Решу егэ теория вероятности профильный уровень. Подготовка к ЕГЭ (профильный уровень)

В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру дня кофе останется в обоих автоматах.

Решение.

Рассмотрим события

А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате.

По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

P(A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.

Ответ: 0,65.

Приведем другое решение.

Вероятность того, что кофе останется в первом автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется во втором автомате равна 1 − 0,25 = 0,75. Вероятность того, что кофе останется в первом или втором автомате равна 1 − 0,15 = 0,85. Поскольку P(A + B) = P(A) + P(B) − P(A·B), имеем: 0,85 = 0,75 + 0,75 − х , откуда искомая вероятость х = 0,65.

Примечание.

Заметим, что события А и В не являются независимыми. Действительно, вероятность произведения независимых событий была бы равна произведению вероятностей этих событий: P(A·B) = 0,25·0,25 = 0,0625, однако, по условию, эта вероятность равна 0,15.

Елена Александровна Попова 10.10.2018 09:57

Я, доцент, кандидат педагогических наук, считаю ПОЛНОЙ ГЛУПОСТЬЮ И НЕЛЕПОСТЬЮ ВКЛЮЧАТЬ ЗАДАНИЯ НА ЗАВИСИМЫЕ СОБЫТИЯ ДЛЯ ШКОЛЬНИКОВ. Этот раздел НЕ ЗНАЮТ учителя - меня приглашали читать лекции по ТВ на курсы повышения квалификации учителей. Этого раздела нет и не может быть в программе. Выдумывать методы без обоснования НЕ НУЖНО. ЗАДАЧИ подобного рода просто исключить. Ограничиться КЛАССИЧЕСКИМ ОПРЕДЕЛЕНИЕМ ВЕРОЯТНОСТЕЙ. Да и то предварительно изучить школьные учебники - посмотреть, а что там написали по этому поводу авторы. Посмотрите Зубареву 5 класс. Она даже обозначений не знает и вероятность дает в процентах. После обучения по таким учебникам ученики так и считают, что вероятность - это процент. Много интересных задач на классическое определение вероятностей. Их и нужно спрашивать школьников. Возмущения нет предела у преподавателей ВУЗов от ВАШИХ глупостей по введению подобного рода задач.

Теория вероятностей на ЕГЭ по математике может быть представлена как в виде простых задач на классическое определение вероятности, так и в виде достаточно сложных, на применение соответствующих теорем.

В этой части рассмотрим задачи, для решения которых достаточно применения определения вероятности. Иногда здесь мы будем применять также формулу для вычисления вероятности противоположного события. Хотя без этой формулы здесь можно обойтись, она все равно понадобится при решении следующих задач.

Теоретическая часть

Случайным называют событие, которое может произойти или не произойти (заранее предсказать невозможно) во время наблюдения или испытания.

Пусть при проведении испытания (бросание монеты или кубика, вытягивание экзаменационного билета и т. д.) возможны равновозможных исходов. Например, при подбрасывании монеты число всех исходов равно 2, так как кроме выпадения «решки» или «орла» других исходов быть не может. При броске игрального кубика возможны 6 исходов, так как на верхней грани кубика равновозможно появление любого из чисел от 1 до 6. Пусть также некоторому событию А благоприятствуют исходов.

Вероятностью события А называется отношение числа благоприятных для этого события исходов к общему числу равновозможных исходов (это классическое определение вероятности). Пишем

Например, пусть событие А состоит в выпадении нечётного числа очков при бросании кубика. Всего возможны 6 исходов: выпадение на верхней грани кубика 1, 2, 3, 4, 5, 6. При этом благоприятными для события А являются исходы с выпадением 1, 3, 5. Таким образом, .

Заметим, что всегда выполняется двойное неравенство , поэтому вероятность любого события А лежит на отрезке , то есть . Если у вас в ответе вероятность получается больше единицы, значит, вы где-то ошиблись и решение нужно перепроверить.

События А и В называются противоположными друг другу, если любой исход благоприятен ровно для одного из них.

Например, при бросании кубика событие «выпало нечётное число» является противоположным событию «выпало чётное число».

Событие, противоположное событию А, обозначают. Из определения противоположных событий следует
, значит,
.

Задачи о выборе объектов из набора

Задача 1. В чемпионате мира участвуют 24 команды. С помощью жребия их нужно разделить на четыре группы по шесть команд в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе?

