Радиационный пояс ван аллена. Названы причины успешного пролета астронавтов через радиационный пояс земли

Радиационный пояс Земли

Другое название (обычно в западной литературе) - «радиационный пояс Ван Аллена » (англ. Van Allen radiation belt ).

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E , меньше критической. Те же частицы с энергией E < Е кр , которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс Земли (внутренний) был предсказан советскими учёными С. Н. Верновым и А. Е. Чудаковым , а также американским учёным Джеймсом ван Алленом . Существование радиационного пояса было продемонстрировано измерениями на «Спутнике-2 » , запущенном в 1957 году, а также на «Эксплорере-1 », запущенном в 1958 году. Радиационный пояс в первом приближении представляет собой тороид , в котором выделяются две области:

  • внутренний радиационный пояс на высоте ≈ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ ;
  • внешний радиационный пояс на высоте ≈ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ .

Высота нижней границы радиационного пояса меняется на одной и той же географической широте по долготам из-за наклона оси магнитного поля Земли к оси вращения Земли, а на одной и той же географической долготе она меняется по широтам из-за собственной формы радиационного пояса, обусловленной разной высотой силовых линий магнитного поля Земли. Например, над Атлантикой возрастание интенсивности излучения начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции , то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата частиц.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем - электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сотен килоэлектронвольт соответственно. Эти частицы имеют существенно иное пространственное распределение (по сравнении с проникающими).

Максимум интенсивности протонов низких энергий расположен на расстоянии около 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам , однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E > 1-5 МэВ ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

Радиационные пояса планет

Благодаря наличию сильного магнитного поля , планеты-гиганты (Юпитер , Сатурн , Уран и Нептун) также обладают сильными радиационными поясами, напоминающими внешний радиационный пояс

Как уже говорилось, едва американцы начали свою космическую программу, их ученый Джеймс Ван Аллен совершил достаточно важное открытие. Первый американский искусственный спутник, запущенный ими на орбиту, был куда меньше советского, но Ван Аллен додумался прикрепить к нему счетчик Гейгера. Таким образом, была официально подтверждена высказанная еще в конце ХIХ в. выдающимся ученым Николой Теслой гипотеза о том, что Землю окружает пояс интенсивной радиации.

Фотография Земли астронавта Уильяма Андерса

во время миссии «Аполлон-8» (архив НАСА)

Тесла, однако, считался большим чудаком, а академической наукой - даже сумасшедшим, поэтому его гипотезы о генерируемом Солнцем гигантском электрическом заряде давно лежали под сукном, а термин «солнечный ветер» не вызывал ничего, кроме улыбок. Но благодаря Ван Аллену теории Теслы были реанимированы. С подачи Ван Аллена и ряда других исследователей было установлено, что радиационные пояса в космосе начинаются у отметки 800 км над поверхностью Земли и простираются до 24 000 км. Поскольку уровень радиации там более или менее постоянен, входящая радиация должна приблизительно равняться исходящей. В противном случае она либо накапливалась бы до тех пор, пока не «запекла» Землю, как в духовке, либо иссякла. По этому поводу Ван Аллен писал: «Радиационные пояса можно сравнить с протекающим сосудом, который постоянно пополняется от Солнца и протекает в атмосферу. Большая порция солнечных частиц переполняет сосуд и выплескивается, особенно в полярных зонах, приводя к полярным сияниям, магнитным бурям и прочим подобным явлениям».

Радиация поясов Ван Аллена зависит от солнечного ветра. Кроме того, они, по-видимому, фокусируют или концентрируют в себе эту радиацию. Но поскольку концентрировать в себе они могут только то, что пришло напрямую от Солнца, то открытым остается еще один вопрос: сколько радиации в остальной части космоса?

Орбиты атмосферных частиц в экзосфере (dic.academic.ru)

У Луны нет поясов Ван Аллена. У нее также нет защитной атмосферы. Она открыта всем солнечным ветрам. Если бы во время лунной экспедиции произошла сильная солнечная вспышка, то колоссальный поток радиации испепелил бы и капсулы, и астронавтов на той части поверхности Луны, где они проводили свой день. Эта радиация не просто опасна - она смертельна!

