Karmaşık bir radikal nasıl basitleştirilir? İkinci dereceden denklemleri çözme örnekleri


Konuyu incelemeye devam ediyoruz " denklem çözme" Doğrusal denklemlerle zaten tanıştık ve onları tanımaya devam ediyoruz ikinci dereceden denklemler.

Öncelikle ikinci dereceden denklemin ne olduğuna, genel şekliyle nasıl yazıldığına bakacağız ve ilgili tanımları vereceğiz. Bundan sonra eksik ikinci dereceden denklemlerin nasıl çözüldüğünü detaylı olarak incelemek için örnekler kullanacağız. Daha sonra, tam denklemleri çözmeye geçeceğiz, kök formülü elde edeceğiz, ikinci dereceden bir denklemin diskriminantını öğreneceğiz ve tipik örneklerin çözümlerini ele alacağız. Son olarak kökler ve katsayılar arasındaki bağlantıları izleyelim.

Sayfada gezinme.

İkinci dereceden denklem nedir? Türleri

Öncelikle ikinci dereceden denklemin ne olduğunu açıkça anlamanız gerekir. Bu nedenle, ikinci dereceden denklemler hakkında bir konuşmaya ikinci dereceden bir denklemin tanımı ve ilgili tanımlarla başlamak mantıklıdır. Bundan sonra, ikinci dereceden denklemlerin ana türlerini göz önünde bulundurabilirsiniz: azaltılmış ve azaltılmamış, ayrıca tam ve eksik denklemler.

İkinci dereceden denklemlerin tanımı ve örnekleri

Tanım.

İkinci dereceden denklem formun bir denklemidir a x 2 +b x+c=0 burada x bir değişkendir, a, b ve c bazı sayılardır ve a sıfır değildir.

Hemen ikinci dereceden denklemlere genellikle ikinci dereceden denklemler denildiğini söyleyelim. Bunun nedeni ikinci dereceden denklemin cebirsel denklem ikinci derece.

Belirtilen tanım ikinci dereceden denklem örnekleri vermemizi sağlar. Yani 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0, vb. Bunlar ikinci dereceden denklemlerdir.

Tanım.

Sayılar a, b ve c denir ikinci dereceden denklemin katsayıları a·x 2 +b·x+c=0 ve a katsayısına birinci veya en yüksek denir veya x 2'nin katsayısı, b ikinci katsayı veya x'in katsayısıdır ve c serbest terimdir .

Örneğin, 5 x 2 −2 x −3=0 formundaki ikinci dereceden bir denklemi ele alalım, burada baş katsayı 5, ikinci katsayı −2 ve serbest terim −3'e eşittir. Lütfen b ve/veya c katsayıları negatif olduğunda, az önce verilen örnekte olduğu gibi, ikinci dereceden denklemin kısa formunun 5 x 2 +(−2 ) yerine 5 x 2 −2 x−3=0 olduğunu unutmayın. ·x+(−3)=0 .

a ve/veya b katsayıları 1 veya −1'e eşit olduğunda, ikinci dereceden denklemde genellikle açıkça mevcut olmadıklarını belirtmek gerekir; bu da böyle yazmanın özelliklerinden kaynaklanmaktadır. Örneğin, ikinci dereceden y 2 −y+3=0 denkleminde baş katsayı birdir ve y'nin katsayısı −1'e eşittir.

İndirgenmiş ve indirgenmemiş ikinci dereceden denklemler

Baş katsayının değerine bağlı olarak indirgenmiş ve indirgenmemiş ikinci dereceden denklemler ayırt edilir. İlgili tanımları verelim.

Tanım.

Baş katsayısının 1 olduğu ikinci dereceden denklem denir verilen ikinci dereceden denklem. Aksi takdirde ikinci dereceden denklem el değmemiş.

Bu tanıma göre, ikinci dereceden denklemler x 2 −3·x+1=0, x 2 −x−2/3=0, vb. – verildiğinde, her birinde birinci katsayı bire eşittir. A 5 x 2 −x−1=0, vb. - indirgenmemiş ikinci dereceden denklemler, baş katsayıları 1'den farklıdır.

İndirgenmemiş herhangi bir ikinci dereceden denklemden, her iki tarafı da baş katsayıya bölerek azaltılmış olana gidebilirsiniz. Bu eylem eşdeğer bir dönüşümdür, yani bu şekilde elde edilen indirgenmiş ikinci dereceden denklem, orijinal indirgenmemiş ikinci dereceden denklemle aynı köklere sahiptir veya onun gibi kökleri yoktur.

İndirgenmemiş ikinci dereceden denklemden indirgenmiş denkleme geçişin nasıl gerçekleştirildiğine dair bir örneğe bakalım.

Örnek.

3 x 2 +12 x−7=0 denkleminden karşılık gelen indirgenmiş ikinci dereceden denkleme gidin.

Çözüm.

Orijinal denklemin her iki tarafını da baş katsayı 3'e bölmemiz yeterli, sıfır değil, böylece bu işlemi gerçekleştirebiliriz. Elimizde (3 x 2 +12 x−7):3=0:3 var, bu da aynı, (3 x 2):3+(12 x):3−7:3=0 ve sonra (3: 3) x 2 +(12:3) x−7:3=0, buradan . Orijinaline eşdeğer olan indirgenmiş ikinci dereceden denklemi bu şekilde elde ettik.

