Видеть ультрафиолетовое излучение. Этюд в ультрафиолетовых тонах: какие цвета видят люди и животные

Что такое свет?

Солнечный свет проникает в верхние слои атмосферы мощностью около одного киловатта на квадратный метр. Все жизненные процессы на нашей планете приводятся в движение благодаря этой энергии. Свет - это электромагнитное излучение, его природа основана на электромагнитных полях, которые называются фотонами. Фотоны света характеризуются различными уровнями энергии и длиной волн, выражаемой в нанометрах (нм). Самые известные длины волн - видимые. Каждая длина волны представлена определенным цветом. Например, Солнце желтого цвета, потому что наиболее мощные излучения в видимом диапазоне спектра именно желтые.

Однако существуют и другие волны за пределами видимого света. Все они называются электромагнитным спектром. Самая мощная часть спектра - это гамма-лучи, далее следуют рентгеновские лучи, ультрафиолетовый свет, и только потом видимый свет, занимающий малую долю электромагнитного спектра и располагающийся между ультрафиолетовым и инфракрасным светом. Всем известен инфракрасный свет, как тепловое излучение. Спектр включает в себя микроволны и заканчивается радиоволнами, более слабыми фотонами. Для животных наибольшее полезное значение несут ультрафиолетовый, видимый и инфракрасный свет.

Видимый свет.

Помимо обеспечения привычного для нас освещения, свет несет еще и немаловажную функцию регуляция продолжительности светового дня. Видимый спектр света находится в диапазоне от 390 до 700 нм. Именно он фиксируется глазом, а цвет зависит от длины волны. Индекс цветопередачи (CRI) показывает способность какого-либо источника света освещать объект, по сравнению с естественным солнечным светом принятым за 100 CRI. Искусственные источники света со значением CRI более 95 считаются светом полного спектра, способные освещать объекты так же, как и естественное освещение. Также важная характеристика для определения цвета излучаемого света - это цветовая температура, измеряемая в Кельвинах (К).

Чем выше показатель цветовой температуры, тем насыщеннее голубой оттенок (7000К и выше). При низких значениях цветовой температуры свет имеет желтоватый оттенок, как например у бытовых ламп накаливания (2400К).

Среднее значение температуры дневного света составляет около 5600К, оно может варьировать от минимального показателя 2000К на закате до 18000К при пасмурной погоде. Для максимального приближения условий содержания животных к естественным, необходимо размещать в вольерах лампы с максимальным индексом цветопередачи CRI и цветовой температурой около 6000К. Тропические растения необходимо обеспечивать световыми волнами в диапазоне, используемом для фотосинтеза. Во время этого процесса растения используют энергию света для производства сахаров, “натурального топлива” для всех живых организмов. Освещение в диапазоне 400-450 нм способствует росту и размножению растений.

Ультрафиолетовое излучение

Ультрафиолетовый свет или УФ-излучение занимает большую долю в электромагнитном излучении и находится на границе с видимым светом.

Ультрафиолетовое излучение разделяют на 3 группы в зависимости от длины волн:

  • . UVA- длинноволновой ультрафиолет А, диапазон от 290 до 320 нм, имеет важное значение для рептилий.
  • . UVB - средневолновой ультрафиолет B, диапазон от 290 до 320 нм, имеет наиболее существенное значение для рептилий.
  • . UVC - коротковолновой ультрафиолет C, диапазон от 180 до 290 нм, является опасным для всех живых организмов (ультрафиолетовая стерилизация).

Было доказано, что ультрафиолет А (UVA) влияет на аппетит, окрас, поведение и репродуктивную функцию животных. Рептилии и амфибии видят в диапазоне UVA (320- 400 нм), поэтому именно он влияет на то, как они воспринимают окружающий мир. Под воздействием этого излучения цвет еды или другого животного будут выглядеть иначе, чем воспринимает глаз человека. Подача сигналов при помощи частей тела (например, Anolis sp.) или изменение цвета покровов (например, Chameleon sp) распространено повсеместно среди рептилий и земноводных, и если UVA-излучение отсутствует, то эти сигналы могут восприниматься животными не корректно. Наличие ультрафиолета А играет важную роль при содержании и разведении животных.

Ультрафиолет B находится в диапазоне волн 290-320 нм. В естественных условиях рептилии синтезируют витамин D3 под воздействием солнечных лучей UVB-спектра. В свою очередь, витамин D3 необходим для усвоения животными кальция. На кожных покровах UVB вступает в реакцию с предшественником витамина D, 7-дегидрохолестеролом. Под влиянием температуры и специальных механизмов кожи, провитамин D3 превращается в витамин D3. Печень и почки преобразуют витамин D3 в его активную форму, гормон (1,25-дигидрокиси витамин D), которые регулирует кальциевый обмен.

Хищные и всеядные пресмыкающиеся получают большое количество необходимого витамина D3 из пищи. Растительная пища не содержит D3 (холекальцеферол), а содержит D2 (эргокальцеферол), который менее эффективен в метаболизме кальция. Именно по этой причине растительноядные пресмыкающиеся сильнее зависят от качества освещения, чем плотоядные.

Нехватка витамина D3 достаточно быстро приводит к нарушению обмена веществ в костных тканях животных. При подобных нарушениях метаболизма патологические изменения могут отразиться не только на костных тканях, но и на других системах органов. Внешними проявлениями нарушений могут быть отеки, вялость, отказ от пищи, неправильно развитие костей и панциря у черепах. При обнаружении подобных симптомов, необходимо обеспечить животное не только источником UVB-излучения, но и добавить в рацион корма или добавки с кальцием. Но не только молодые животные подвержены подобным нарушениям при неправильном содержании, взрослые особи и яйцекладущие самки также подвергаются серьезному риску при отсутствии UVB-излучения.