В 1963 году советские ученые заявили известному британскому астроному Бернарду Ловеллу, что они не знают способа защитить космонавтов от смертельного воздействия космической радиации. Это означало, что даже намного более толстостенные металлические оболочки российских аппаратов не могли справиться с радиацией. Каким же образом тончайший (почти как фольга) металл, используемый в американских капсулах, мог защитить астронавтов? НАСА знало, что это невозможно. Космические обезьяны погибли менее чем через 10 дней после возвращения, но НАСА так и не сообщило нам об истинной причине их гибели.

Обезьяна-астронавт (архив РГАНТ)

Большинство людей, даже сведущих в космосе, и не подозревают о существовании пронизывающей его просторы смертельной радиации. Как ни странно (а может быть, как раз по причинам, о которых можно догадаться), в американской «Иллюстрированной энциклопедии космической технологии» словосочетание «космическая радиация» не встречается ни разу. Да и вообще эту тему американские исследователи (особенно связанные с НАСА) обходят за версту.

Между тем Ловелл после беседы с русскими коллегами, которые отлично знали о космической радиации, отправил имевшуюся у него информацию администратору НАСА Хью Драйдену, но тот проигнорировал ее.

Один из якобы посетивших Луну астронавтов Коллинз в своей книге упоминал о космической радиации только дважды:

«По крайней мере, Луна была далеко за пределами земных поясов Ван Аллена, что предвещало хорошую дозу радиации для тех, кто побывал там, и смертельную - для тех, кто задержался».

«Таким образом, радиационные пояса Ван Аллена, окружающие Землю, и возможность солнечных вспышек требуют понимания и подготовки, чтобы не подвергать экипаж повышенным дозам радиации».

Так что же означает «понимание и подготовка»? Означает ли это, что за пределами поясов Ван Аллена остальной космос свободен от радиации? Или у НАСА была секретная стратегия укрытия от солнечных вспышек после принятия окончательного решения об экспедиции?

НАСА утверждало, что просто может предсказывать солнечные вспышки, и поэтому отправляло на Луну астронавтов тогда, когда вспышек не ожидалось, и радиационная опасность для них была минимальна.

Пока Армстронг и Олдрин выполняли работу в открытом космосе

на поверхности Луны,Майкл Коллинз

ставался на орбите (архив НАСА)

Впрочем, другие специалисты утверждают: «Возможно предсказать только приблизительную дату будущих максимальных излучений и их плотность».

Советский космонавт Леонов все же вышел в 1966 году в открытый космос - правда, в сверхтяжелом свинцовом костюме. Но спустя всего лишь три года американские астронавты прыгали на поверхности Луны, причем отнюдь не в сверхтяжелых скафандрах, а скорее совсем наоборот! Может, за эти годы специалисты из НАСА сумели найти какой-то сверхлегкий материал, надежно защищающий от радиации?

Однако исследователи вдруг выясняют, что по крайней мере «Аполлон-10», «Аполлон-11» и «Аполлон-12» отправились в путь именно в те периоды, когда количество солнечных пятен и соответствующая солнечная активность приближались к максимуму. Общепринятый теоретический максимум 20-го солнечного цикла длился с декабря 1968 по декабрь 1969 гг. В этот период миссии «Аполлон-8», «Аполлон-9», «Аполлон-10», «Аполлон-11» и «Аполлон-12» предположительно вышли за пределы зоны защиты поясов Ван Аллена и вошли в окололунное пространство.

Дальнейшее изучение ежемесячных графиков показало, что единичные солнечные вспышки - явление случайное, происходящее спонтанно на протяжении 11-летнего цикла. Бывает и так, что в «низкий» период цикла случается большое количество вспышек за короткий промежуток времени, а во время «высокого» периода - совсем незначительное количество. Но важно именно то, что очень сильные вспышки могут иметь место в любое время цикла.

В эпоху «Аполлонов» американские астронавты провели в космосе в общей сложности почти 90 дней. Поскольку радиация от непредсказуемых солнечных вспышек долетает до Земли или Луны менее чем за 15 минут, защититься от нее можно было бы только с помощью свинцовых контейнеров. Но если мощности ракеты хватило, чтобы поднять такой лишний вес, то почему надо было выходить в космос в тонюсеньких капсулах (буквально в 0,1 мм алюминия) при давлении в 0,34 атмосфер?

Это притом, что даже тонкий слой защитного покрытия, именуемого «майларом», по утверждениям экипажа «Аполлон-11», оказался столь тяжек, что его пришлось срочно стирать с лунного модуля!

