Установление функции распределения показателей надежности по результатам обработки данных статистической информации. Практика применения гамма-распределения в теории надежности технических систем Гамма распределение функция распределения

4. Случайные величины и их распределения

Гамма-распределения

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

Гамма-распределение

Гамма-распределение является двухпараметрическим распределением. Оно занимает достаточно важное место в теории и практике надежности. Плотность распределения имеет ограничение с одной стороны (). Если параметр а формы кривой распределения принимает целое значение, это свидетельствует о вероятности появления такого же числа событий (например, отказов)

при условии, что они независимы и появляются с постоянной интенсивностью λ (см. рис. 4.4).

Гамма-распределение широко применяют при описании появления отказов стареющих элементов, времени восстановления, наработки на отказ резервированных систем. При различных параметрах гамма-распределение принимает разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством

где λ > 0, α > 0.

Кривые плотности распределения приведены на рис. 4.5.

Рис. 4.5.

Функция распределения

Математическое ожидание и дисперсия равны соответственно

При α < 1 интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия, при α > 1 – возрастает, что характерно для периода изнашивания и старения элементов.

При α = 1 гамма-распределение совпадает с экспоненциальным распределением, при α > 10 гамма-распределение приближается к нормальному закону. Если а принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга. Если λ = 1/2, а значение а кратно 1 /2, то гамма-распределение совпадает с распределением χ2 (хи-квадрат ).

Установление функции распределения показателей надежности по результатам обработки данных статистической информации

Наиболее полной характеристикой надежности сложной системы является закон распределения, выраженный в виде функции распределения, плотности распределения или функции надежности.

О виде теоретической функции распределения можно судить по эмпирической функции распределения (рис. 4.6), которая определяется из соотношения

где т, – число отказов на интервале времени t; N – объем испытаний; t i < t < t i+1 интервал времени, на котором определяют эмпирическую функцию.

Рис. 4.6.

Построение эмпирической функции осуществляют, выполняя суммирование приращений, полученных на каждом интервале времени:

где k – число интервалов.

Эмпирическая функция надежности является функцией, противоположной функции распределения; ее определяют по формуле

Оценку плотности вероятности находят по гистограмме. Построение гистограммы сводится к следующему. Всю область значений времени t разбивают на интервалы t 1, t 2, ..., t i и для каждого из них осуществляют оценку плотности вероятности по формуле

где т i число отказов на i -м интервале, i = 1, 2,..., k; (t i+1 – t i) – отрезок времени i -го интервала; N – объем испытаний; k – число интервалов.

Пример гистограммы приведен на рис. 4.7.

Рис. 4.7.

Сглаживая ступенчатую гистограмму плавной кривой, но ее виду можно судить о законе распределения случайной величины. В практике для сглаживания кривой часто, например, используют метод наименьших квадратов. Для более точного установления закона распределения необходимо, чтобы число интервалов было не менее пяти, а число реализаций, попадающих в каждый интервал, – не менее десяти.

Разночтения в понимании терминологии надежности

Проблема терминологии является достаточно сложной в различных областях науки и человеческой деятельности в целом. Известно, что споры о терминах ведутся в течение многих веков. Если коснуться переводов стихотворений, то можно увидеть яркое подтверждение этой мысли. Например, переводы такого всемирно известного шедевра, как "Гамлет", у Б. Л. Пастернака и Π. П. Гнедича резко отличаются. У первого из них смысл трагедии перевешивает музыку стиха, в отличие от второго. А оригинал "Гамлета", написанный языком XVI в., труден для понимания неангличанам, да и англичанам тоже, поскольку сам язык сильно эволюционировал за несколько веков, как, собственно, и любой другой язык в соответствии с законом синхронизма-десинхронизма.

Аналогичная картина наблюдается и в мировых религиях. Перевод Библии с церковно-славянского на русский язык, длившийся 25 лет, "развел" (вплоть до остановки перевода) святителя Филарета Московского (Дроздова) и крупнейшего церковного писателя – святителя Феофана Затворника (в ближайшее время запланировано издание собрания его сочинений в 42 т.). Переводы и уточнения "книги книг" Библии "переводят" людей в лагеря непримиримых врагов по жизни в нашем мире. Рождаются секты, еретики и герои, иногда даже льется кровь. А многочисленные переводы на русский язык основополагающей в сфере философии работы Иммануила Канта "Критика чистого разума" только укрепляют справедливость нашего тезиса о сложности проблемы терминологии (сверхбольшая система) в различных областях науки и человеческой деятельности в целом.