Инфракрасный свет

Природная эктотермия рептилий и земноводных (холоднокровность) подчеркивает важность инфракрасного излучения (тепла) для терморегуляции. Диапазон инфракрасного спектра находится в сегменте не видимым человеческим глазом, но отчетливо ощущаемом теплом на коже. Солнце излучает большую часть своей энергии в инфракрасной части спектра. Для рептилий, активных преимущественно в светлое время суток, лучшим источников терморегуляции являются специальные греющие лампы, излучающие большое количество инфракрасного света (+700 нм).

Интенсивность освещения

Климат Земли определяется количеством солнечной энергии, попадающей на ее поверхность. На интенсивность освещения влияют множество факторов, такие как озоновый слой, географическое положение, облака, влажность воздуха, высота расположения относительно уровня моря. Количество света, падающего на поверхность, называется освещенностью и измеряется в люменах на квадратный метр или люксах (lux). Освещенность под прямыми солнечными лучами составляет около 100 000 lux. Обычно дневная освещенность, проходя через облака, колеблется от 5 000 до 10 000 lux, ночью от Луны она составляет всего лишь 0,23 lux. Густая растительность в тропических лесах также влияет на эти значения.

Ультрафиолетовое излучение измеряется в микроваттах на квадратный сантиметр (µW/sm2). Его количество сильно отличается на разных полюсах, увеличиваясь при приближении к экватору. Количество UVB-излучения в полдень на экваторе составляет примерно 270 µW/sm2.Это значение уменьшается с заходом Солнца, и также увеличивается с рассветом. Животные в естественной среде обитания принимают солнечные ванны преимущественно с утра и на закате, остальную часть времени они проводят в своих убежищах, норах или в корне деревьев. В тропических лесах лишь малая часть прямых солнечных лучей может проникнуть сквозь густую растительность в нижние слои, достигнув поверхности земли.

Уровень ультрафиолетового излучения и света, в среде обитания рептилий и амфибий, может изменяться в зависимости от целого ряда факторов:

Среда обитания:

В зонах тропических лесов тени значительно больше, чем в пустыне. В густых лесах значение УФ-излучения имеет широкий диапазон, на верхние ярусы леса попадает значительно больше прямых солнечных лучей, чем на лесную почву. В пустынных и степных зонах практически нет естественных укрытий от прямых солнечных лучей, также эффект излучения может быть усилен за счет отражения от поверхности. В горной местности есть долины, куда солнечный свет может проникать лишь на несколько часов в сутки.

Проявляя большую активность в течение светового дня, дневные животные получают больше УФ-облучения, чем ночные виды. Но даже они не проводят весь день под прямыми солнечными лучами Солнца. Многие виды прячутся в укрытиях в самое жаркое время дня. Прием солнечных ванн ограничивается ранним утром и вечером. В различных климатических поясах дневные циклы активности у рептилий могут отличаться. Некоторые виды ночных животных выходят погреться на солнце днем с целью терморегуляции.

Широта:

Наибольшей интенсивность ультрафиолетовое излучение обладает на экваторе, где Солнце располагается на наименьшем расстоянии от поверхности Земли, и его лучи проходят минимальное расстояние сквозь атмосферу. Толщина озонового слоя в тропиках по естественным причинам тоньше, чем в средних широтах, поэтому озоном поглощается меньше УФ-излучения. Полярные широты более удалены от Солнца, и немногочисленные ультрафиолетовые лучи вынуждены проходить через богатые озоном слои с большими потерями.

Высота над уровнем моря:

Интенсивность УФ-излучения увеличивается с высотой, поскольку уменьшается толщина атмосферы, поглощающей солнечные лучи.

Погодные условия:

Облака играют серьезную роль фильтра для лучей ультрафиолета, направляющихся к поверхности Земли. В зависимости от толщины и формы они способны поглощать до 35 - 85 % энергии солнечных излучений. Но, даже покрывая полностью небо, облака не перекроют доступ лучей к поверхности Земли.

Отражение:

Некоторые поверхности, такие как песок (12%), трава (10%) или вода (5%) способны отражать ультрафиолетовое излучение, которое на них попадает. В таких местах интенсивность УФ-излучения может быть значительно выше ожидаемых результатов даже в тени.

Озон:

Озоновый слой поглощает часть ультрафиолетового излучения Солнца, которое направлялось к поверхности Земли. Толщина озонового слоя изменяется в течение года, а сам он постоянно перемещается.

Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения.


Сегодня очень часто возникает вопрос о потенциальной опасности ультрафиолетового излучения и наиболее действенных способах защиты органа зрения. Мы подготовили перечень наиболее часто встречающихся вопросов об ультрафиолете и ответы на них.

Что такое ультрафиолетовое излучение?

Спектр электромагнитного излучения достаточно широк, но глаз человека чувствителен только к определенной области, называемой видимым спектром, которая охватывает диапазон длин волн от 400 до 700 нм. Излучения, которые находятся за пределами видимого диапазона, являются потенциально опасными и включают в себя инфракрасную (с волн длиной более 700 нм) и ультрафиолетовую область (менее 400 нм). Излучения, имеющие более короткую длину волны, чем ультрафиолетовое, называются рентгеновским и γ-излучениями. Если длина волны больше, чем аналогичный показатель у инфракрасного излучения, то это радиоволны. Таким образом, ультрафиолетовое (УФ) излучение - это невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн 100-380 нм.

Какие диапазоны имеет ультрафиолетовое излучение?

Как видимый свет можно разделить на составляющие разных цветов, которые мы наблюдаем при возникновении радуги, так и УФ-диапазон, в свою очередь, имеет три составляющие: УФ-A, УФ-B и УФ-C, причем последняя является наиболее коротковолновым и высокоэнергетичным ультрафиолетовым излучением с диапазоном длин волн 200-280 нм, однако оно в основном поглощается верхними слоями атмосферы. УФ-B-излучение имеет длину волн от 280 до 315 нм и считается излучением средней энергии, представляющим опасность для органа зрения человека. УФ-A-излучение - это наиболее длинноволновая составляющая ультрафиолета с диапазоном длин волн 315-380 нм, которая имеет максимальную интенсивность к моменту достижении поверхности Земли. УФ-A-излучение глубже всего проникает в биологические ткани, хотя его повреждающее действие меньше, чем у УФ-B-лучей.

