы можем наблюдать только за американскими астронавтами и проводимыми ими экспериментами. Но при включении звука, часто бывает слышна и русская речь.

Чтобы включить воспроизведение звука, наведите курсор на окно плеера и кликните левой кнопкой мыши по появившемуся изображению динамика с крестиком. Звуковое сопровождение будет подключено с уровнем громкости по умолчанию. Для увеличения или уменьшения силы звука, поднимите или опустите планку громкости до желаемого уровня.

Иногда, звуковое сопровождение кратковременно подключают и без повода. Передача звука может быть включена и при синем экране , во время отключения видеосвязи с Землей.

Если вы много времени проводите за компьютером, оставьте вкладку открытой с включенным звуковым сопровождением на видеоплеерах NASA, иногда заглядывайте на нее, чтобы увидеть восход и закат, когда на земле темно, а части МКС, если они есть в кадре, освещены восходящим или закатывающимся солнцем. Звук же даст о себе знать сам. При подвисании видеотрансляции обновите страницу.

Полный оборот вокруг Земли МКС совершает за 90 минут, однократно пересекая ночную и дневную зоны планеты. Где Станция находится в данный момент, смотрите на карте с орбитой выше.

Что можно увидеть над ночной зоной Земли? Иногда вспышки молний во время грозы. Если веб-камера направлена на горизонт, бывают видны самые яркие звезды и Луна.

Через веб-камеру с МКС невозможно увидеть огни ночных городов, ведь расстояние от Станции до Земли более 400 километров, и без специальной оптики никаких огоньков не видно, кроме самых ярких звезд, но это уже не на Земле.

Наблюдайте за Международной Космической Станции с Земли. Смотрите интересные , сделанные с представленных здесь видеоплееров NASA.

В перерывах между наблюдениями за поверхностью Земли из космоса попробуйте поймать или разложить (достаточно сложный).



Понравилась статья? Поделитесь с друзьями!