Похоже, в лунные экспедиции НАСА отбирало особенных парней, правда, с поправкой на обстоятельства, отлитых не из стали, а из свинца. Американский исследователь проблемы Ральф Рене не поленился рассчитать, как часто каждая из якобы состоявшихся лунных экспедиций должна была попасть под солнечную активность.

Между прочим, один из авторитетных сотрудников НАСА (заслуженный физик, кстати) Билл Модлин в своей работе «Перспективы межзвездных путешествий» откровенно сообщал: «Солнечные вспышки могут выбрасывать ГэВ протоны в том же энергетическом диапазоне, что и большинство космических частиц, но гораздо более интенсивные. Увеличение их энергии при усиленной радиации представляет особую опасность, поскольку ГэВ протоны проникают сквозь несколько метров материала… Солнечные (или звездные) вспышки с выбросом протонов - это периодически возникающая очень серьезная опасность в межпланетном пространстве, которая обеспечивает дозу радиации в сотни тысяч рентген за несколько часов на расстоянии от Солнца до Земли. Такая доза является смертельной и в миллионы раз превышает допустимую. Смерть может наступить уже после 500 рентген за короткий промежуток времени».

Да, бравые американские парни потом должны были сиять похлеще четвертого чернобыльского энергоблока. «Космические частицы опасны, они исходят со всех сторон и требуют как минимум двух метров плотного экрана вокруг любых живых организмов». А ведь космические капсулы, которые по сей день демонстрирует НАСА, имели чуть более 4 м в диаметре. При толщине стен, рекомендуемой Модлиным, астронавты, даже без всякого оборудования, в них бы не влезли, уж не говоря о том, что и не хватило бы топлива для того, чтобы такие капсулы поднять. Но, очевидно, ни руководство НАСА, ни посланные им на Луну астронавты книжек своего коллеги не читали и, находясь в блаженном неведении, преодолели все тернии по дороге к звездам.

Впрочем, может быть, НАСА и впрямь разработало для них некие сверхнадежные скафандры, используя (понятно, очень засекреченный) сверхлегкий материал, защищающий от радиации? Но почему же его так больше нигде и не использовали, как говорится, в мирных целях? Ну ладно, с Чернобылем СССР они не захотели помогать: все-таки перестройка еще не началась. Но ведь, к примеру, в 1979 году в тех же США на АЭС «Тримайл-Айленд» произошла крупная авария реакторного блока, которая привела к расплавлению активной зоны реактора. Так что же американские ликвидаторы не использовали космические скафандры по столь разрекламированной технологии НАСА стоимостью ни много ни мало в $7 млн, чтобы ликвидировать эту атомную мину замедленного действия на своей территории?..

Радиационный пояс Земли (РПЗ), или пояс Ван Аллена - это область ближайшего космического пространства около нашей планеты, имеющая вид кольца, в которой находятся гигантские потоки электронов и протонов. Земля удерживает их с помощью дипольного магнитного поля.

Открытие

РПЗ был обнаружен в 1957-58 гг. учеными из Соединенных Штатов и СССР. "Эксплорер-1" (на фото ниже), первый космический спутник США, запуск которого состоялся в 1958 году, предоставил очень важные данные. Благодаря проведенному американцами бортовому эксперименту над поверхностью Земли (на высоте примерно 1000 км), был найден пояс радиации (внутренний). Позже на высоте около 20000 км была обнаружена вторая такая зона. Не существует четкой границы между внутренним и внешним поясами - первый постепенно переходит во второй. Эти две зоны радиоактивности различаются по степени заряженности частиц и их составу.

Данные области стали называться поясами Ван Аллена. Джеймс Ван Аллен - физик, эксперимент которого помог их обнаружить. Ученые выяснили, что эти пояса состоят из солнечного ветра и заряженных частиц космических лучей, которые притягиваются к Земле ее магнитным полем. Каждый из них формирует тор вокруг нашей планеты (фигуру, которая по форме напоминает пончик).

В космосе с того времени было проведено множество экспериментов. Они позволили исследовать основные особенности и свойства РПЗ. Не только у нашей планеты существуют радиационные пояса. Они имеются и у других небесных тел, которые обладают атмосферой и магнитным полем. Пояс радиации Ван Аллена был обнаружен, благодаря межпланетным кораблям США у Марса. Кроме того, американцы нашли его у Сатурна и Юпитера.