Что означает само название «ультрафиолет»?

Это слово означает «сверх (выше) фиолета» и происходит от латинского слова ultra («сверх») и названия самого короткого излучения видимого диапазона - фиолетового. Хотя УФ-излучение никак не ощущается человеческим глазом, некоторые животные - птицы, рептилии, а также насекомые, например пчелы, - могут видеть в таком свете. Многие птицы имеют раскраску оперенья, которая невидима в условиях видимого освещения, но хорошо различима в ультрафиолетовом. Некоторых животных также легче заметить в лучах ультрафиолетового диапазона. Многие фрукты, цветы и семена воспринимаются глазом более отчетливо при таком освещении.

Откуда возникает ультрафиолетовое излучение?

На открытом воздухе главным источником УФ-излучения является солнце. Как уже было сказано, частично оно поглощается верхними слоями атмосферы. Поскольку человек редко смотрит прямо на солнце, то основной вред для органа зрения возникает в результате воздействия рассеянного и отраженного ультрафиолета. В помещении УФ-излучение возникает при использовании стерилизаторов для медицинских и косметических инструментов, в соляриях для формирования загара, в процессе применения различных медицинских диагностических и терапевтических приборов, а также при отверждении композиций пломб в стоматологии.


В соляриях УФ-излучение возникает для формирования загара

В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи, поэтому применение защитных средств предписано как обязательное для сварщиков. Флюоресцентные лампы, широко используемые для освещения на работе и дома, также являются источниками УФ-излучения, но уровень последнего очень незначителен и не представляет серьезной опасности. Галогеновые лампы, которые также применяются для освещения, дают свет с УФ-составляющей. Если человек находится близко от галогеновой лампы без защитного колпака или экрана, то уровень УФ-излучения может вызвать у него серьезные проблемы с глазами.


В промышленности УФ-излучение образуется при сварочных работах, причем его уровень настолько высок, что может привести к серьезному повреждению глаз и кожи

От чего зависит интенсивность воздействия ультрафиолета?

Его интенсивность зависит от многих факторов. Во-первых, высота солнца над горизонтом меняется в зависимости от времени года и суток. Летом в дневные часы интенсивность УФ-B-излучения максимальна. Существует простое правило: когда ваша тень короче, чем ваш рост, то вы рискуете получить на 50 % больше такого излучения.

Во-вторых, интенсивность зависит от географической широты: в экваториальных районах (широта близка к 0°) интенсивность УФ-излучения наиболее высокая - в 2-3 раза выше, чем на севере Европы.
В-третьих, интенсивность возрастает с увеличением высоты над уровнем моря, так как соответствующим образом уменьшается слой атмосферы, способный поглощать ультрафиолет, поэтому большее количество наиболее высокоэнергетического коротковолнового УФ-излучения достигает поверхности Земли.
В-четвертых, на интенсивность излучения влияет рассеивающая способность атмосферы: небо представляется нам синим из-за рассеивания коротковолнового голубого излучения видимого диапазона, а еще более коротковолновый ультрафиолет рассеивается гораздо сильнее.
В-пятых, интенсивность излучения зависит от наличия облаков и тумана. Когда небо безоблачно, УФ-излучение достигает максимума; плотные облака снижают его уровень. Однако прозрачные и редкие облака мало влияют на уровень УФ-излучения, водяной пар тумана может привести к увеличению рассеяния ультрафиолета. Малооблачную и туманную погоду человек может ощущать как более холодную, однако интенсивность УФ-излучения остается практически такой же, как и в ясный день.


Когда небо безоблачно, УФ-излучение достигает максимума

В-шестых, количество отраженного ультрафиолета варьирует в зависимости от вида отражающей поверхности. Так, для снега отражение составляет 90 % падающего УФ-излучения, для воды, почвы и травы - примерно 10 %, а для песка - от 10 до 25 %. Об этом необходимо помнить, находясь на пляже.

Каково воздействие ультрафиолета на организм человека?

Длительное и интенсивное воздействие УФ-излучения может быть вредным для живых организмов - животных, растений и человека. Заметим, что некоторые насекомые видят в УФ-A-диапазоне, а они являются неотъемлемой частью экологической системы и каким-либо образом приносят пользу человеку. Наиболее известный результат воздействия ультрафиолета на организм человека - это загар, который до сих пор является символом красоты и здорового образа жизни. Однако длительное и интенсивное воздействие УФ-излучения может привести к развитию раковых заболеваний кожи. Необходимо помнить, что облака не блокируют ультрафиолет, поэтому отсутствие яркого солнечного света не означает, что защита от УФ-излучения не нужна. Наиболее вредная составляющая данного излучения поглощается озоновым слоем атмосферы. Факт уменьшения толщины последнего означает, что в будущем защита от ультрафиолета станет еще более актуальной. По оценкам ученых, снижение количества озона в атмосфере Земли всего на 1 % приведет к росту раковых заболеваний кожи на 2-3%.

Какую опасность ультрафиолет представляет для органа зрения?

Существуют серьезные лабораторные и эпидемиологические данные, связывающие длительность воздействия ультрафиолета с заболеваниями глаз: , птеригиумом и др. По сравнению с хрусталиком взрослого хрусталик ребенка существенно более проницаем для солнечной радиации, и 80 % кумулятивных последствий воздействия ультрафиолетовых волн накапливаются в организме человека до достижения им 18-летнего возраста. Максимально подверженным проникновению излучения хрусталик является непосредственно после рождения младенца: он пропускает до 95 % падающего УФ-излучения. С возрастом хрусталик начинает приобретать желтый оттенок и становится не столь прозрачным. К 25 годам менее 25 % падающих ультрафиолетовых лучей достигают сетчатки. При афакии глаз лишен естественной защиты хрусталика, поэтому в такой ситуации важно пользоваться УФ-поглощающими линзами или фильтрами.
Следует учитывать, что целый ряд медицинских препаратов обладают фотосенсибилизирующими свойствами, то есть увеличивают последствия от воздействия ультрафиолета. Оптики и оптометристы должны иметь представление об общем состоянии человека и применяемых им препаратах для того, чтобы дать рекомендации по поводу применения средств защиты.