Cevap:

Tam ve eksik ikinci dereceden denklemler

İkinci dereceden bir denklemin tanımı a≠0 koşulunu içerir. Bu koşul, a x 2 + b x + c = 0 denkleminin ikinci dereceden olması için gereklidir, çünkü a = 0 olduğunda aslında b x + c = 0 formunda doğrusal bir denklem haline gelir.

B ve c katsayılarına gelince, bunlar hem ayrı ayrı hem de birlikte sıfıra eşit olabilir. Bu durumlarda ikinci dereceden denklem eksik olarak adlandırılır.

Tanım.

İkinci dereceden denklem a x 2 +b x+c=0 denir tamamlanmamış, eğer b, c katsayılarından en az biri sıfıra eşitse.

Sırayla

Tanım.

Tam ikinci dereceden denklem tüm katsayıların sıfırdan farklı olduğu bir denklemdir.

Bu tür isimler tesadüfen verilmemiştir. Aşağıdaki tartışmalardan bu açıkça anlaşılacaktır.

b katsayısı sıfırsa ikinci dereceden denklem a·x 2 +0·x+c=0 formunu alır ve a·x 2 +c=0 denklemine eşdeğerdir. Eğer c=0 ise, yani ikinci dereceden denklem a·x 2 +b·x+0=0 biçimindeyse, o zaman a·x 2 +b·x=0 olarak yeniden yazılabilir. Ve b=0 ve c=0 ile ikinci dereceden a·x 2 =0 denklemini elde ederiz. Ortaya çıkan denklemler, sol taraflarında x değişkenli bir terim veya serbest bir terim veya her ikisini birden içermemesi nedeniyle ikinci dereceden denklemin tamamından farklıdır. Dolayısıyla onların adı - tamamlanmamış ikinci dereceden denklemler.

Dolayısıyla x 2 +x+1=0 ve −2 x 2 −5 x+0,2=0 denklemleri ikinci dereceden tam denklem örnekleridir ve x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 tamamlanmamış ikinci dereceden denklemlerdir.

Tamamlanmamış ikinci dereceden denklemleri çözme

Önceki paragrafta yer alan bilgilerden şu anlaşılmaktadır: üç tür tamamlanmamış ikinci dereceden denklem:

  • a·x 2 =0, b=0 ve c=0 katsayıları buna karşılık gelir;
  • a x 2 +c=0 olduğunda b=0 ;
  • ve c=0 olduğunda a·x 2 +b·x=0.

Bu türlerin her birinin tamamlanmamış ikinci dereceden denklemlerinin nasıl çözüldüğünü sırasıyla inceleyelim.

a x 2 =0

b ve c katsayılarının sıfıra eşit olduğu, yani a x 2 =0 formundaki denklemlerle tamamlanmamış ikinci dereceden denklemleri çözmeye başlayalım. a·x 2 =0 denklemi, her iki parçanın da sıfır olmayan bir a sayısına bölünmesiyle orijinalinden elde edilen x 2 =0 denklemine eşdeğerdir. Açıkçası, x 2 =0 denkleminin kökü sıfırdır, çünkü 0 2 =0'dır. Bu denklemin başka kökleri yoktur; bu, sıfırdan farklı herhangi bir p sayısı için p 2 >0 eşitsizliğinin geçerli olduğu gerçeğiyle açıklanır, bu da p≠0 için p 2 =0 eşitliğine asla ulaşılamayacağı anlamına gelir.

Dolayısıyla, tamamlanmamış ikinci dereceden denklem a·x 2 =0'ın tek bir kökü x=0'dır.

Örnek olarak, ikinci dereceden tamamlanmamış −4 x 2 =0 denkleminin çözümünü veriyoruz. x 2 =0 denklemine eşdeğerdir, tek kökü x=0'dır, dolayısıyla orijinal denklemin tek kökü sıfır vardır.

Bu durumda kısa çözüm şu şekilde yazılabilir:
−4 x 2 =0 ,
x2 =0,
x=0 .

a x 2 +c=0

Şimdi b katsayısının sıfır ve c≠0 olduğu, yani a x 2 +c=0 formundaki denklemlerin tamamlanmamış ikinci dereceden denklemlerin nasıl çözüldüğüne bakalım. Bir terimi denklemin bir tarafından ters işaretle diğer tarafa taşımanın ve denklemin her iki tarafını da sıfır olmayan bir sayıya bölmenin eşdeğer bir denklem verdiğini biliyoruz. Bu nedenle, tamamlanmamış ikinci dereceden denklem a x 2 +c=0 için aşağıdaki eşdeğer dönüşümleri gerçekleştirebiliriz:

  • c'yi sağ tarafa hareket ettirin, bu da a x 2 =−c denklemini verir,
  • ve her iki tarafı da a'ya bölersek elde ederiz.

Ortaya çıkan denklem, kökleri hakkında sonuçlar çıkarmamızı sağlar. a ve c değerlerine bağlı olarak ifadenin değeri negatif (örneğin a=1 ve c=2 ise o zaman ) veya pozitif (örneğin a=−2 ve c=6 ise, o zaman ), c≠0 koşuluna göre sıfıra eşit değildir. Vakaları ayrı ayrı analiz edeceğiz ve.