Дипольное магнитное поле

У нашей планеты имеется не только пояс Ван Аллена, но и дипольное магнитное поле. Оно представляет собой набор магнитных оболочек, вложенных друг в друга. Структура этого поля напоминает кочан капусты или луковицу. Магнитную оболочку можно представить себе как сотканную из силовых магнитных линий замкнутую поверхность. Чем ближе к центру диполя находится оболочка, тем больше становится напряженность магнитного поля. Кроме того, импульс, который требуется заряженной частице для проникновения в нее извне, также увеличивается.

Итак, N-я оболочка обладает P n . В случае, когда начальный импульс частицы не превышает P n , ее отражает магнитное поле. Частица тогда возвращается в космическое пространство. Однако бывает и так, что она оказывается на N-й оболочке. В этом случае она уже не способна ее покинуть. Захваченная частица будет находиться в ловушке до тех пор, пока она не рассеется или, столкнувшись с остаточной атмосферой, не потеряет энергию.

В нашей планеты одна и та же оболочка находится на различном расстоянии от земной поверхности на разных долготах. Это происходит из-за несовпадения оси магнитного поля с осью вращения планеты. Данный эффект заметен лучше всего над Бразильской магнитной аномалией. В этой области силовые магнитные линии опускаются, и захваченные частицы, движущиеся по ним, могут оказаться ниже 100 км высоты, а значит, погибнуть в земной атмосфере.

Состав РПЗ

Внутри радиационного пояса распределение протонов и электронов неодинаково. Первые находятся во внутренней его части, а вторые - во внешней. Поэтому на раннем этапе исследования ученые считали, что имеются внешний (электронный) и внутренний (протонный) радиационные пояса Земли. В настоящее время это мнение уже неактуально.

Наиболее значительным механизмом генерации заполняющих пояс Ван Аллена частиц является распад альбедных нейтронов. Необходимо отметить, что нейтроны создаются, когда атмосфера взаимодействует с Поток этих частиц, движущихся по направлению от нашей планеты (нейтроны альбедо), проходит через магнитное поле Земли беспрепятственно. Однако они являются нестабильными и легко распадаются на электроны, протоны и электронное антинейтрино. Радиоактивные альбедные ядра, обладающие большой энергией, распадаются внутри зоны захвата. Именно так пояс Ван Аллена пополняется позитронами и электронами.

РПЗ и магнитные бури

Когда начинаются сильные эти частицы не просто ускоряются, они покидают радиоактивный пояс Ван Аллена, высыпаясь из него. Дело в том, что, если конфигурация магнитного поля меняется, зеркальные точки могут быть погружены в атмосферу. В этом случае частицы, теряя энергию (ионизационные потери, рассеяние) изменяют питч-углы, а затем гибнут, достигнув верхних слоев магнитосферы.

РПЗ и северное сияние

Радиационный пояс Ван Аллена окружен плазменным слоем, представляющим собой захваченные потоки протонов (ионов) и электронов. Одна из причин такого явления, как северное (полярное) сияние - это то, что частицы высыпаются из плазменного слоя, а также частично из внешнего РПЗ. Северное сияние представляет собой излучение атомов атмосферы, которые возбуждаются из-за столкновения с высыпавшимися из пояса частицами.

Исследование РПЗ

Почти все основополагающие результаты исследований таких образований, как радиационные пояса, были получены примерно в 1960-70-е годы. Недавние наблюдения с применением межпланетных кораблей и новейшей научной аппаратуры позволили ученым добыть очень важные новые сведения. Пояса Ван Аллена вокруг Земли продолжают изучаться и в наше время. Вкратце расскажем о важнейших достижениях в этой области.

Данные, полученные от "Салюта-6"

Исследователи из МИФИ в начале 80-х годов прошлого века исследовали потоки электронов с высоким уровнем энергии в ближайшей окрестности нашей планеты. Для этого они использовали аппаратуру, которая находилась на орбитальной станции "Салют-6". Она позволяла ученым очень эффективно выделять потоки позитронов и электронов, энергия которых превышает 40 МэВ. Орбита станции (наклонение 52°, высота около 350-400 км) проходила в основном ниже радиационного пояса нашей планеты. Однако она все-таки задевала внутреннюю его часть у Бразильской магнитной аномалии. При пересечении этого района были найдены стационарные потоки, состоящие из высокоэнергичных электронов. В РПЗ до этого эксперимента были зафиксированы только электроны, энергия которых не превышала 5 МэВ.