Антиномические явления имеют место в области науки и техники. Одно из решений проблемы обеспечения корректности и адекватности терминологии изложил Г. Лейбниц. Он в плане развития науки и техники в XVII в. предлагал для прекращения споров давать определения терминов с помощью универсального языка в цифровой форме (0011...).

Отметим, что в науке о надежности путь определения терминов традиционно решается на государственном уровне с помощью государственных стандартов (ГОСТов). Однако появление все более высокоинтеллектуальных технических систем, взаимодействие и сближение живых и неживых объектов, в них функционирующих, ставит новые, весьма трудные задачи обучения в педагогике и психологии, заставляет искать творческие компромиссные решения.

У зрелого и поработавшего в конкретной научной области, и в частности в области надежности, сотрудника актуальность вопросов терминологии не вызывает сомнений. Как писал Готфрид Вильгельм Лейбниц (в работе о создании универсального языка), споров было бы меньше, если бы термины были определены.

Разночтения в понимании терминологии надежности попытаемся сгладить следующими замечаниями.

Мы говорим "функция распределения" (ФР), опуская слово "наработка" или "отказ". Наработка чаще всего понимается как категория времени. Для невосстанавливаемых систем по смыслу более правильно надо говорить – интегральная ФР наработки до отказа, а для восстанавливаемых – наработка па отказ. А поскольку наработку чаще всего понимают как случайную величину, применяется отождествление вероятности безотказной работы (ВБР) и (1 – ФР), называемой в этом случае функцией надежности (ФН). Целостность такового подхода достигается за счет полной группы событий . Тогда

ВБР = ФН = 1 – ФР.

То же справедливо в отношении плотности распределения (ПР), которая является первой производной от ФР, в частности по времени, и, образно говоря, характеризует "скорость" появления отказов.

Полнота описания надежности изделия (в частности, для изделий разового применения), включающая динамику устойчивости поведения, характеризуется интенсивностью отказов через отношение ПР к ВБР и физически понимается как смена состояния изделия, а математически – введена в теории массового обслуживания через понятие потока отказов и ряд допущений в отношении самих отказов (стационарность, ординарность и др.).

Интересующихся этими вопросами, возникающими при выборе показателей надежности на этапе проектирования изделий, можно отослать к трудам таких именитых авторов, как А. М. Половко, Б. В. Гнеденко, Б. Р. Левин – выходцев из лаборатории надежности при Московском университете, руководимой А. Н. Колмогоровым, а также А. Я. Хинчина, E. С. Венцель, И. А. Ушакова, Г. В. Дружинина, А. Д. Соловьева, Ф. Байхельта, Ф. Прошана – основателей статистической теории надежности.

  • См.: Колмогоров А. Н. Основные понятия теории вероятностей. М. : Мир, 1974.

В этой статье описаны синтаксис формулы и использование функции ГАММА.РАСПП в Microsoft Excel.

Возвращает гамма-распределение. Эту функцию можно использовать для изучения переменных, которые имеют асимметричное распределение. Гамма-распределение широко используется при анализе систем массового обслуживания.

Синтаксис

ГАММА.РАСП(x;альфа;бета;интегральная)

Аргументы функции ГАММА.РАСП описаны ниже.

    x - обязательный аргумент. Значение, для которого требуется вычислить распределение.

    Альфа - обязательный аргумент. Параметр распределения.

    Бета - обязательный аргумент. Параметр распределения. Если аргумент "бета" = 1, функция ГАММА.РАСП возвращает стандартное гамма-распределение.

    Интегральная - обязательный аргумент. Логическое значение, определяющее форму функции. Если аргумент "интегральная" имеет значение ИСТИНА, функция ГАММА.РАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения вероятности.

Замечания

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Описание

Значение, для которого требуется вычислить распределение

Параметр распределения альфа

Параметр распределения бета

Формула

Описание

Результат

ГАММА.РАСП(A2;A3;A4;ЛОЖЬ)

Плотность вероятности при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ЛОЖЬ.

ГАММА.РАСП(A2;A3;A4;ИСТИНА)

Интегральное распределение при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ИСТИНА.

Простейший вид гамма-распределения - это распределение с плотностью

где - параметр сдвига, - гамма-функция, т.е.