Eğer ise denklemin kökleri yoktur. Bu ifade, herhangi bir sayının karesinin negatif olmayan bir sayı olduğu gerçeğinden kaynaklanmaktadır. Bundan, herhangi bir p sayısı için eşitliğin doğru olamayacağı sonucu çıkar.

Eğer öyleyse denklemin kökleriyle ilgili durum farklıdır. Bu durumda, eğer hatırlarsak, o zaman denklemin kökü hemen belli olur; çünkü . Aslında sayının aynı zamanda denklemin kökü olduğunu tahmin etmek kolaydır. Bu denklemin örneğin çelişkiyle gösterilebilecek başka kökleri yoktur. Hadi bunu yapalım.

Az önce açıklanan denklemin köklerini x 1 ve -x 1 olarak gösterelim. Denklemin belirtilen x 1 ve −x 1 köklerinden farklı bir kök x 2 daha olduğunu varsayalım. Köklerini x yerine bir denklem haline getirmenin denklemi doğru bir sayısal eşitliğe dönüştürdüğü bilinmektedir. x 1 ve −x 1 için elimizde ve x 2 için elimizde . Sayısal eşitliklerin özellikleri, doğru sayısal eşitliklerin terim terim çıkarma işlemini gerçekleştirmemize olanak tanır, böylece eşitliklerin karşılık gelen kısımlarının çıkarılması x 1 2 −x 2 2 =0 sonucunu verir. Sayılarla yapılan işlemlerin özellikleri, elde edilen eşitliği (x 1 −x 2)·(x 1 +x 2)=0 olarak yeniden yazmamıza olanak tanır. İki sayının çarpımının sıfıra eşit olduğunu ancak ve ancak bunlardan en az birinin sıfıra eşit olması durumunda biliyoruz. Dolayısıyla, elde edilen eşitlikten x 1 −x 2 =0 ve/veya x 1 +x 2 =0, ki bu aynıdır, x 2 =x 1 ve/veya x 2 =−x 1 olur. Yani bir çelişkiye geldik, çünkü başlangıçta x 2 denkleminin kökünün x 1 ve −x 1'den farklı olduğunu söylemiştik. Bu da denklemin ve dışında kökü olmadığını kanıtlar.

Bu paragraftaki bilgileri özetleyelim. Tamamlanmamış ikinci dereceden denklem a x 2 +c=0 aşağıdaki denkleme eşdeğerdir:

  • kökleri yok ise
  • iki kökü vardır ve , if .

a·x 2 +c=0 formundaki tamamlanmamış ikinci dereceden denklemlerin çözümüne ilişkin örnekleri ele alalım.

İkinci dereceden denklem 9 x 2 +7=0 ile başlayalım. Serbest terim denklemin sağ tarafına taşındığında 9 x 2 =−7 formunu alacaktır. Ortaya çıkan denklemin her iki tarafını da 9'a bölerek elde ederiz. Sağ taraf negatif bir sayıya sahip olduğundan bu denklemin kökleri yoktur, dolayısıyla orijinal tamamlanmamış ikinci dereceden denklem 9 x 2 +7 = 0'ın da kökleri yoktur.

Başka bir tamamlanmamış ikinci dereceden denklemi -x 2 +9=0 çözelim. Dokuzunu sağa kaydırıyoruz: −x 2 =−9. Şimdi her iki tarafı da -1'e bölersek x 2 =9 elde ederiz. Sağ tarafta pozitif bir sayı var ve bundan veya sonucunu çıkarıyoruz. Sonra son cevabı yazıyoruz: tamamlanmamış ikinci dereceden denklem −x 2 +9=0'ın iki kökü x=3 veya x=−3'tür.

a x 2 +b x=0

Geriye c=0 için tamamlanmamış ikinci dereceden denklemlerin son tipinin çözümüyle uğraşmak kalıyor. a x 2 + b x = 0 formundaki tamamlanmamış ikinci dereceden denklemleri çözmenize olanak sağlar çarpanlara ayırma yöntemi. Açıkçası, denklemin sol tarafında, ortak x faktörünü parantezlerden çıkarmanın yeterli olduğu bir yerde bulunabiliriz. Bu, orijinal tamamlanmamış ikinci dereceden denklemden x·(a·x+b)=0 formundaki eşdeğer bir denkleme geçmemizi sağlar. Ve bu denklem, x=0 ve a·x+b=0 olmak üzere iki denklemden oluşan bir diziye eşdeğerdir; bunlardan ikincisi doğrusaldır ve kökü x=−b/a'dır.

Dolayısıyla, tamamlanmamış ikinci dereceden a·x 2 +b·x=0 denkleminin iki kökü x=0 ve x=−b/a'dır.

Materyali pekiştirmek için çözümü belirli bir örneğe göre analiz edeceğiz.

Örnek.

Denklemi çözün.

Çözüm.

X'i parantezden çıkarmak denklemi verir. x=0 ve iki denkleme eşdeğerdir. Ortaya çıkan doğrusal denklemi çözüyoruz: ve karışık sayıyı sıradan bir kesire bölerek buluyoruz. Bu nedenle orijinal denklemin kökleri x=0 ve .