Данные искусственных спутников серии "Метеор-3"

Исследователи из МИФИ провели дальнейшие измерения на искусственных спутниках нашей планеты серии "Метеор-3", у которых высота круговых орбит составляла 800 и 1200 км. На этот раз прибор внедрился в РПЗ очень глубоко. Он подтвердил результаты, которые были получены ранее на станции "Салют-6". Затем исследователи получили еще один важный результат, использовав установленные на станциях "Мир" и "Салют-7" магнитные спектрометры. Было доказано, что обнаруженный ранее стабильный пояс состоит исключительно из электронов (без позитронов), энергия которых очень велика (до 200 МэВ).

Открытие стационарного пояса ядер CNO

Группа исследователей из НИЯФ МГУ в конце 80-х-начале 90-х годов прошлого века осуществила эксперимент, нацеленный на изучение ядер, которые расположены в ближайшем космическом пространстве. Данные измерения были проведены с использованием пропорциональных камер и ядерных фотоэмульсий. Они осуществлялись на ИСЗ серии "Космос". Ученые обнаружили наличие потоков ядер N, O и Ne в области космического пространства, в которой орбита искусственного спутника (наклонение 52°, высота около 400-500 км) пересекала Бразильскую аномалию.

Как показал анализ, эти ядра, энергия которых достигала нескольких десятков МэВ/нуклон, имели не галактическое, альбедное или солнечное происхождение, поскольку они никак не могли с такой энергией глубоко внедриться в магнитосферу нашей планеты. Так ученые обнаружили аномальную компоненту космических лучей, захваченную магнитным полем.

Малоэнергичные атомы, находящиеся в межзвездной материи, способны проникать в гелиосферу. Затем ультрафиолетовое излучение Солнца их ионизирует однократно или двукратно. Образовавшиеся в результате этого заряженные частицы разгоняются на фронтах солнечного ветра, достигая нескольких десятков МэВ/нуклон. Затем они проникают в магнитосферу, в которой захватываются и полностью ионизируются.

Квазистационарный пояс протонов и электронов

На Солнце 22 марта 1991 г. случилась мощная вспышка, которая сопровождалась выбросом огромной массы солнечного вещества. Оно достигло магнитосферы к 24 марта и изменило ее внешнюю область. В магнитосферу ворвались частицы солнечного ветра, имевшие большую энергию. Они достигли района, в котором тогда находился CRESS, американский спутник. Установленные на нем приборы зафиксировали резкое возрастание протонов, энергия которых составляла от 20 до 110 МэВ, а также мощных электронов (около 15 МэВ). Это свидетельствовало о появлении нового пояса. Сначала квазистационарный пояс наблюдали на целом ряде космических аппаратов. Однако лишь на станции "Мир" он изучался в течение всего срока жизни, составляющего около двух лет.

Кстати, в 60-х годах прошлого столетия в результате того, что в космосе взорвались ядерные устройства, появился квазистационарный пояс, состоящий из электронов, имеющих малые энергии. Он просуществовал примерно 10 лет. Радиоактивные осколки деления распадались, что и было источником заряженных частиц.

Есть ли РПЗ на Луне

У спутника нашей планеты отсутствует радиационный пояс Ван Аллена. Кроме того, у него нет и защитной атмосферы. Поверхность Луны открыта солнечным ветрам. Сильная если бы она произошла во время лунной экспедиции, испепелила бы и астронавтов, и капсулы, поскольку произошел бы выброс колоссального потока радиации, которая является смертельной.

Можно ли защититься от космической радиации

Этот вопрос уже долгие годы интересует ученых. В небольших дозах радиация, как известно, практически не влияет на состояние нашего здоровья. Однако она безопасна лишь тогда, когда не превышает определенный порог. Знаете ли вы, какой уровень радиации вне пояса Ван Аллена, на поверхности нашей планеты? Обычно содержание частиц радона и тория не превышает 100 Бк на 1 м 3 . Внутри РПЗ эти показатели намного выше.

Безусловно, радиационные пояса Земли Ван Аллена очень опасны для человека. Их воздействие на организм изучало множество исследователей. Советские ученые в 1963 году заявили Бернарду Ловеллу, известному британскому астроному, что им неизвестно средство защиты человека от воздействия радиации в космосе. Это означало, что с ней не могли справиться даже толстостенные оболочки советских аппаратов. Каким же образом используемый в капсулах американцев тончайший металл, почти как фольга, смог защитить астронавтов?