(2)

Каждое распределение можно "развернуть" в масштабно-сдвиговое семейство. Действительно, для случайной величины , имеющей функцию распределения, рассмотрим семейство случайных величин, где- параметр масштаба, а- параметр сдвига. Тогда функция распределенияесть.

Включая каждое распределение с плотностью вида (1) в масштабно-сдвиговое семейство, получаем принятую в параметризацию семейства гамма-распределений:

Здесь - параметр формы,- параметр масштаба,- параметр сдвига, гамма-функциязадается формулой (2).

В литературе имеются и иные параметризации. Так, вместо параметра часто используют параметр. Иногда рассматривают двухпараметрическое семейство, опуская параметр сдвига, но сохраняя параметр масштаба или его аналог - параметр. Для некоторых прикладных задач (например, при изучении надежности технических устройств) это оправдано, поскольку из содержательных соображений представляется естественным принять, что плотность распределения вероятностей положительна для положительных значений аргумента и только для них. С этим предположением связана многолетняя дискуссия в 80-х годах о "назначаемых показателях надежности", на которой не будем останавливаться.

Частные случаи гамма-распределения при определенных значениях параметров имеют специальные названия. При имеем экспоненциальное распределение. При натуральномигамма-распределение - это распределение Эрланга, используемое, в частности, в теории массового обслуживания. Если случайная величинаимеет гамма-распределение с параметром формытаким, что- целое число,и, тоимеет распределение хи-квадратсстепенями свободы.

Области применения гамма-распределения

Гамма-распределение имеет широкие приложения в различных областях технических наук (в частности, в надежности и теории испытаний), в метеорологии, медицине, экономике . В частности, гамма-распределению могут быть подчинены общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k-го отказа и т.д. . Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение оказалось наиболее адекватным для описания спроса в ряде экономико-математических моделей управления запасами .

Возможность применения гамма-распределения в ряде прикладных задач иногда может быть обоснована свойством вопроизводимости: сумма независимых экспоненциально распределенных случайных величин с одним и тем же параметромимеет гамма-распределение с параметрами формы, масштабаи сдвига. Поэтому гамма-распределение часто используют в тех прикладных областях, в которых применяют экспоненциальное распределение.

Различным вопросам статистической теории, связанным с гамма-распределением, посвящены сотни публикаций (см. сводки ). В данной статье, не претендующей на всеохватность, рассматриваются лишь некоторые математико-статистические задачи, связанные с разработкой государственного стандарта .

2. ОПИСАНИЕ НЕОПРЕДЕЛЕННОСТЕЙ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

2.3.4. Интервальные данные в задачах оценивания параметров (на примере гамма-распределения)

Рассмотрим классическую в прикладной математической статистике параметрическую задачу оценивания. Исходные данные – выборка x 1 , x 2 , ..., x n , состоящая из n действительных чисел. В вероятностной модели простой случайной выборки ее элементы x 1 , x 2 , ..., x n считаются набором реализаций n независимых одинаково распределенных случайных величин. Будем считать, что эти величины имеют плотность f ( x ). В параметрической статистической теории предполагается, что плотность f ( x ) известна с точностью до конечномерного параметра, т.е., при некотором Это, конечно, весьма сильное предположение, которое требует обоснования и проверки; однако в настоящее время параметрическая теория оценивания широко используется в различных прикладных областях.

Все результаты наблюдений определяются с некоторой точностью, в частности, записываются с помощью конечного числа значащих цифр (обычно 2 – 5). Следовательно, все реальные распределения результатов наблюдений дискретны. Обычно считают, что эти дискретные распределения достаточно хорошо приближаются непрерывными. Уточняя это утверждение, приходим к уже рассматривавшейся модели, согласно которой статистику доступны лишь величины

y j = x j + j , j = 1, 2, ... , n ,

где x i – «истинные» значения, погрешности наблюдений (включая погрешности дискретизации). В вероятностной модели принимаем, что n пар

образуют простую случайную выборку из некоторого двумерного распределения, причем x 1 , x 2 , ..., x n - выборка из распределения с плотностью . Необходимо учитывать, что и - реализации зависимых случайных величин (если считать их независимыми, то распределение yi будет непрерывным, а не дискретным). Поскольку систематическую ошибку, как правило, нельзя полностью исключить , то необходимо рассматривать случай Нет оснований априори принимать и нормальность распределения погрешностей (согласно сводкам экспериментальных данных о разнообразии форм распределения погрешностей измерений, приведенным в и , в подавляющем большинстве случаев гипотеза о нормальном распределении погрешностей оказалась неприемлемой для средств измерений различных типов). Таким образом, все три распространенных представления о свойствах погрешностей не адекватны реальности. Влияние погрешностей наблюдений на свойства статистических моделей необходимо изучать на основе иных моделей, а именно, моделей интервальной статистики.