Gerekli pratiği kazandıktan sonra bu tür denklemlerin çözümleri kısaca yazılabilir:

Cevap:

x=0 , .

Diskriminant, ikinci dereceden bir denklemin kökleri için formül

İkinci dereceden denklemleri çözmek için bir kök formül vardır. Haydi yazalım İkinci dereceden bir denklemin kökleri için formül: , Nerede D=b 2 −4 a c- sözde ikinci dereceden bir denklemin diskriminantı. Giriş aslında şu anlama gelir.

Kök formülün nasıl elde edildiğini ve ikinci dereceden denklemlerin köklerini bulmada nasıl kullanıldığını bilmek faydalıdır. Bunu çözelim.

İkinci dereceden bir denklemin kökleri için formülün türetilmesi

İkinci dereceden a·x 2 +b·x+c=0 denklemini çözmemiz gerekiyor. Bazı eşdeğer dönüşümler gerçekleştirelim:

  • Bu denklemin her iki tarafını da sıfırdan farklı bir a sayısına bölerek aşağıdaki ikinci dereceden denklemi elde edebiliriz.
  • Şimdi tam bir kare seç sol tarafında: . Bundan sonra denklem şu şekli alacaktır.
  • Bu aşamada son iki terimi ters işaretle sağ tarafa aktarmamız mümkün.
  • Ve sağ taraftaki ifadeyi de dönüştürelim: .

Sonuç olarak, orijinal ikinci dereceden denklem a·x 2 +b·x+c=0'ya eşdeğer bir denkleme ulaşıyoruz.

Önceki paragraflarda benzer formdaki denklemleri incelediğimizde çözmüştük. Bu, denklemin köklerine ilişkin aşağıdaki sonuçları çıkarmamızı sağlar:

  • eğer ise denklemin gerçek çözümü yoktur;
  • eğer ise denklem, tek kökünün görülebildiği formdadır;
  • if , Then or , or ile aynıdır, yani denklemin iki kökü vardır.

Dolayısıyla denklemin köklerinin ve dolayısıyla orijinal ikinci dereceden denklemin varlığı veya yokluğu, sağ taraftaki ifadenin işaretine bağlıdır. Bu ifadenin işareti de payın işaretiyle belirlenir, çünkü 4·a 2 paydası her zaman pozitiftir, yani b 2 −4·a·c ifadesinin işaretiyle. Bu ifadeye b 2 −4 a c adı verildi ikinci dereceden bir denklemin diskriminantı ve mektupla belirlenmiş D. Buradan diskriminantın özü açıktır - değerine ve işaretine dayanarak, ikinci dereceden denklemin gerçek köklerinin olup olmadığı ve eğer öyleyse, sayıları nedir - bir veya iki olduğu sonucuna varırlar.

Denkleme dönelim ve onu diskriminant gösterimini kullanarak yeniden yazalım: . Ve şu sonuçları çıkarıyoruz:

  • eğer D<0 , то это уравнение не имеет действительных корней;
  • D=0 ise bu denklemin tek kökü vardır;
  • son olarak, eğer D>0 ise denklemin iki kökü vardır veya şeklinde yeniden yazılabilir ve kesirleri genişletip ortak bir paydaya getirdikten sonra elde ederiz.

Böylece ikinci dereceden denklemin köklerine ilişkin formülleri türettik; bunlar, diskriminant D'nin D=b 2 −4·a·c formülüyle hesaplandığı formdadır.

Onların yardımıyla, pozitif bir ayrımcıyla ikinci dereceden bir denklemin her iki gerçek kökünü de hesaplayabilirsiniz. Diskriminant sıfır olduğunda, her iki formül de ikinci dereceden denklemin benzersiz çözümüne karşılık gelen aynı kök değerini verir. Ve negatif diskriminantla, ikinci dereceden bir denklemin kökleri için formülü kullanmaya çalıştığımızda, negatif bir sayının karekökünü çıkarmakla karşı karşıya kalırız, bu da bizi okul müfredatının kapsamının dışına çıkarır. Negatif bir diskriminantla, ikinci dereceden denklemin gerçek kökleri yoktur, ancak bir çifti vardır. karmaşık eşlenik elde ettiğimiz aynı kök formülleri kullanılarak bulunabilen kökler.

Kök formülleri kullanarak ikinci dereceden denklemleri çözmek için algoritma

Pratikte ikinci dereceden denklemleri çözerken değerlerini hesaplamak için hemen kök formülü kullanabilirsiniz. Ancak bu daha çok karmaşık kökleri bulmakla ilgilidir.

Bununla birlikte, bir okul cebir dersinde genellikle karmaşık hakkında değil, ikinci dereceden bir denklemin gerçek kökleri hakkında konuşuruz. Bu durumda, ikinci dereceden bir denklemin kökleri için formülleri kullanmadan önce, ilk önce diskriminantın bulunması, negatif olmadığından emin olunması tavsiye edilir (aksi takdirde denklemin gerçek kökleri olmadığı sonucuna varabiliriz), ve ancak o zaman köklerin değerlerini hesaplayın.