Какие существуют средства защиты глаз?

Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, щитками, которые полностью поглощают УФ-излучение. На производстве, где применяются источники УФ-излучения, использование таких средств является обязательным. Во время пребывания на открытом воздухе в яркий солнечный день рекомендуется носить солнцезащитные очки со специальными линзами, которые надежно защищают от УФ-излучения. Такие очки должны иметь широкие заушники или прилегающую форму для предупреждения проникновения излучения сбоку. Бесцветные очковые линзы также могут выполнять эту функцию, если в их состав введены добавки-абсорберы или проведена специальная обработка поверхности. Хорошо прилегающие солнцезащитные очки защищают как от прямого падающего излучения, так и от рассеянного и отраженного от различных поверхностей. Эффективность использования солнцезащитных очков и рекомендации по их применению определены путем указания категории фильтра, светопропусканию которого соответствуют очковые линзы.


Наиболее эффективный способ защиты от ультрафиолета - прикрытие глаз специальными защитными очками, масками, которые полностью поглощают УФ-излучение

Какие стандарты регламентируют светопропускание линз солнцезащитных очков?

В настоящее время в нашей стране и за рубежом разработаны нормативные документы, регламентирующие светопропускание солнцезащитных линз согласно категориям фильтров и правила их применения. В России это ГОСТ Р 51831-2001 «Очки солнцезащитные. Общие технические требования», а в Европе - EN 1836: 2005 «Personal eye protection - Sunglasses for general use and filters for direct observation of the sun».

Каждый вид солнцезащитных линз разработан для определенных условий освещенности и может быть отнесен к одной из категорий фильтров. Всего их пять, и они нумеруются от 0 до 4. Согласно ГОСТ Р 51831-2001, светопропускание T,  %, солнцезащитных линз в видимой области спектра может составлять от 80 до 3-8 % в зависимости от категории фильтра. Для УФ-B- диапазона (280-315 нм) этот показатель не должен быть больше 0,1T (в зависимости от категории фильтра он может быть от 8,0 до 0,3-0,8 %), а для УФ-A-излучения (315-380 нм) - не больше 0,5T (в зависимости от категории фильтра - от 40,0 до 1,5-4,0 %). В то же время производители качественных линз и очков устанавливают более жесткие требования и гарантируют потребителю полное отрезание ультрафиолета до длины волны 380 нм или даже до 400 нм, о чем свидетельствует специальная маркировка на линзах очков, их упаковке или сопроводительной документации. Следует отметить, что для линз солнцезащитных очков эффективность защиты от ультрафиолета не может однозначно определяться степенью их затемнения или стоимостью очков.

Правда ли, что ультрафиолет более опасен, если человек носит некачественные солнцезащитные очки?

Это действительно так. В естественных условиях, когда человек не носит очки, его глаза автоматически реагируют на избыточную яркость солнечного света изменением размера зрачка. Чем ярче свет, тем меньше зрачок, и при пропорциональном соотношении видимого и ультрафиолетового излучения этот защитный механизм работает весьма эффективно. Если же применяется затемненная линза, то освещение кажется менее ярким и зрачки увеличиваются, позволяя большему количеству света достигать глаз. В том случае, когда линза не обеспечивает надлежащую защиту от ультрафиолета (количество видимого излучения уменьшается больше, чем ультрафиолетового), суммарное количество попадающего в глаза ультрафиолета оказывается более значительным, чем при отсутствии солнцезащитных очков. Именно поэтому окрашенные и светопоглощающие линзы должны содержать УФ-абсорберы, которые снижали бы количество УФ-излучения пропорционально уменьшению излучения видимого спектра. По международным и отечественным стандартам светопропускание солнцезащитных линз в УФ-области регламентируется как пропорционально зависимое от светопропускания в видимой части спектра.

Какой оптический материал для очковых линз обеспечивает защиту от ультрафиолета?

Некоторые материалы для очковых линз обеспечивают поглощение УФ-излучения благодаря своей химической структуре. Оно активизирует фотохромные линзы, которые в соответствующих условиях блокируют его доступ к глазу. Поликарбонат содержит группы, поглощающие излучение в ультрафиолетовой области, поэтому он оберегает глаза от ультрафиолета. CR-39 и другие органические материалы для очковых линз в чистом виде (без добавок) пропускают некоторое количество УФ-излучения, и для надежной защиты глаз в их состав вводят специальные абсорберы. Эти компоненты не только защищают глаза пользователей, обеспечивая отрезание ультрафиолета до 380 нм, но и предупреждают фотоокислительную деструкцию органических линз и их пожелтение. Минеральные очковые линзы из обычного кронового стекла непригодны для надежной защиты от УФ-излучения, если в состав шихты для его производства не введены специальные добавки. Такие линзы можно использовать в качестве солнцезащитных фильтров только после нанесения качественных вакуумных покрытий.

Правда ли, что эффективность защиты от ультрафиолета для фотохромных линз определяется их светопоглощением в активированной стадии?

Некоторые пользователи очков с задают подобный вопрос, так как беспокоятся о том, будут ли они надежно защищены от ультрафиолета в пасмурный день, когда нет яркого солнечного излучения. Следует отметить, что современные фотохромные линзы поглощают от 98 до 100 % УФ-излучения при любых уровнях освещенности, то есть вне зависимости от того, являются ли они в данный момент бесцветными, средне- или темно-окрашенными. Благодаря этой особенности фотохромные линзы подходят для пользователей очков, находящихся на открытом воздухе в различных погодных условиях. В настоящее время растет число людей, которые начинают понимать, какую опасность представляет длительное воздействие УФ-излучения для здоровья глаз, и многие выбирают фотохромные линзы. Последние отличаются высокими защитными свойствами в сочетании с особым преимуществом - автоматическим изменением светопропускания в зависимости от уровня освещенности.