Согласно заверениям НАСА, оно отправило астронавтов на Луну лишь тогда, когда не ожидалось вспышек, которые организация способна предсказывать. Именно это позволило снизить до минимума радиационную опасность. Другие специалисты, впрочем, утверждают, что можно только примерно предсказать дату больших излучений.

Пояс Ван Аллена и полет на Луну

Леонов, советский космонавт, в 1966 году все же вышел в открытый космос. Однако он был одет в сверхтяжелый свинцовый костюм. А уже через 3 года астронавты из США прыгали по лунной поверхности, причем явно не в тяжеленных скафандрах. Возможно, специалистам из НАСА за эти годы удалось обнаружить сверхлегкий материал, который надежно защищает космонавтов от радиации? до сих пор вызывает множество вопросов. Один из основных аргументов тех, кто считает, что американцы не высаживались на нее - существование радиационных поясов.

Начало космонавтики ознаменовалось рядом открытий, одним из которых было открытие радиационных поясов Земли. Внутренний радиационный пояс Земли был открыт американским учёным Джеймсом ван Алленом после полета Эксплорер-1. Внешний радиационный пояс Земли был открыт советскими учёными С. Н. Верновым и А. Е. Чудаковым после полёта Спутник-3 в 1958 году.

На некоторых высотах первые спутники попадали в области, которые были густо насыщенны заряженными частицами, обладающими очень большой энергией, резко отличными от наблюдавшихся ранее космических частиц, и первичных, и вторичных. После обработки данных со спутников стало ясно, что речь идет о заряженных частицах, захваченных магнитным полем Земли.

Известно, что любые заряженные частицы, попав в магнитное поле, начинают «навиваться» на силовые линии магнитного поля, одновременно передвигаясь вдоль них. Размеры витков получающейся спирали зависят от первоначальной скорости частиц, их массы, заряда и напряженности магнитного поля Земли в той области околоземного пространства, в которую они влетели и изменили направление движения.

Магнитное поле Земли неоднородно. У полюсов оно «сгущается» - уплотняется. Поэтому заряженная частица, начавшая движение по спирали вдоль «оседланной» ею магнитной линии из области, близкой к экватору, по мере приближения к какому-либо полюсу испытывает все большее и большее сопротивление, пока не остановится. А затем возвращается назад к экватору и дальше к противоположному полюсу, откуда начинает движение в обратном направлении. Частица оказывается как бы в гигантской «магнитной ловушке» планеты.

Эти области магнитосферы, где накапливаются и удерживаются проникшие в нее высокоэнергичные заряженные частицы (в основном протоны и электроны) и частицы с кинетической энергией E меньше критической называются радиационными поясами. Земля имеет три радиационных пояса, а сейчас открыли еще и четвертый. Радиационный пояс Земли представляет собой тороид.

Первый такой пояс начинается на высоте примерно 500 км над западным и 1500 км над восточным полушарием Земли. Самая большая концентрация частиц этого пояса - его ядро - находится на высоте двух-трех тысяч километров. Верхняя граница этого пояса достигает трех-четырех тысяч километров над поверхностью Земли.

Второй пояс простирается от 10-11 до 40-60 тыс. км с максимальной плотностью частиц на высоте 20 тыс. км.

Внешний пояс начинается на высоте 60-75 тыс. км.

Приведенные границы поясов определены пока еще только приблизительно и, видимо, в каких-то пределах периодически изменяются.

Отличаются эти пояса друг от друга тем, что первый из них, самый близкий к Земле, состоит из положительно заряженных протонов, обладающих очень большой энергией - порядка 100 Мое. Их смогла захватить и удержать только самая плотная часть магнитного поля Земли. Поток протонов в нем довольно устойчив во времени и не испытывает резких колебаний.

Второй пояс состоит, главным образом, из электронов с энергией «всего лишь» 30-100 кэв. В нем движутся большие потоки частиц, чем во внутреннем поясе, он испытывает резкие колебания.

В третьем поясе, где магнитное поле Земли самое слабое, удерживаются частицы с энергией 200 эв и более.

Кроме того, электроны с энергией меньше 1 МэВ заполняют почти всю область захвата. Для них нет разделения на пояса, они присутствуют во всех трех поясах.