Yukarıdaki mantık yazmamıza izin veriyor İkinci dereceden bir denklemi çözmek için algoritma. İkinci dereceden a x 2 +b x+c=0 denklemini çözmek için şunları yapmanız gerekir:

  • D=b 2 −4·a·c diskriminant formülünü kullanarak değerini hesaplayın;
  • diskriminant negatifse ikinci dereceden bir denklemin gerçek köklerinin olmadığı sonucuna varır;
  • D=0 ise formülü kullanarak denklemin tek kökünü hesaplayın;
  • Diskriminant pozitifse kök formülünü kullanarak ikinci dereceden bir denklemin iki gerçek kökünü bulun.

Burada, eğer diskriminant sıfıra eşitse formülü de kullanabileceğinizi not edelim; bu formül ile aynı değeri verecektir.

İkinci dereceden denklemleri çözmek için algoritmayı kullanma örneklerine geçebilirsiniz.

İkinci dereceden denklemleri çözme örnekleri

Pozitif, negatif ve sıfır diskriminantlı ikinci dereceden üç denklemin çözümlerini ele alalım. Çözümlerini ele aldıktan sonra, benzetme yoluyla başka herhangi bir ikinci dereceden denklemi çözmek mümkün olacaktır. Haydi başlayalım.

Örnek.

x 2 +2·x−6=0 denkleminin köklerini bulun.

Çözüm.

Bu durumda ikinci dereceden denklemin şu katsayılarına sahibiz: a=1, b=2 ve c=−6. Algoritmaya göre öncelikle diskriminant hesaplamanız gerekir; bunu yapmak için belirtilen a, b ve c'yi diskriminant formülünde yerine koyarız; D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. 28>0 yani diskriminant sıfırdan büyük olduğundan ikinci dereceden denklemin iki gerçek kökü vardır. Bunları kök formülü kullanarak bulalım, şunu elde ederiz, burada aşağıdaki işlemleri yaparak elde edilen ifadeleri basitleştirebilirsiniz. çarpanı kök işaretinin ötesine taşıma ardından fraksiyonun azaltılması gelir:

Cevap:

Bir sonraki tipik örneğe geçelim.

Örnek.

−4 x 2 +28 x−49=0 ikinci dereceden denklemi çözün.

Çözüm.

Diskriminantı bularak başlıyoruz: D=28 2 −4·(−4)·(−49)=784−784=0. Dolayısıyla bu ikinci dereceden denklemin tek bir kökü vardır ve bunu şöyle buluruz:

Cevap:

x=3,5.

Geriye ikinci dereceden denklemleri negatif bir diskriminantla çözmeyi düşünmek kalıyor.

Örnek.

5·y 2 +6·y+2=0 denklemini çözün.

Çözüm.

İkinci dereceden denklemin katsayıları şunlardır: a=5, b=6 ve c=2. Bu değerleri diskriminant formülüne koyarsak, D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Diskriminant negatiftir, dolayısıyla bu ikinci dereceden denklemin gerçek kökleri yoktur.

Karmaşık kökleri belirtmeniz gerekiyorsa, ikinci dereceden bir denklemin kökleri için iyi bilinen formülü uygularız ve gerçekleştiririz. karmaşık sayılarla işlemler:

Cevap:

gerçek kökler yoktur, karmaşık kökler şunlardır: .

İkinci dereceden bir denklemin diskriminantının negatif olması durumunda, okulda genellikle gerçek köklerin olmadığını ve karmaşık köklerin bulunmadığını belirten bir cevabı hemen yazdıklarını bir kez daha belirtelim.

Çift ikinci katsayılar için kök formül

D=b 2 −4·a·c olan ikinci dereceden bir denklemin köklerine ilişkin formül, x için çift katsayılı (veya sadece bir örneğin 2·n veya 14·ln5=2·7·ln5 formundaki katsayı. Hadi onu dışarı çıkaralım.

Diyelim ki a x 2 +2 n x+c=0 formundaki ikinci dereceden bir denklemi çözmemiz gerekiyor. Bildiğimiz formülü kullanarak köklerini bulalım. Bunu yapmak için diskriminantı hesaplıyoruz D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c) ve sonra kök formülü kullanırız:

n 2 −a c ifadesini D 1 olarak gösterelim (bazen D "olarak gösterilir). Daha sonra ikinci katsayı 2 n ile ele alınan ikinci dereceden denklemin kökleri için formül şu şekli alacaktır: , burada D 1 =n 2 −a·c.

D=4·D 1 veya D 1 =D/4 olduğunu görmek kolaydır. Başka bir deyişle D 1 diskriminantın dördüncü kısmıdır. D 1'in işaretinin D'nin işaretiyle aynı olduğu açıktır. Yani D 1 işareti aynı zamanda ikinci dereceden bir denklemin köklerinin varlığının veya yokluğunun bir göstergesidir.

Yani, ikinci katsayısı 2·n olan ikinci dereceden bir denklemi çözmek için şunu yapmanız gerekir:

  • D 1 =n 2 −a·c'yi hesaplayın;
  • Eğer D 1<0 , то сделать вывод, что действительных корней нет;
  • D 1 =0 ise aşağıdaki formülü kullanarak denklemin tek kökünü hesaplayın;
  • D 1 >0 ise formülü kullanarak iki gerçek kökü bulun.