Общее число исходов равно числу карточек – их 24. Благоприятных исходов 6 (так как номер 3 написан на шести карточках). Искомая вероятность равна .

Ответ: 0,25.

Задача 2. В урне 14 красных, 9 жёлтых и 7 зелёных шаров. Из урны наугад достают один шар. Какова вероятность того, что этот шар окажется жёлтым?

Общее число исходов равно числу шаров: 14 + 9 + 7 = 30. Число исходов, благоприятствующих данному событию, равно 9. Искомая вероятность равна равна .

Задача 3. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной и больше 5?

Исходом здесь является нажатие определённой клавиши, поэтому всего имеется 10 равновозможных исходов. Указанному событию благоприятствуют исходы, означающие нажатие клавиши 6 или 8. Таких исходов два. Искомая вероятность равна .

Ответ: 0,2.

Задача 4 . Какова вероятность того, что случайно выбранное натуральное число от 4 до 23 делится на три?

На отрезке от 4 до 23 имеется 23 – 4 + 1 = 20 натуральных чисел, значит, всего возможны 20 исходов. На этом отрезке кратны трём следующие числа: 6, 9, 12, 15, 18, 21. Всего таких чисел 6, поэтому рассматриваемому событию благоприятствуют 6 исходов. Искомая вероятность равна .

Ответ: 0,3.

Задача 5. Из 20 билетов, предлагаемых на экзамене, школьник может ответить только на 17. Какова вероятность того, что школьник не сможет ответить на выбранный наугад билет?

1 -й способ.

Так как школьник может ответить на 17 билетов, то на 3 билета он ответить не может. Вероятность получить один из этих билетов по определению равна .

2-й способ.

Обозначим через А событие «школьник может ответить на билет». Тогда . Вероятность противоположного события равна =1 – 0,85 = 0,15.

Ответ: 0,15.

Задача 6 . В чемпионате по художественной гимнастике участвуют 20 спортсменок: 6 из России, 5 из Германии, остальные – из Франции. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая седьмой, окажется из Франции.

Всего 20 спортсменок, у всех равные шансы выступать седьмой. Поэтому имеются 20 равновероятных исходов. Из Франции 20 – 6 – 5 = 9 спортсменок, поэтому имеются 9 благоприятных для указанного события исходов. Искомая вероятность равна .

Ответ: 0,45.

Задача 7. Научная конференция проводится в 5 дней. Всего запланировано 50 докладов – первые три дня по 12 докладов, остальные распределены поровну между четвёртым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора Н. окажется запланированным на последний день конференции?

Сначала найдём, сколько докладов запланировано на последний день. На первые три дня запланировано докладов. Остаются ещё 50 – 36 = 14 докладов, которые распределяются поровну между оставшимися двумя днями, поэтому в последний день запланировано докладов.

Будем считать исходом порядковый номер доклада профессора Н. Всего таких равновозможных исходов 50. Благоприятствуют указанному событию 7 исходов (последние 7 номеров в списке докладов). Искомая вероятность равна .

Ответ: 0,14.

Задача 8 . На борту самолёта 10 мест рядом с запасными выходами и 15 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажиров высокого роста. Пассажир К. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру К. достанется удобное место, если всего в самолёте 200 мест.

Исход в этой задаче – выбор места. Всего имеется 200 равновозможных исходов. Благоприятствуют событию «выбранное место удобное» 15 + 10 = 25 исходов. Искомая вероятность равна .

Ответ: 0,125.

Задача 9 . Из 1000 собранных на заводе кофемолок 7 штук бракованных. Эксперт проверяет одну наугад выбранную кофемолку из этой 1000. Найдите вероятность того, что проверяемая кофемолка окажется бракованной.

При выборе кофемолки наугад возможны 1000 исходов, событию А «выбранная кофемолка бракованная» благоприятны 7 исходов. По определению вероятности .

Ответ: 0,007.

Задача 10. Завод производит холодильники. В среднем на 100 качественных холодильников приходится 15 холодильников со скрытыми дефектами. Найдите вероятность того, что купленный холодильник окажется качественным. Результат округлите до сотых.

Эта задача похожа на предыдущую. Однако формулировка «на 100 качественных холодильников приходится 15 с дефектами» указывает нам, что дефектные 15 штук не входят в 100 качественных . Поэтому общее число исходов равно 100 + 15 =115 (равно общему числу холодильников), благоприятных исходов 100. Искомая вероятность равна . Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Получаем 0,869…, что 0,87.

Ответ: 0,87.