Чтобы понять, насколько опасны для всего живого на Земле заряженные частицы в радиационных поясах, приведем для сравнения пример. Так, обычное рентгеновское излучение, применяемое кратковременно для медицинских целей, обладает энергией 30-50 кэв, а мощные установки для просвечивания огромных слитков и глыб металла - от 200 кэв до 2 Мэв. Поэтому самыми опасными для космонавтов будущего и для всего живого при полетах на другие планеты являются первый и второй пояс.

Вот почему ученые сейчас столь упорно и тщательно пытаются уточнить месторасположение и форму этих поясов, распределение частиц в них. Пока ясно лишь одно. Коридорами для выхода обитаемых космических кораблей на трассы к другим мирам будут области, близкие к магнитным полюсам Земли, свободные от частиц больших энергий.

Естествен вопрос: откуда взялись все эти частицы? Их в основном выбрасывает из своих недр наше Солнце. Сейчас уже установлено, что Земля, несмотря на огромное расстояние от Солнца, находится в самой внешней части его атмосферы. Это, в частности, подтверждается тем, что каждый раз, когда возрастает солнечная активность, а следовательно, увеличиваются количество и энергия испускаемых Солнцем частиц, возрастает и количество электронов во втором радиационном поясе, который как бы под напором «ветра» из этих частиц прижимается к Земле.

Разделение зарядов на слои и образование радиационных поясов Земли происходит под действием акусто-магнитоэлектрического эффекта, заключающегося в том, что коротковолновое излучение Солнца, проходя через плазму поперек силовых линий магнитного поля Земли, производит сортировку зарядов по энергетическому состоянию на разные уровни. Наличие определенного количества зарядов в каждом слое, в том числе и на поверхности Земли, дает основание предположить, что Землю вместе со всей атмосферой можно рассматривать как электрическую машину, которую по конструкции можно отождествить со сферической многослойной, многороторной, асинхронной электрической емкостно-индуктивной машиной.

Захваченные в магнитную ловушку Земли частицы под действием силы Лоренца совершают колебательное движение по спиральной траектории вдоль силовой линии магнитного поля из Северного полушария в Южное и обратно. Одновременно частицы совершают более медленное перемещение (долготный дрейф) вокруг Земли.

Когда частица движется по спирали в сторону увеличения магнитного поля (приближаясь к Земле), радиус спирали и её шаг уменьшаются. Вектор скорости частицы, оставаясь неизменным по величине, приближается к плоскости, перпендикулярной направлению поля. Наконец, в некоторой точке (её называют зеркальной) происходит «отражение» частицы. Она начинает двигаться в обратном направлении - к сопряжённой зеркальной точке в др. полушарии.

Одно колебание вдоль силовой линии из Северного полушария в Южное протон с энергией ~ 100 Мэв совершает за время ~ 0,3 сек. Время нахождения («жизни») такого протона в геомагнитной ловушке может достигать 100 лет (~ 3×109 сек), за это время он может совершить до 1010 колебаний. В среднем захваченные частицы большой энергии совершают до нескольких сотен миллионов колебаний из одного полушария в другое.

Долготный дрейф происходит со значительно меньшей скоростью. В зависимости от энергии частицы совершают полный оборот вокруг Земли за время от нескольких минут до суток. Положительные ионы дрейфуют в западном направлении, а электроны - в восточном. Движение частицы по спирали вокруг силовой линии магнитного поля можно представить как состоящее из вращения около т. н. мгновенного центра вращения и поступательного перемещения этого центра вдоль силовой линии.

Van Allen radiation belt ).

Внутри магнитосферы, как и в любом дипольном поле, есть области, недоступные для частиц с кинетической энергией E , меньше критической. Те же частицы с энергией E < Е кр , которые все-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

Радиационный пояс в первом приближении представляет собой тороид , в котором выделяются две области:

  • внутренний радиационный пояс на высоте ≈ 4000 км, состоящий преимущественно из протонов с энергией в десятки МэВ ;
  • внешний радиационный пояс на высоте ≈ 17 000 км, состоящий преимущественно из электронов с энергией в десятки кэВ .