Bu paragrafta elde edilen kök formülü kullanarak örneği çözmeyi düşünelim.

Örnek.

5 x 2 −6 x −32=0 ikinci dereceden denklemi çözün.

Çözüm.

Bu denklemin ikinci katsayısı 2·(−3) olarak gösterilebilir. Yani, orijinal ikinci dereceden denklemi 5 x 2 +2 (−3) x−32=0, burada a=5, n=−3 ve c=−32 biçiminde yeniden yazabilir ve denklemin dördüncü kısmını hesaplayabilirsiniz. ayrımcı: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Değeri pozitif olduğundan denklemin iki reel kökü vardır. Bunları uygun kök formülünü kullanarak bulalım:

İkinci dereceden bir denklemin kökleri için olağan formülü kullanmanın mümkün olduğunu ancak bu durumda daha fazla hesaplama işinin yapılması gerekeceğini unutmayın.

Cevap:

İkinci dereceden denklemlerin formunun basitleştirilmesi

Bazen ikinci dereceden bir denklemin köklerini formüller kullanarak hesaplamaya başlamadan önce şu soruyu sormaktan zarar gelmez: "Bu denklemin biçimini basitleştirmek mümkün mü?" Hesaplamalar açısından ikinci dereceden 11 x 2 −4 x−6=0 denklemini çözmenin 1100 x 2 −400 x−600=0 yerine daha kolay olacağı konusunda hemfikir olun.

Tipik olarak ikinci dereceden bir denklemin biçimini basitleştirmek, her iki tarafın belirli bir sayıyla çarpılması veya bölünmesiyle elde edilir. Örneğin önceki paragrafta 1100 x 2 −400 x −600=0 denklemini her iki tarafı da 100'e bölerek basitleştirmek mümkündü.

Benzer bir dönüşüm, katsayıları olmayan ikinci dereceden denklemlerle gerçekleştirilir. Bu durumda denklemin her iki tarafı genellikle katsayılarının mutlak değerlerine bölünür. Örneğin ikinci dereceden 12 x 2 −42 x+48=0 denklemini ele alalım. katsayılarının mutlak değerleri: OBEB(12, 42, 48)= OBEB(12, 42), 48)= OBEB(6, 48)=6. Orijinal ikinci dereceden denklemin her iki tarafını da 6'ya bölerek eşdeğer ikinci dereceden denklem 2 x 2 −7 x+8=0'a ulaşırız.

İkinci dereceden bir denklemin her iki tarafının çarpılması genellikle kesirli katsayılardan kurtulmak için yapılır. Bu durumda çarpma, katsayılarının paydaları tarafından gerçekleştirilir. Örneğin, ikinci dereceden denklemin her iki tarafı da LCM(6, 3, 1)=6 ile çarpılırsa, daha basit olan x 2 +4·x−18=0 formunu alacaktır.

Bu noktanın sonucunda, ikinci dereceden bir denklemin en yüksek katsayısındaki eksiden neredeyse her zaman tüm terimlerin işaretlerini değiştirerek kurtulduklarını görüyoruz; bu, her iki tarafı da -1 ile çarpmaya (veya bölmeye) karşılık gelir. Örneğin, genellikle −2 x 2 −3 x+7=0 ikinci dereceden denklemden 2 x 2 +3 x−7=0 çözümüne geçilir.

İkinci dereceden bir denklemin kökleri ve katsayıları arasındaki ilişki

İkinci dereceden bir denklemin kökleri formülü, denklemin köklerini katsayıları aracılığıyla ifade eder. Kök formülüne dayanarak kökler ve katsayılar arasındaki diğer ilişkileri elde edebilirsiniz.

Vieta teoreminin en iyi bilinen ve uygulanabilir formülleri ve şeklindedir. Özellikle verilen ikinci dereceden denklem için köklerin toplamı ters işaretli ikinci katsayıya, köklerin çarpımı ise serbest terime eşittir. Örneğin, ikinci dereceden denklem 3 x 2 −7 x + 22 = 0 şeklinde, köklerinin toplamının 7/3'e ve köklerin çarpımının 22/3'e eşit olduğunu hemen söyleyebiliriz.

Önceden yazılmış formülleri kullanarak, ikinci dereceden denklemin kökleri ve katsayıları arasında bir dizi başka bağlantı elde edebilirsiniz. Örneğin, ikinci dereceden bir denklemin köklerinin karelerinin toplamını katsayıları aracılığıyla ifade edebilirsiniz: .

Referanslar.

  • Cebir: ders kitabı 8. sınıf için. genel eğitim kurumlar / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; tarafından düzenlendi S. A. Telyakovsky. - 16. baskı. - M.: Eğitim, 2008. - 271 s. : hasta. - ISBN 978-5-09-019243-9.
  • Mordkoviç A.G. Cebir. 8. sınıf. 2 saat içinde Bölüm 1. Genel eğitim kurumlarının öğrencileri için ders kitabı / A. G. Mordkovich. - 11. baskı, silindi. - M.: Mnemosyne, 2009. - 215 s.: hasta. ISBN 978-5-346-01155-2.