Пусть - характеристика величины погрешности, например, средняя квадратическая ошибка . В классической математической статистике считается пренебрежимо малой () при фиксированном объеме выборки n . Общие результаты доказываются в асимптотике . Таким образом, в классической математической статистике сначала делается предельный переход , а затем предельный переход . В статистике интервальных данных принимаем, что объем выборки достаточно велик (), но всем измерениям соответствует одна и та же характеристика погрешности . Полезные для анализа реальных данных предельные теоремы получаем при . В статистике интервальных данных сначала делается предельный переход , а затем предельный переход . Итак, в обеих теориях используются одни и те же два предельных перехода: и , но в разном порядке. Утверждения обеих теорий принципиально различны.

Изложение ниже идет на примере оценивания параметров гамма-распределения, хотя аналогичные результаты можно получить и для других параметрических семейств, а также для задач проверки гипотез (см. ниже) и т.д. Наша цель – продемонстрировать основные черты подхода статистики интервальных данных. Его разработка была стимулирована подготовкой ГОСТ 11.011-83 .

Отметим, что постановки статистики объектов нечисловой природы соответствуют подходу, принятому в общей теории устойчивости . В соответствии с этим подходом выборке x = (x 1 , x 2 , ..., x n ) ставится в соответствие множество допустимых отклонений G (x ), т.е. множество возможных значений вектора результатов наблюдений y = (y 1 , y 2 , ..., y n ). Если известно, что абсолютная погрешность результатов измерений не превосходит , то множество допустимых отклонений имеет вид

Если известно, что относительная погрешность не превосходит , то множество допустимых отклонений имеет вид

Теория устойчивости позволяет учесть «наихудшие» отклонения, т.е. приводит к выводам типа минимаксных, в то время как конкретные модели погрешностей позволяют делать заключения о поведении статистик «в среднем».

Оценки параметров гамма-распределения. Как известно, случайная величина Х имеет гамма-распределение, если ее плотность такова :

где a – параметр формы, b – параметр масштаба, - гамма-функция. Отметим, что есть и иные способы параметризации семейства гамма-распределений .

Поскольку M (X ) = ab , D (X ) = ab 2 , то оценки метода имеют вид

где - выборочное среднее арифметическое, а s 2 – выборочная дисперсия. Можно показать, что при больших n

с точностью до бесконечно малых более высокого порядка.

Оценка максимального правдоподобия a * имеет вид :

(12)

где - функция, обратная к функции

При больших n

Как и для оценок метода моментов, оценка максимального правдоподобия b * параметра масштаба имеет вид

При больших n с точностью до бесконечно малых более высокого порядка

Используя свойства гамма-функции, можно показать , что при больших а

с точностью до бесконечно малых более высокого порядка. Сравнивая с формулами (11), убеждаемся в том, что средние квадраты ошибок для оценок метода моментов больше соответствующих средних квадратов ошибок для оценок максимального правдоподобия. Таким образом, с точки зрения классической математической статистики оценки максимального правдоподобия имеют преимущество по сравнению с оценками метода моментов.

Необходимость учета погрешностей измерений. Положим

Из свойств функции следует , что при малых v

В силу состоятельности оценки максимального правдоподобия a * из формулы (13) следует, что по вероятности при

Согласно модели статистики интервальных данных результатами наблюдений являются не x i , а y i , вместо v по реальным данным рассчитывают

(14)

В силу закона больших чисел при достаточно малой погрешности , обеспечивающей возможность приближения для слагаемых в формуле (14), или, что эквивалентно, при достаточно малых предельной абсолютной погрешности в формуле (1) или достаточно малой предельной относительной погрешности имеем при

по вероятности (в предположении, что все погрешности одинаково распределены). Таким образом, наличие погрешностей вносит сдвиг, вообще говоря, не исчезающий при росте объема выборки. Следовательно, если то оценка максимального правдоподобия не является состоятельной. Имеем

где величина a *(y ) определена по формуле (12) с заменой x i на y i , i =1,2,…,n . Из формулы (13) следует , что

т.е. влияние погрешностей измерений увеличивается по мере роста а .