Высота нижней границы радиационного пояса меняется на одной и той же географической широте по долготам из-за наклона оси магнитного поля Земли к оси вращения Земли, а на одной и той же географической долготе она меняется по широтам из-за собственной формы радиационного пояса, обусловленной разной высотой силовых линий магнитного поля Земли. Например, над Атлантикой возрастание интенсивности излучения начинается на высоте 500 км, а над Индонезией на высоте 1300 км. Если те же графики построить в зависимости от магнитной индукции , то все измерения уложатся на одну кривую, что ещё раз подтверждает магнитную природу захвата частиц.

Между внутренним и внешним радиационными поясами имеется щель, расположенная в интервале от 2 до 3 радиусов Земли. Потоки частиц во внешнем поясе больше, чем во внутреннем. Различен и состав частиц: во внутреннем поясе протоны и электроны, во внешнем - электроны. Применение неэкранированных детекторов существенно расширило сведения о радиационных поясах. Были обнаружены электроны и протоны с энергией несколько десятков и сотен килоэлектронвольт соответственно. Эти частицы имеют существенно иное пространственное распределение (по сравнению с проникающими).

Максимум интенсивности протонов низких энергий расположен на расстоянии около 3 радиусов Земли от её центра (приблизительно на высоте 12 500 км от поверхности). Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Частицы с энергией десятки кэВ непривычно относить к космическим лучам , однако радиационные пояса представляют собой единое явление и должны изучаться в комплексе с частицами всех энергий.

Поток протонов во внутреннем поясе довольно устойчив во времени. Первые эксперименты показали, что электроны высокой энергии (E > 1-5 МэВ ) сосредоточены во внешнем поясе. Электроны с энергией меньше 1 МэВ заполняют почти всю магнитосферу. Внутренний пояс очень стабилен, тогда как внешний испытывает резкие колебания.

История открытия

Существование радиационного пояса было впервые обнаружено американским учёным Джеймсом ван Алленом в феврале 1958 года при анализе данных с американского спутника «Эксплорер-1 » и убедительно доказано записью периодически изменяющегося уровня радиации на полном витке орбиты специально модифицированного Ван Алленом для изучения обнаруженного феномена спутника «Эксплорер-3 ». Открытие Ван Аллена было озвучено 1 мая 1958 г. и вскоре нашло независимое подтверждение в данных советского «Спутника-3 ». Более поздний повторный анализ данных более раннего советского «Спутника-2 » показал что радиационные пояса фиксировались и его оборудованием, предназначенным для анализа солнечной активности, однако странным показаниям солнечного датчика тогда не сумели дать верную интерпретацию. Негативно сказалось на советском приоритете и отсутствие на «Спутниках» записывающего оборудования (на «Спутнике-2» оно не предусматривалось, а на «Спутнике-3» сломалось), из-за чего полученные данные оказались отрывочными и не давали цельной картины об изменении радиации с высотой и наличии в околоземном пространстве не просто космической радиации, но характерного «пояса», охватывающего лишь определённые высоты. Однако более разнообразное оборудование «Спутника-3» помогло уточнить «состав» внутреннего пояса. В конце 1958 года анализ данных «Пионера-3 » и чуть более поздней «Луны-1 » привёл к открытию существования внешнего радиационного пояса, а американские высотные ядерные взрывы продемонстрировали, что на радиационные пояса Земли может оказывать влияние человек. Анализ этих данных привёл к постепенному формированию с середины 1959 года современных представлений о существовании двух радиационных поясов вокруг Земли и механизмах их образования.

История исследований

30 августа 2012 года с космодрома на мысе Канаверал с помощью ракеты Atlas V 410 на высокоэллиптическую орбиту с высотой апогея около 30 тысяч километров были выведены два идентичных зонда RBSP (Radiation Belt Storm Probes ), предназначенных для изучения радиационных поясов. Впоследствии они были переименованы в «Зонды Ван Аллена» (Van Allen Probes ). Два аппарата нужны были для того, чтобы отличить изменения, связанные с переходом из одной области в другую с изменениями, происходящими в самих поясах. . Одним из основных результатов этой миссии было открытие третьего радиационного пояса, появляющегося на короткое время порядка нескольких недель. На февраль 2017 года работа обоих зондов продолжалась.

Радиационные пояса планет

Благодаря наличию сильного магнитного поля планеты-гиганты (Юпитер , Сатурн , Уран и Нептун) также обладают сильными радиационными поясами, напоминающими внешний радиационный пояс Земли . Советские и американские космические зонды показали, что Венера, Марс, Меркурий и Луна радиационных поясов не имеют.

История исследований



Понравилась статья? Поделитесь с друзьями!