Является ли темная окраска линз гарантией защиты от ультрафиолетового излучения?

Сама по себе интенсивная окраска солнцезащитных линз не дает гарантии защиты от ультрафиолета. Следует отметить, что дешевые органические солнцезащитные линзы, выпущенные в условиях крупносерийного производства, могут иметь достаточно высокий уровень защиты. Как правило, сначала смешивают специальный УФ-абсорбер с сырьем для производства линз и делают бесцветные линзы, а затем осуществляют окрашивание. Добиться обеспечения УФ-защиты для солнцезащитных минеральных линз сложнее, так как их стекло пропускает больше излучения, чем многие виды полимерных материалов. Для гарантированной защиты необходимо введение ряда добавок в состав шихты для выпуска заготовок линз и применение дополнительных оптических покрытий.
Окрашенные рецептурные линзы делают из соответствующих бесцветных линз, которые могут иметь или нет достаточное количество УФ-абсорбера для надежного отрезания соответствующего диапазона излучения. Если нужны линзы со 100 %-й защитой от ультрафиолета, задача контроля и обеспечения такого показателя (до 380-400 нм) возлагается на оптика-консультанта и мастера - сборщика очков. В этом случае введение УФ-абсорберов в поверхностные слои органических очковых линз производится по технологии, аналогичной окрашиванию линз в растворах красителей. Единственное исключение состоит в том, что УФ-защиту не увидеть глазом и для ее проверки нужны специальные приборы - УФ-тестеры. Производители и поставщики оборудования и красителей для окраски органических линз включают в свой ассортимент различные составы для поверхностной обработки, обеспечивающие разные уровни защиты от ультрафиолета и коротковолнового видимого излучения. Провести контроль светопропускания ультрафиолетовой составляющей в условиях стандартной оптической мастерской не представляется возможным.

Следует ли вводить абсорбер ультрафиолетового излучения в бесцветные линзы?

Многие специалисты считают, что введение УФ-абсорбера в бесцветные линзы принесет только пользу, так как защитит глаза пользователей и предупредит ухудшение свойств линз под воздействием УФ-излучения и кислорода воздуха. В некоторых странах, где существует высокий уровень солнечной радиации, например в Австралии, это является обязательным. Как правило, стараются обеспечить отрезание излучения до 400 нм. Таким образом, исключены наиболее опасные и высокоэнергетические составляющие, а оставшегося излучения достаточно для правильного восприятия цвета предметов окружающей действительности. Если границу отрезания сдвинуть в видимую область (до 450 нм), то у линз появится желтый цвет, при увеличении до 500 нм - оранжевый.

Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения?

На оптическом рынке представлено много различных УФ-тестеров, которые позволяют проверить светопропускание очковых линз в ультрафиолетовом диапазоне. Они показывают, какой уровень пропускания у данной линзы в УФ-диапазоне. Однако следует учитывать и то, что оптическая сила корригирующей линзы может оказать влияние на данные измерения. Более точные данные удается получить при помощи сложных приборов - спектрофотометров, которые не только показывают светопропускание при определенной длине волны, но и учитывают при измерении оптическую силу корригирующей линзы.

Защита от ультрафиолетового излучения является важным аспектом, который нужно учитывать при подборе новых очковых линз. Надеемся, что приведенные в данной статье ответы на вопросы об ультрафиолетовом излучении и способах защиты от него помогут вам подобрать очковые линзы, которые дадут возможность сохранить здоровье ваших глаз на долгие годы.

Влияние света солнца на человека трудно переоценить – под его действием в организме запускаются важнейшие физиологические и биохимические процессы. Солнечный спектр делится на инфракрасную и видимую части, а также на наиболее биологически активную ультрафиолетовую часть, которая оказывает большое влияние на все живые организмы на нашей планете. Ультрафиолетовое излучение – это невоспринимаемое человеческим глазом коротковолновая часть солнечного спектра, обладающая электромагнитным характером и фотохимической активностью .

Благодаря своим свойствам ультрафиолет успешно применяют в различных областях человеческой жизни. Широкое использование УФ-излучение получило в медицине, поскольку оно способно менять химическую структуру клеток и тканей, оказывая различное воздействие на человека.

Диапазон длин волн ультрафиолетового излучения

Основной источник УФ-излучения – солнце . Доля ультрафиолета в общем потоке солнечного света непостоянна. Она зависит от:

  • времени суток;
  • времени года;
  • солнечной активности;
  • географической широты;
  • состояния атмосферы.

Несмотря на то, что небесное светило находится далеко от нас и его активность не всегда одинакова, до поверхности Земли доходит достаточное количество ультрафиолета. Но и это только его малая длинноволновая часть. Короткие волны поглощаются атмосферой на расстоянии около 50 км до поверхности нашей планеты.

Ультрафиолетовый диапазон спектра, который доходит до земной поверхности, условно делят по длине волны на:

  • дальний (400 – 315 нм) – лучи УФ – А;
  • средний (315 – 280 нм) – лучи УФ – В;
  • ближний (280 – 100 нм) – лучи УФ – С.

Действие каждого УФ-диапазона на человеческий организм различно: чем меньше длина волны, тем глубже она проникает через кожные покровы . Этим законом и определяется положительное или негативное влияние ультрафиолетового излучения на организм человека.

УФ-излучение ближнего диапазона наиболее неблагоприятно сказывается на здоровье и несет в себе угрозу возникновения тяжелых заболеваний.

Лучи УФ — С должны рассеиваться в озоновом слое, но из-за плохой экологии доходят до поверхности земли. Ультрафиолетовые лучи диапазона А и В менее опасны, при строгом дозировании, излучение дальнего и среднего диапазона благоприятно воздействует на человеческий организм.