Задача 11 . Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 16 теннисистов, среди которых 7 участников из России, в том числе Максим Зайцев. Найдите вероятность того, что в первом туре Максим Зайцев будет играть с каким-либо теннисистом из России.

Как и в предыдущей задаче, необходимо внимательно прочитать условие и понять, что является исходом, а что – благоприятным исходом (так, неосмысленное применение формулы вероятности приводит к неправильному ответу ).

Здесь исход – это соперник Максима Зайцева. Так как всего теннисистов 16, а сам с собой Максим играть не может, то имеется 16 – 1 = 15 равновероятных исходов. Благоприятный исход – соперник из России. Таких благоприятных исходов 7 – 1 = 6 (из числа россиян исключаем самого Максима). Искомая вероятность равна .

Ответ: 0,4.

Задача 12. Футбольную секцию посещают 33 человека, среди них два брата – Антон и Дмитрий. Посещающих секцию случайным образом делят на три команды по 11 человек в каждой. Найдите вероятность того, что Антон и Дмитрий окажутся в одной команде.

Сформируем команды, последовательно помещая футболистов на свободные места, при этом начнем с Антона и Дмитрия. Сначала поместим Антона на случайно выбранное место из свободных 33. Теперь помещаем на свободное место Дмитрия (исходом будем считать выбор места для него). Всего имеется 32 свободных места (одно уже занял Антон), поэтому всего возможны 32 исхода. В одной команде с Антоном остается 10 свободных мест, поэтому событию «Антон и Дмитрий в одной команде» благоприятствуют 10 исходов. Вероятность этого события равна .

Ответ: 0,3125.

Задача 13 . Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 11, но не дойдя до отметки 2 часа.

Условно циферблат можно разделить на 12 секторов, располагающихся между отметками соседних чисел (между 12 и 1, 1 и 2, 2 и 3, …, 11 и 12). Исходом мы будем считать остановку часовой стрелки в одном из указанных секторов. Всего есть 12 равновозможных исходов. Указанному событию благоприятствуют три исхода (сектора между 11 и 12, 12 и 1, 1 и 2). Искомая вероятность равна .

Ответ: 0,25.

Подведем итог

После изучения материала по решению простых задач по теории вероятностей рекомендую выполнить задачи для самостоятельного решения, которые мы публикуем на нашем канале Telegram . Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму .

Спасибо, что поделились статьей в социальных сетях

Источник “Подготовка к ЕГЭ. Математика.Теория вероятностей”. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Случайное событие – любое событие, которое может произойти, а может и не произойти в результате какого-либо опыта.

Вероятность события р равна отношению числа благоприятных исходов k к числу всевозможных исходов n , т.е.

p=\frac{k}{n}

Формулы сложения и умножения теории вероятности

Событие \bar{A} называется противоположным событию A, если не произошло событие A.

Сумма вероятностей противоположных событий равна единице, т.е.

P(\bar{A}) + P(A) =1

  • Вероятность события не может быть больше 1.
  • Если вероятность события равна 0, то оно не случится.
  • Если вероятность события равна 1, то оно произойдет.

Теорема сложения вероятностей:

«Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий.»

P(A+B) = P(A) + P(B)

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

P(A+B) = P(A) + P(B) - P(AB)

Теорема умножения вероятностей

«Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.»

P(AB)=P(A)*P(B)

События называются несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

События называются совместными , если наступление одного из них не исключает наступления другого.

Два случайных события А и В называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

Вероятность. Задачи профильного ЕГЭ по математике.

Подготовила учитель математики МБОУ «Лицей №4» г. Рузаевка

Овчинникова Т.В.


Определение вероятности

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения:

m

n

Пусть k – количество бросков монеты, тогда количество всевозможных исходов: n = 2 k .

Пусть k – количество бросков кубика, тогда количество всевозможных исходов: n = 6 k .


В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз.

Решение.

Всего 4 варианта: о; о о; р р; р р; о .

Благоприятных 2: о; р и р; о .

Вероятность равна 2/4 = 1/2 = 0,5 .

Ответ: 0,5.


В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Решение.

Игральные кости – это кубики с 6 гранями. На первом кубике может выпасть 1, 2, 3, 4, 5 или 6 очков. Каждому варианту выпадения очков соответствует 6 вариантов выпадения очков на втором кубике.

Т.е. всего различных вариантов 6×6 = 36.