Из формул для v и w следует, что с точностью до бесконечно малых более высокого порядка

(16)

С целью нахождения асимптотического распределения w выделим, используя формулу (16) и формулу для v , главные члены в соответствующих слагаемых

Таким образом, величина w представлена в виде суммы независимых одинаково распределенных случайных величин (с точностью до зависящего от случая остаточного члена порядка 1/n ). В каждом слагаемом выделяются две части – одна, соответствующая Мб и вторая, в которую входят На основе представления (17) можно показать, что при распределения случайных величин v и w асимптотически нормальны, причем

Из асимптотического совпадения дисперсий v и w , вида параметров асимптотического распределения (при ) оценки максимального правдоподобия a * и формулы (15) вытекает одно из основных соотношений статистики интервальных данных

(18)

Соотношение (18) уточняет утверждение о несостоятельности a *. Из него следует также, что не имеет смысла безгранично увеличивать объем выборки n с целью повышения точности оценивания параметра а , поскольку при этом уменьшается только второе слагаемое в (18), а первое остается постоянным.

В соответствии с общим подходом статистики интервальных данных в стандарте предлагается определять рациональный объем выборки n rat определять из условия «уравнивания погрешностей» (предложено в монографии ) различных видов в формуле (18), т.е. из условия

Упрощая это уравнение в предположении получаем, что

Согласно сказанному выше, целесообразно использовать лишь выборки с объемами . Превышение рационального объема выборки не дает существенного повышения точности оценивания.

Применение методов теории устойчивости. Найдем асимптотическую нотну. Как следует из вида главного линейного члена в формуле (17), решение оптимизационной задачи

соответствующей ограничениям на абсолютные погрешности, имеет вид

Однако при этом пары не образуют простую случайную выборку, т.к. в выражения для входит . Однако при можно заменить на М(х 1). Тогда получаем, что

при a >1, где

Таким образом, с точностью до бесконечно малых более высокого порядка нотна имеет вид

Применим полученные результаты к построению доверительных интервалов. В постановке классической математической статистики (т.е. при ) доверительный интервал для параметра формы а , соответствующий доверительной вероятности , имеет вид

где - квантиль порядка стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1,

В постановке статистики интервальных данных (т.е. при ) следует рассматривать доверительный интервал

в вероятностной постановке (пары образуют простую случайную выборку) и в оптимизационной постановке. Как в вероятностной, так и в оптимизационной постановках длина доверительного интервала не стремится к 0 при

Если ограничения наложены на предельную относительную погрешность, задана величина , то значение с можно найти с помощью следующих правил приближенных вычислений .

(I) Относительная погрешность суммы заключена между наибольшей и наименьшей из относительных погрешностей слагаемых.

(II) Относительная погрешность произведения и частного равна сумме относительных погрешностей сомножителей или, соответственно, делимого и делителя.

Можно показать, что в рамках статистики интервальных данных с ограничениями на относительную погрешность правила (I) и (II) являются строгими утверждениями при

Обозначим относительную погрешность некоторой величины t через ОП(t ), абсолютную погрешность – через АП(t ).

Из правила (I) следует, что ОП() = , а из правила (II) – что

Поскольку рассмотрения ведутся при то в силу неравенства Чебышева

по вероятности при поскольку и числитель, и знаменатель в (19) с близкой к 1 вероятностью лежат в промежутке где константа d может быть определена с помощью упомянутого неравенства Чебышева.

Поскольку при справедливости (19) с точностью до бесконечно малых более высокого порядка

то с помощью трех последних соотношений имеем

(20)

Применим еще одно правило приближенных вычислений .

(III) Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей слагаемых.

Из (20) и правила (III) следует, что

Из (15) и (21) вытекает , что

откуда в соответствии с ранее полученной формулой для рационального объема выборки с заменой получаем, что

В частности, при a = 5,00, = 0,01 получаем т.е. в ситуации, в которой были получены данные о наработке резцов до предельного состояния , проводить более 50 наблюдений нерационально.

В соответствии с ранее проведенными рассмотрениями асимптотический доверительный интервал для a , соответствующий доверительной вероятности = 0,95, имеет вид

В частности, при имеем асимптотический доверительный интервал вместо при

При больших а в силу соображений, приведенных при выводе формулы (19), можно связать между собой относительную и абсолютную погрешности результатов наблюдений x i :

(21)

Следовательно, при больших а имеем

Таким образом, проведенные рассуждения дали возможность вычислить асимптотику интеграла, задающего величину А .