Искусственные источники ультрафиолетового излучения

Наиболее значимыми источниками УФ-волн, влияющими на организм человека, являются:

  • бактерицидные лампы – источники волн УФ – С, используются для обеззараживания воды, воздуха или других объектов внешней среды;
  • дуга промышленной сварки – источники всех волн диапазона солнечного спектра;
  • эритемные люминесцентные лампы – источники УФ-волн диапазона А и В, применяющиеся для терапевтических целей и в соляриях;
  • промышленные лампы – мощные источники ультрафиолетовых волн, использующиеся в производственных процессах для закрепления красок, чернил или отвердевания полимеров.

Характеристиками любой УФ-лампы являются мощность ее излучения, диапазон спектра волн, тип стекла, срок эксплуатации . От этих параметров зависит, насколько лампа будет полезна или вредна для человека.

Перед облучением ультрафиолетовыми волнами от искусственных источников для лечения или профилактики болезней следует проконсультироваться со специалистом для подбора необходимой и достаточной эритемной дозы, являющейся индивидуальной для каждого человека с учетом типа его кожи, возраста, имеющихся заболеваний.

Следует понимать, что ультрафиолет – это электромагнитное излучение, которое оказывает не только положительное влияние на организм человека.

Бактерицидная ультрафиолетовая лампа, применяемая для загара, принесет существенный вред, а не пользу для организма . Использовать искусственные источники УФ-излучения должен только профессионал, хорошо разбирающийся во всех нюансах подобных приборов.

Истории наших читателей

Владимир
61 год

Положительное влияние УФ-излучения на организм человека

Ультрафиолетовое излучение широко применяется в области современной медицины. И это не удивительно, ведь УФ-лучи производят болеутоляющий, успокаивающий, антирахитический и антиспастический эффекты . Под их влиянием происходит:

  • формирование витамина D, необходимого для усвоения кальция, развития и укрепления костной ткани;
  • понижение возбудимости нервных окончаний;
  • повышение обмена веществ, поскольку вызывает активизацию ферментов;
  • расширение сосудов и улучшение циркуляции крови;
  • стимулирование выработки эндорфинов – «гормонов счастья»;
  • увеличение скорости регенеративных процессов.

Благоприятное влияние ультрафиолетовых волн на организм человека выражается также в изменении его иммунобиологической реактивности – способности организма проявлять защитные функции в отношении возбудителей различных заболеваний. Строго дозированное ультрафиолетовое облучение стимулирует выработку антител, благодаря чему повышается сопротивляемость человеческого организма к инфекциям.

Воздействие УФ-лучей на кожу вызывает реакцию – эритему (покраснение) . Происходит расширение сосудов, выражающееся гиперемией и отечностью. Образующиеся в коже продукты распада (гистамин и витамин D), поступают в кровь, что и вызывает общие изменения в организме при облучении УФ-волнами.

Степень развития эритемы зависит от:

  • величины дозы ультрафиолета;
  • диапазона ультрафиолетовых лучей;
  • индивидуальной чувствительности.

При избыточном УФ-облучении пораженный участок кожи очень болезнен и отечен, возникает ожог с появлением волдыря и дальнейшим схождением эпителия.

Но ожоги кожных покровов – это далеко не самые серьезные последствия длительного воздействия ультрафиолетового излучения на человека. Неразумное использование УФ-лучей вызывает патологические изменения в организме.

Негативное влияние УФ-излучения на человека

Несмотря на важную роль в медицине, вред ультрафиолета на здоровье превосходит пользу . Большинство людей не способны точно контролировать лечебную дозу ультрафиолета и прибегать своевременно к методам защиты, поэтому нередко происходит его передозировка, отчего возникают следующие явления:

  • появляются головные боли;
  • температура тела повышается;
  • быстрая утомляемость, апатия;
  • нарушение памяти;
  • учащенное сердцебиение ;
  • снижение аппетита и тошнота.

Чрезмерный загар поражает кожные покровы, глаза и иммунную (защитную) систему. Ощущаемые и видимые последствия избыточного УФ-облучения (ожоги кожи и слизистой оболочки глаз, дерматиты и аллергические реакции) проходят в течение нескольких дней. Ультрафиолетовая радиация накапливается в течение длительного времени и вызывает весьма серьезные заболевания.

Влияние ультрафиолета на кожу

Красивый ровный загар – мечта каждого человека, особенно представительниц слабого пола. Но следует понимать, что клетки кожи темнеют под воздействием выделяющегося в них красящегося пигмента — меланина с целью защиты от дальнейшего облучения ультрафиолетом. Поэтому загар – это защитная реакция нашей кожи на повреждение ее клеток ультрафиолетовыми лучами . Но он не предохраняет кожные покровы от более серьезного влияния УФ-излучения:

  1. Фотосенсибилизация – повышенная восприимчивость к ультрафиолету. Даже небольшая его доза вызывает сильное жжение, зуд и солнечный ожог кожных покровов. Часто это связано с использованием медикаментозных препаратов или употреблением косметических средств или некоторых продуктов питания.
  2. Фотостарение. УФ-лучи спектра А проникают в глубокие слои кожи, повреждают структуру соединительной ткани, что приводит к разрушению коллагена, потере эластичности, к ранним морщинам.
  3. Меланома – рак кожи . Заболевание развивается после частых и длительных пребываний на солнце. Под действием избыточной дозы ультрафиолета происходит появление злокачественных образований на коже или перерождение старых родинок в раковую опухоль.
  4. Базальноклеточная и чешуйчатая карцинома – немеланомное раковое образование кожи, не приводит к летальному исходу, но требует удаления пораженных участков хирургическим путем. Замечено, что заболевание намного чаще возникает у людей, длительно работающих под открытым солнцем.

Любой дерматит или явления сенсибилизации кожных покровов под воздействием ультрафиолета являются провоцирующими факторами для развития онкологических заболеваний кожи.