İlk bakışta, karekökü çarpanlara ayırma prosedürünün karmaşık ve erişilemez olduğu görülebilir. Ama bu doğru değil. Bu makalede size kareköklere ve çarpanlara nasıl yaklaşacağınızı ve kanıtlanmış iki yöntemi kullanarak karekökleri kolaylıkla çözmeyi göstereceğiz.

Yandex.RTB R-A-339285-1

Bir kökü çarpanlara ayırma

Öncelikle karekök çarpanlara ayırma işleminin amacını tanımlayalım. Hedef- karekökü basitleştirin ve hesaplamalara uygun bir biçimde yazın.

Tanım 1

Karekökü çarpanlara ayırmak, birbirleriyle çarpıldığında orijinal sayıya eşit bir sayı verecek iki veya daha fazla sayıyı bulmaktır. Örneğin: 4x4 = 16.

Çarpanları bulabilirseniz, karekök ifadesini kolayca basitleştirebilir veya tamamen ortadan kaldırabilirsiniz:

Örnek 1

Radikal sayı çift ise 2'ye bölün.

Herhangi bir asal sayı değeri asal çarpanlara ayrılabileceğinden, radikal sayı her zaman asal sayılara bölünmelidir. Eğer tek bir sayınız varsa bunu 3'e bölmeyi deneyin. 3'e bölünemez misiniz? 5, 7, 9 vb. ile bölmeye devam edin.

İfadeyi iki sayının çarpımının kökü olarak yazın.

Örneğin 98'i şu şekilde sadeleştirebilirsiniz: = 98 ÷ 2 = 49. Buradan 2 × 49 = 98 çıkar, dolayısıyla sorunu şu şekilde yeniden yazabiliriz: 98 = (2 × 49).

İki özdeş sayı ile diğer sayıların çarpımı kökün altında kalana kadar sayıları ayrıştırmaya devam edin.

Örneğimizi ele alalım (2×49):

2 zaten maksimum düzeyde basitleştirilmiş olduğundan, 49'u basitleştirmek gerekir. 49'a bölünebilen bir asal sayı arıyoruz. Açıkçası ne 3 ne de 5 uygun değil. Geriye 7: 49 ÷ 7 = 7 kalıyor, yani 7 × 7 = 49.

Örneği şu şekilde yazıyoruz: (2 × 49) = (2 × 7 × 7) .

Karekök ifadesini basitleştirin.

Parantez içinde 2 ve iki özdeş sayının (7) çarpımı olduğundan, 7 sayısını kök işaretinden çıkarabiliriz.

Örnek 2

(2 × 7 × 7) = (2) × (7 × 7) = (2) × 7 = 7 (2) .

Kökün altında iki özdeş sayı olduğu anda sayıları çarpanlarına ayırmayı bırakın. Tabii eğer tüm olasılıkları maksimumda kullandıysanız.

Unutmayın: Birçok kez basitleştirilebilecek kökler vardır.

Bu durumda kökün altından çıkardığımız sayılar ile onun önünde duran sayılar çarpılır.

Örnek 3

180 = (2 × 90) 180 = (2 × 2 × 45) 180 = 2 45

ancak 45 çarpanlara ayrılabilir ve kök yeniden basitleştirilebilir.

180 = 2 (3 × 15) 180 = 2 (3 × 3 × 5) 180 = 2 × 3 5 180 = 6 5

Kök işareti altında iki özdeş sayı elde etmek imkansız olduğunda, bu, böyle bir kökün basitleştirilemeyeceği anlamına gelir.

Radikal ifadeyi asal sayıların çarpımına ayırdıktan sonra iki özdeş sayı elde edemiyorsanız, böyle bir kök basitleştirilemez.

Örnek 4

70 = 35 × 2, yani 70 = (35 × 2)

35 = 7 × 5, yani (35 × 2) = (7 × 5 × 2)

Gördüğünüz gibi üç faktör de çarpanlarına ayrılamayan asal sayılardır. Aralarında birbirinin aynısı sayılar olmadığından kök altından bir tamsayıyı çıkarmak mümkün değildir. Basitleştir 70 yasaktır.

Tam kare

Asal sayıların bazı karelerini ezberleyin.

Bir sayının karesi, o sayının kendisi ile çarpılmasıyla elde edilir, yani. kare alırken. Asal sayıların on karesini hatırlarsanız, kökleri daha da basitleştirerek hayatınızı büyük ölçüde kolaylaştıracaktır.

Örnek 5

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

Eğer karekök işaretinin altında tam kare varsa o zaman kök işaretini kaldırıp bu tam karenin karekökünü yazmalısınız.

Zor? HAYIR:

Örnek 6

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Kök işaretinin altındaki sayıyı tam kare ile başka bir sayının çarpımına ayırmaya çalışın.

Radikal ifadenin tam kare ve bir sayının çarpımına ayrıştırıldığını görürseniz, birkaç örneği hatırlayarak zamandan ve sinirlerden önemli ölçüde tasarruf edeceksiniz:

Örnek 7

50 = (25 × 2) = 5 2. Radikal sayı 25, 50 veya 75 ile bitiyorsa, bunu her zaman 25 ve herhangi bir sayının çarpımına ayırabilirsiniz.

1700 = (100 × 17) = 10 17. Radikal sayı 00 ile bitiyorsa, bunu her zaman 100 ile bir sayının çarpımına ayırabilirsiniz.