Сравнение методов оценивания. Изучим влияние погрешностей измерений (с ограничениями на абсолютную погрешность) на оценку метода моментов. Имеем

Погрешность s 2 зависит от способа вычисления s 2 . Если используется формула

(22)

то необходимо использовать соотношения

По сравнению с анализом влияния погрешностей на оценку а* здесь возникает новый момент – необходимость учета погрешностей в случайной составляющей отклонения оценки от оцениваемого параметра, в то время как при рассмотрении оценки максимального правдоподобия погрешности давали лишь смещение. Примем в соответствии с неравенством Чебышева

(23)

Если вычислять s 2 по формуле

(24)

то аналогичные вычисления дают, что

т.е. погрешность при больших а существенно больше. Хотя правые части формул (22) и (24) тождественно равны, но погрешности вычислений по этим формулам весьма отличаются. Связано это с тем, что в формуле (24) последняя операция – нахождение разности двух больших чисел, примерно равных по величине (для выборки из гамма-распределения при большом значении параметра формы).

Из полученных результатов следует, что

При выводе этой формулы использована линеаризация влияния погрешностей (выделение главного линейного члена). Используя связь (21) между абсолютной и относительной погрешностями, можно записать

Эта формула отличается от приведенной в

а

б) для повышения точности оценивания объем выборки целесообразно безгранично увеличивать;

в) оценки максимального правдоподобия лучше оценок метода моментов,

то в статистике интервальных данных, учитывающей погрешности измерений, соответственно:

а) не существует состоятельных оценок: для любой оценки a n существует константа с такая, что

б) не имеет смысла рассматривать объемы выборок, большие «рационального объема выборки»

в) оценки метода моментов в обширной области параметров лучше оценок максимального правдоподобия, в частности, при и при

Ясно, что приведенные выше результаты справедливы не только для рассмотренной задачи оценивания параметров гамма-распределения, но и для многих других постановок прикладной математической статистики.

Метрологические, методические, статистические и вычислительные погрешности. Целесообразно выделить ряд видов погрешностей статистических данных. Погрешности, вызванные неточностью измерения исходных данных, называем метрологическими. Их максимальное значение можно оценить с помощью нотны. Впрочем, выше на примере оценивания параметров гамма-распределения показано, что переход от максимального отклонения к реально имеющемуся в вероятностно-статистической модели не меняет выводы (с точностью до умножения предельных значений погрешностей или на константы). Как правило, метрологические погрешности не убывают с ростом объема выборки.

Методические погрешности вызваны неадекватностью вероятностно-статистической модели, отклонением реальности от ее предпосылок. Неадекватность обычно не исчезает при росте объема выборки. Методические погрешности целесообразно изучать с помощью «общей схемы устойчивости» , обобщающей популярную в теории робастных статистических процедур модель засорения большими выбросами. В настоящей главе методические погрешности не рассматриваются.

Статистическая погрешность – это та погрешность, которая традиционно рассматривается в математической статистике. Ее характеристики – дисперсия оценки, дополнение до 1 мощности критерия при фиксированной альтернативе и т.д. Как правило, статистическая погрешность стремится к 0 при росте объема выборки.

Вычислительная погрешность определяется алгоритмами расчета, в частности, правилами округления. На уровне чистой математики справедливо тождество правых частей формул (22) и (24), задающих выборочную дисперсию s 2 , а на уровне вычислительной математики формула (22) дает при определенных условиях существенно больше верных значащих цифр, чем вторая .

Выше на примере задачи оценивания параметров гамма-распределения рассмотрено совместное действие метрологических и вычислительных погрешностей, причем погрешности вычислений оценивались по классическим правилам для ручного счета . Оказалось, что при таком подходе оценки метода моментов имеют преимущество перед оценками максимального правдоподобия в обширной области изменения параметров. Однако, если учитывать только метрологические погрешности, как это делалось выше в примерах 1-5, то с помощью аналогичных выкладок можно показать, что оценки этих двух типов имеют (при достаточно больших n ) одинаковую погрешность.

Вычислительную погрешность здесь подробно не рассматриваем. Ряд интересных результатов о ее роли в статистике получили Н.Н.Ляшенко и М.С.Никулин .

Предыдущая


Понравилась статья? Поделитесь с друзьями!