Влияние УФ-волн на глаза

Ультрафиолетовые лучи, в зависимости от глубины проникновения, могут негативно отражаться и на состоянии глаз человека:

  1. Фотоофтальмия и электроофтальмия. Выражается в покраснении и опухании слизистой оболочки глаз, слезотечении, светобоязни. Возникает при несоблюдении правил техники безопасности при работе со сварочным оборудованием или у людей, находящихся при ярком солнечном свете на покрытом снегом пространстве (снежная слепота).
  2. Разрастание конъюнктивы глаза (птеригиум).
  3. Катаракта (помутнение хрусталика глаза) — заболевание, возникающее в различной степени у преобладающего большинства людей к старости. Ее развитие связано с воздействием ультрафиолетового излучения на глаза, накапливающееся в течение жизни.

Избыток УФ-лучей может привести к различным формам раковых заболеваний глаз и век.

Влияние ультрафиолета на иммунную систему

Если дозированное применение УФ-излучения способствует повышению защитных сил организма, то избыточное воздействие ультрафиолета угнетает иммунную систему . Это было доказано в научных исследованиях ученых США на вирусе герпеса. Радиация ультрафиолета меняет активность клеток, отвечающих за иммунитет в организме, они не могут сдерживать размножение вирусов или бактерий, раковых клеток.

Основные меры безопасности и защиты от воздействия ультрафиолетового излучения

Чтобы избежать негативных последствий влияния УФ-лучей на кожные покровы, глаза и здоровье, каждому человеку необходима защита от ультрафиолетового излучения. При вынужденном длительном нахождении на солнце или на рабочем месте, подвергающемуся воздействию высоких доз ультрафиолетовых лучей, обязательно нужно выяснить в норме ли индекс УФ-излучения . На предприятиях для этого используется прибор под названием радиометр.

При подсчете индекса на метеорологических станциях учитывается:

  • длина волн ультрафиолетового диапазона;
  • концентрация озонового слоя;
  • активность солнца и другие показатели.

УФ-индекс – это индикатор потенциального риска для организма человека в результате влияния на него дозы ультрафиолета. Значение индекса оценивается по шкале от 1 до 11+. Нормой УФ-индекса считается показатель не более 2 единиц.

При высоких значениях индекса (6 – 11+) повышается риск неблагоприятного воздействия на глаза и кожу человека, поэтому необходимо применять защитные меры.

  1. Использовать солнцезащитные очки (специальные маски для сварщиков).
  2. Под открытым солнцем следует обязательно носить головной убор (при очень высоком индексе – широкополую шляпу).
  3. Носить одежду, закрывающую руки и ноги.
  4. На непокрытые одеждой участки тела наносить солнцезащитный крем с фактором защиты не менее 30 .
  5. Избегать нахождения на открытом, не защищенном от попадания солнечных лучей, пространстве в период с полудня до 16 часов.

Выполнение несложных правил безопасности позволит снизить вредность УФ-облучения для человека и избежать возникновения болезней, связанных с неблагоприятным влиянием ультрафиолета на его организм.

Кому облучение ультрафиолетом противопоказано

Следует быть острожными с воздействием ультрафиолетового излучения следующим категориям людей:

  • с очень светлой и чувствительной кожей и альбиносам;
  • детям и подросткам;
  • тем, кто имеет много родимых пятен или невусов;
  • страдающим системными или гинекологическими заболеваниями ;
  • тем, у кого среди близких родственников наблюдались онкологические заболевания кожи;
  • принимающим длительно некоторые лекарственные препараты (необходима консультация врача).

УФ-излучение таким людям противопоказано даже в малых дозах, степень защиты от солнечного света должна быть максимальной.

Влияние ультрафиолетового излучения на человеческий организм и его здоровье нельзя однозначно назвать положительным или отрицательным. Слишком много факторов следует учитывать при его воздействии на человека в разных условиях внешней среды и при излучении от различных источников. Главное, запомнить правило: любое воздействие ультрафиолета на человека должно быть минимальным до консультации со специалистом и строго дозировано согласно рекомендациям врача после осмотра и обследования.

Обеззараживание с помощью УФ-ламп я помню с детства – в садике, санатории и даже в летнем лагере стояли несколько пугающие конструкции, которые светились красивым фиолетовым светом в темноте и от которых нас отгоняли воспитатели. Так что же такое на самом деле ультрафиолетовое излучение и зачем оно нужно человеку?

Пожалуй, первый вопрос, на который нужно ответить – что такое вообще ультрафиолетовые лучи и как они работают. Обычно так называют электромагнитное излучение, которое находится в диапазоне между видимым и рентгеновским излучением. Ультрафиолет характеризуется длиной волны от 10 до 400 нанометров.
Открыли его еще в 19 веке, и произошло это благодаря открытию инфракрасного излучения. Обнаружив ИК-спектр, в 1801 г. И.В. Риттер обратил внимание на противоположный конец светового диапазона в процессе опытов с хлоридом серебра. А затем сразу несколько ученых пришли к выводу о неоднородности ультрафиолета.

Сегодня его разделяют на три группы:

  • УФ-А излучение – ближний ультрафиолет;
  • УФ-Б – средний;
  • УФ-С – дальний.

Такое разделение во многом обусловлено именно воздействием лучей на человека. Естественным и основным источником ультрафиолета на Земле является Солнце. По сути, именно от этого излучения мы спасаемся солнцезащитными кремами. При этом дальний ультрафиолет полностью поглощается атмосферой Земли, а УФ-А как раз доходит до поверхности, вызывая приятный загар. А в среднем 10% УФ-Б провоцируют те самые солнечные ожоги, а также могут приводить к образованию мутаций и кожных заболеваний.

Искусственные источники ультрафиолета создаются и используются в медицине, сельском хозяйстве, косметологии и различных санитарных учреждениях. Генерирование ультрафиолетового излучения возможно несколькими способами: температурой (лампы накаливания), движением газов (газовые лампы) или металлических паров (ртутные лампы). При этом мощность таких источников варьируется от нескольких ватт, обычно это небольшие мобильные излучатели, до киловатта. Последние монтируются в объемные стационарные установки. Сферы применения УФ-лучей обусловлены их свойствами: способностью ускорять химические и биологические процессы, бактерицидным эффектом и люминесценцией некоторых веществ.