72 = (9 × 8) = 3 8. Bir radikal sayının rakamlarının toplamı 9 ise, bunu her zaman 9 ile herhangi bir sayının çarpımına ayırabilirsiniz.

Radikal sayıyı birkaç tam karenin çarpımına ayırmaya çalışın: bunları kök işaretinin altından çıkarın ve çarpın.

Örnek 8

72 = (9 × 8) 72 = (9 × 4 × 2) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Metinde bir hata fark ederseniz, lütfen onu vurgulayın ve Ctrl+Enter tuşlarına basın.

8. sınıfta matematik derslerinde okul çocukları "radikal" veya basitçe "kök" kavramıyla tanıştırılır. Karmaşık radikalleri basitleştirme sorunuyla ilk kez o zaman karşılaştılar. Karmaşık radikaller, bir kökün diğerinin altında olduğu ifadelerdir. Bu nedenle bazen iç içe geçmiş radikaller olarak da adlandırılırlar. Bu makalede matematik ve fizik öğretmeni detaylı olarak anlatıyor karmaşık bir radikal nasıl basitleştirilir.

Karmaşık radikalleri basitleştirme yöntemleri

Karmaşık bir radikali basitleştirmek, dış kökten kurtulmak anlamına gelir. Bu konuyu incelemeye çift radikalleri basitleştirerek başlamak en iyisidir. Sonuçta, çift radikalleri basitleştirmeyi öğrenirsek, daha karmaşık olanları da basitleştirebileceğiz.

Dış kökten nasıl kurtuluruz? Bunun için radikal ifadeyi tam bir kare şeklinde sunarak dönüştürmeniz gerektiği açıktır. Bunu yapmak için iyi bilinen "Farkın karesi" formülünü kullanacağız:

Burada gördüğünüz gibi negatif terimin sağda çarpanı var. Bu nedenle bu faktörü kökün altına alalım. Bunu yapmak için bunu aşağıdakilerin bir ürünü olarak sunuyoruz:

Sonra ve. Sadece şu gerçeğe dikkat etmek kalıyor . Artık kökün altında kare farkımızın olduğunu görebiliriz:

Şimdi şunu hatırlayalım. Aynen modül. Burada bu çok önemlidir çünkü karekök pozitif bir sayıdır. Sonra şunu elde ederiz:

Peki, title="Rendered by QuickLaTeX.com'dan beri" height="21" width="61" style="vertical-align: -3px;">, модуль раскрывается со знаком минус. В результате в ответе получаем:!}

Bu radikali bu şekilde basitleştirmeyi başardık. Ancak radikal bir ifadenin tam kare biçiminde nasıl temsil edileceğini tahmin etmenin hemen mümkün olmadığı daha karmaşık durumlar da vardır. Örneğin, aşağıdaki örnekte.

Uzun süre beyninizi yormamak için aşağıdaki yöntemi kullanabilirsiniz.

Amacımızın kökün altındaki ifadeyi tam kare olarak göstermek olduğunu hatırlatayım. Özellikle bu örnekte, toplamın karesi biçiminde:

Toplamın karesi, bugün zaten yazdığımız iyi bilinen formüle göre ortaya çıkıyor:

Yani aslında fikir, for radikal ifadesinin irrasyonel kısmını ve for rasyonel kısmını almaktır. Daha sonra aşağıdaki denklem sistemini elde ederiz:

Bu açıktır. Aksi takdirde sistemin ikinci denklemi sağlanmaz. Daha sonra ikinci denklemdeki katsayıyı ifade ederiz:

Bu kesrin paydası sıfıra eşit değildir, bu da payının sıfıra eşit olduğu anlamına gelir. Standart yöntemle çözülebilen iki ikinci dereceden bir denklem elde ediyoruz (daha fazla ayrıntı için ekteki videoya bakın). Bunu çözerek 4'e kadar kök elde ederiz. Herhangi birini alabilirsin. Bunu daha çok beğendim. Daha sonra . Sonunda şunu elde ediyoruz:

İşte karmaşık bir radikali basitleştirmenin bir yolu. Bir tane daha var. Karmaşık formülleri ezberlemeyi sevenler için, ki ben sevmiyorum. Ama tamlık adına, size ondan da bahsedeceğim.

Karmaşık radikallerin formülü

Formül şu şekilde görünüyor:

Oldukça korkutucu, değil mi? Ancak korkmayın, bazı durumlarda gerçekten başarıyla kullanılabilir. Bir örneğe bakalım:

Karşılık gelen değerleri formülde değiştiririz:

Cevap bu.

Bugün sınıfta karmaşık bir radikalin nasıl basitleştirileceğinden bahsettim. Bugün tartışılan yöntemleri daha önce bilmiyorsanız, Birleşik Devlet Sınavına veya matematik giriş sınavına kendinizi güvende hissetmek için büyük olasılıkla hala öğrenecek çok şeyiniz var. Ama endişelenme, sana bunların hepsini öğretebilirim. Derslerim hakkında gerekli tüm bilgiler açık. Size iyi şanslar!

Sergey Valerievich tarafından hazırlanan materyal



Makaleyi beğendin mi? Arkadaşlarınızla paylaşın!