Варианты (исходы эксперимента) будут такие:

1; 1 1; 2 1; 3 1; 4 1; 5 1; 6

2; 1 2; 2 2; 3 2; 4 2; 5 2; 6

и т.д. ..............................

6; 1 6; 2 6; 3 6; 4 6; 5 6; 6

Подсчитаем количество исходов (вариантов), в которых сумма очков двух кубиков равна 8.

2; 6 3; 5; 4; 4 5; 3 6; 2.

Всего 5 вариантов.

Найдем вероятность: 5/36 = 0,138 ≈ 0,14.

Ответ: 0,14.


В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

Решение:

Вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике, равна 11/55 =1/5 = 0,2.

Ответ: 0,2.


В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные − из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

Решение.

Всего участвует 20 спортсменок,

из которых 20 – 8 – 7 = 5 спортсменок из Китая.

Вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5/20 = 1/4 = 0,25.

Ответ: 0,25.


Научная конференция проводится в 5 дней. Всего запланировано 75 докладов − первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение:

В последний день конференции запланировано

(75 – 17 × 3) : 2 = 12 докладов.

Вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12/75 = 4/25 = 0,16.

Ответ: 0,16.


Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?

Решение:

Нужно учесть, что Руслан Орлов должен играть с каким-либо бадминтонистом из России. И сам Руслан Орлов тоже из России.

Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9/25 = 36/100 = 0,36.

Ответ: 0,36.


Даша дважды бросает игральный кубик. В сумме у нее выпало 8 очков. Найдите вероятность того, что при первом броске выпало 2 очка.

Решение.

В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если будут следующие комбинации:

Всего 5 вариантов. Подсчитаем количество исходов (вариантов), в которых при первом броске выпало 2 очка.

Такой вариант 1.

Найдем вероятность: 1/5 = 0,2.

Ответ: 0,2.


В чемпионате мира участвует 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется в третьей группе.

Решение:

Всего команд 20, групп – 5.

В каждой группе – 4 команды.

Итак, всего исходов получилось 20, нужных нам – 4, значит, вероятность выпадения нужного исхода 4/20 = 0,2.

Ответ: 0,2.


Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая – 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение:

Вероятность того, что стекло куплено на первой фабрике и оно бракованное:

р 1 = 0,45 · 0,03 = 0,0135.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное:

р 2 = 0,55 · 0,01 = 0,0055.

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна

р = р 1 + р 2 = 0,0135 + 0,0055 = 0,019.

Ответ: 0,019.


Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3.

Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение:

Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей:

р = 0,52 · 0,3 = 0,156.

Ответ: 0,156.


Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых.

Решение:

Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.

Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2.

1 выстрел: 0,8

2 выстрел: 0,8

3 выстрел: 0,8

4 выстрел: 0,2

5 выстрел: 0,2

По формуле умножения вероятностей независимых событий, получаем, что искомая вероятность равна:

0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.

Ответ: 0,02.


В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение:

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий:

0,05 · 0,05 = 0,0025.

Событие, состоящее в том, что исправен хотя бы один автомат, противоположное.

Следовательно, его вероятность равна

1 − 0,0025 = 0,9975.

Ответ: 0,9975.


Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение:

Вероятность того, что Джон промахнется, если схватит пристрелянный револьвер равна:

0,4 · (1 − 0,9) = 0,04

Вероятность того, что Джон промахнется, если схватит непристрелянный револьвер равна:

0,6 · (1 − 0,2) = 0,48

Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий:

0,04 + 0,48 = 0,52.

Ответ: 0,52.


При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем – 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Решение:

Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:

Р(1) = 0,6;

Р(2) = Р(1) · 0,4 = 0,24;

Р(3) = Р(2) · 0,4 = 0,096;

Р(4) = Р(3) · 0,4 = 0,0384;

Р(5) = Р(4) · 0,4 = 0,01536.

Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.

Ответ: 5.


В классе 26 человек, среди них два близнеца – Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Решение:

Пусть один из близнецов находится в некоторой группе.

Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников.

Вероятность того, что второй близнец окажется среди этих 12 человек, равна

P = 12: 25 = 0,48.

Ответ: 0,48.


На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.

Решение:

На каждой из четырех отмеченных развилок паук с вероятностью 0,5 может выбрать или путь, ведущий к выходу D, или другой путь. Это независимые события, вероятность их произведения (паук дойдет до выхода D) равна произведению вероятностей этих событий. Поэтому вероятность прийти к выходу D равна (0,5) 4 = 0,0625.



Понравилась статья? Поделитесь с друзьями!