Ультрафиолет широко применяется для решения самых различных задач. В косметологии использование искусственного УФ-излучения используется прежде всего для загара. Солярии создают довольно мягкий ультрафиолет-А согласно введенным нормам, а доля УФ-В в лампах для загара составляет не более 5%. Современные психологи рекомендуют солярии для лечения «зимней депрессии», которая в основном вызвана дефицитом витамина D, так как он образуется под влиянием УФ-лучей. Также УФ-лампы используют в маникюре, так как именно в этом спектре высыхают особо стойкие гель-лаки, шеллак и подобные им.

Ультрафиолетовые лампы используют для создания фотоснимков в нестандартных ситуациях, например, для запечатления космических объектов, которые невидимы в обычный телескоп.

Широко применяется ультрафиолет в экспертной деятельности. С его помощью проверяют подлинность картин, так как более свежие краски и лаки в таких лучах выглядят темнее, а значит можно установить реальный возраст произведения. Криминалисты также используют УФ-лучи для обнаружения следов крови на предметах. Кроме того, ультрафиолет широко используется для проявления скрытых печатей, защитных элементов и нитей, подтверждающих подлинность документов, а также в световом оформлении шоу, вывесок заведений или декораций.

В медицинских учреждениях ультрафиолетовые лампы используются для стерилизации хирургических инструментов. Помимо этого, все еще широко распространено обеззараживание воздуха с помощью УФ-лучей. Существует несколько видов такого оборудования.

Так называют ртутные лампы высокого и низкого давления, а также ксеноновые импульсные лампы. Колба такой лампы изготавливается из кварцевого стекла. Основной плюс бактерицидных ламп – долгий срок службы и мгновенная способность к работе. Примерно 60% их лучей находятся в бактерицидном спектре. Ртутные лампы достаточно опасны в эксплуатации, при случайном повреждении корпуса необходима тщательная очистка и демеркуризация помещения. Ксеноновые лампы менее опасны при повреждении и отличаются более высокой бактерицидной активностью. Также бактерицидные лампы разделяют на озоновые и безозоновые. Первые характеризуются наличием в своем спектре волны длиной 185 нанометров, которая взаимодействует с находящимся в воздухе кислородом и превращает его в озон. Высокие концентрации озона опасны для человека, и использование таких ламп строго ограничено во времени и рекомендуется только в проветриваемом помещении. Все это привело к созданию безозоновых ламп, на колбу которых нанесено специальное покрытие, не пропускающее волну в 185 нм наружу.

Вне зависимости от вида бактерицидные лампы имеют общие недостатки: они работают в сложной и дорогостоящей аппаратуре, средний ресурс работы излучателя – 1,5 года, а сами лампы после перегорания должны храниться упакованными в отдельном помещении и утилизироваться специальным образом согласно действующим нормативам.

Состоят из лампы, отражателей и других вспомогательных элементов. Такие устройства бывают двух видов – открытые и закрытые, в зависимости от того, проходят УФ-лучи наружу или нет. Открытые выпускают ультрафиолет, усиленный отражателями, в пространство вокруг, захватывая сразу практически всю комнату, если установлены на потолке или стене. Проводить обработку помещения таким облучателем в присутствии людей строго запрещено.
Закрытые облучатели работают по принципу рециркулятора, внутри которого установлена лампа, а вентилятор втягивает в прибор воздух и выпускает уже облученный наружу. Их размещают на стенах на высоте не менее 2 м от пола. Их возможно использовать в присутствии людей, однако длительное воздействие не рекомендуется производителем, так как часть УФ-лучей может проходить наружу.
Из недостатков таких приборов можно отметить невосприимчивость к спорам плесени, а также все сложности утилизации ламп и строгий регламент использования в зависимости от типа излучателя.

Бактерицидные установки

Группа облучателей, объединенная в один прибор, использующийся в одном помещении, называется бактерицидной установкой. Обычно они достаточно крупногабаритные и отличаются высоким энергопотреблением. Обработка воздуха бактерицидными установками производится строго в отсутствие людей в комнате и отслеживается по Акту ввода в эксплуатацию и Журналу регистрации и контроля. Используется только в медицинских и гигиенических учреждениях для обеззараживания как воздуха, так и воды.

Недостатки ультрафиолетового обеззараживания воздуха

Помимо уже перечисленного, использование УФ-излучателей имеет и другие минусы. Прежде всего, сам ультрафиолет опасен для человеческого организма, он может не только вызывать ожоги кожи, но и сказываться на работе сердечно-сосудистой системы, опасен для сетчатки глаза. Кроме того, он может вызывать появление озона, а с ним и присущие этому газу неприятные симптомы: раздражение дыхательных путей, стимуляция атеросклероза, обострение аллергии.

Эффективность работы УФ-ламп достаточно спорная: инактивация болезнетворных микроорганизмов в воздухе разрешенными дозами ультрафиолета происходит только при статичности этих вредителей. Если микроорганизмы двигаются, взаимодействуют с пылью и воздухом, то необходимая доза облучения возрастает в 4 раза, чего не может создать обычная УФ-лампа. Поэтому эффективность работы облучателя рассчитывается отдельно с учетом всех параметров, и крайне сложно подобрать подходящие для воздействия на все типы микроорганизмов сразу.

Проникновение УФ-лучей относительно неглубокое, и если даже неподвижные вирусы находятся под слоем пыли, верхние слои защищают нижние, отражая от себя ультрафиолет. А значит, после уборки обеззараживание нужно проводить еще раз.
УФ-облучатели не могут фильтровать воздух, они борются только с микроорганизмами, сохраняя все механические загрязнители и аллергены в первозданном виде.

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.



Понравилась статья? Поделитесь с друзьями!