Алгебраический метод построения простейших формул. Решение задач на построение в курсе геометрии основной школы как средство развития логического мышления школьников

Основные методы решения геометрических задач: геометрический – требуемое утверждение выводится с помощью логических рассуждений из ряда известных теорем; алгебраический – искомая геометрическая величина вычисляется на основании различных зависимостей между элементами геометрических фигур непосредственно или с помощью уравнений; комбинированный – на одних этапах решение ведется геометрическим методом, а на других алгебраическим.

Треугольники Признаки равенства треугольников, прямоугольных треугольников. Свойства и признаки равнобедренного треугольника. Задача 1. Медиана АМ треугольника АВС равна отрезку ВМ. Доказать, что один из углов треугольника АВС равен сумме двух других углов. Задача 2. Отрезки АВ и СD пересекаются в их общей середине О. На АC и ВD отмечены точки К 1 такие, что АК=ВК 1. Доказать, что а) ОК=ОК 1, б) точка О лежит на прямой КК 1. Задача 3 (признак равнобедренного треугольника). Если в треугольнике биссектриса является медианой, то треугольник равнобедренный.

Задача 4 (признак прямоугольного треугольника по медиане). Доказать, что если медиана треугольника равна половине стороны, к которой она проведена, то треугольник прямоугольный. Задача 5 (свойство медианы прямоугольного треугольника). Доказать, что в прямоугольном треугольнике медиана, проведенная к гипотенузе, равна её половине. Задача 6. Доказать, что в прямоугольном треугольнике с неравными катетами биссектриса прямого угла делит угол между высотой и медианой, проведенными из той же вершины, пополам. Задача 7. Медиана и высота треугольника, проведенные из одной вершины, делят этот угол на три равные части. Доказать, что треугольник прямоугольный.

Свойства площадей. Площади многоугольников Следствие из теоремы о площади треугольника. Если высоты двух треугольников равны, то их площади относятся как основания. Теорема об отношении площадей треугольников, имеющих равные углы. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

Теоремы о точках пересечения чевиан Теорема. В любом треугольнике медианы пересекаются в одной точке (центроид, центр тяжести) и делятся этой точкой в отношении 2: 1, считая от вершины. Свойства медианы: 1. Медиана разбивает треугольник на два равновеликих, то есть имеющих одинаковую площадь. 2. Три медианы разбивают треугольник на шесть равновеликих. 3. Отрезки, соединяющие центроид с вершинами треугольника, разбивают треугольник на три равновеликие части.

Одним из основных методов решения задач, в которых участвуют медианы треугольника, является метод «удвоения медианы» . Достроить треугольник до параллелограмма и воспользоваться теоремой о сумме квадратов его диагоналей. Задача 8. Найти отношение суммы квадратов медиан треугольника к сумме квадратов всех его сторон.

Свойство биссектрисы внутреннего угла треугольника. Биссектриса внутреннего угла треугольника делит противоположную сторону на части, пропорциональные заключающим ее сторонам. Теорема. В любом треугольнике биссектрисы пересекаются в одной точке (ицентр), которая является центром вписанной в него окружности. Замечание: Очевидно, что центроид и ицентр треугольника всегда лежат внутри него.

. Решение. B A 1 1) В треугольнике ABC AA 1 – биссектриса угла A, поэтому AB: AC = BA 1: CA 1 = BA 1: (BC – BA 1) I или C А B 1 2) В треугольнике ABA 1 BI – биссектриса угла B, поэтому AI: IA 1 = BA: BA 1 или

Теорема о серединном перпендикуляре к отрезку. Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка. Обратно: каждая точка, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к нему. Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, которая является центром описанной около него окружности. Теорема. В любом треугольнике высоты пересекаются в одной точке (ортоцентр треугольника). Вопрос. Где находится ортоцентр остроугольного, прямоугольного, тупоугольного треугольников?

Решение. B 1) Tреугольник BC 1 Н – прямоугольный, и C 1 H 2) Треугольник BC 1 C – прямоугольный, и A B 1 C

Используя формулы приведения. Откуда Замечание. Если один из углов тупой, то в (*) соответствующий косинус нужно взять по модулю.

Интересными являются задачи на нахождение расстояния от произвольной вершины треугольника до одной из его замечательных точек. Сначала решим задачу на нахождения расстояния от вершины до ортоцентра. Задача 11. В треугольнике АВС опущены высоты ВВ 1 и СС 1. Найти длину отрезка НВ, где Н – точка пересечения высот. B 1) треугольник BC 1 Н – прямоугольный, и Решение. C 1 H 2) треугольник BC 1 C – прямоугольный, и A B 1 C

Задача 12. Найти расстояние от вершины B треугольника ABC до ортоцентра, если Решение. По теореме косинусов Тогда

Задача 13. По углам A и B треугольника ABC (A

Задача 14. К какой из вершин треугольника ближе расположен ицентр? Решение. C D I A Пусть I – ицентр, точка пересечения биссектрис треугольника ABC Воспользуемся тем, что против большей стороны треугольника лежит больший угол. Если AB > BC, то A

Задача 15. Какая из высот треугольника наименьшая? Решение. C B 1 А 1 H A C 1 Пусть Н – точка пересечения высот треугольника ABC. Если AC B. Окружность с диаметром BC пройдет через точки С 1 и В 1. B Учитывая, что из двух хорд меньше та, на которую опирается меньший вписанный угол, получаем, что СС 1

Задача 16. Отрезок АН – высота треугольника АВС. Из вершин В и С проведены перпендикуляры ВВ 1 и СС 1 к прямой, проходящей через точку А. Доказать, что треугольники АВС и НВ 1 С 1 подобны. Найти площадь треугольника НВ 1 С 1, если площадь треугольника АВС равна S, а АС: НС 1 =5: 3. Доказательство. Так как треугольники АНС и АСС 1 прямоугольные, то точки Н и С 1 А лежат на окружности с диаметром АС. С 1 В В 1 Н Аналогично, точки В 1 и Н лежат на окружности с диаметром АВ. С треугольнике АСС 1

Значит, Так как имеют место (1) и (2), А то треугольники АВС и НВ 1 С 1 подобны. С 1 Коэффициент подобия В В 1 Н С значит,

Задача 17. Пусть в остроугольном треугольнике ABC точки A 1, B 1, C 1 есть основания высот. Доказать, что точка H - пересечения высот треугольника ABC является точкой пересечения биссектрис треугольника A 1 B 1 C 1. Решение. На сторонах AC и BC B треугольника ABC, как на C 1 А диаметрах, построим окружности. H Точки A 1, B 1, C 1 принадлежат этим окружностям. 1 A B 1 C Поэтому B 1 C 1 C = B 1 BC, как углы, опирающиеся на одну и ту же дугу окружности. B 1 BC = CAA 1, как углы с взаимно перпендикулярными сторонами.

CAA 1 = CC 1 A 1, как углы, опирающиеся на одну и ту же дугу окружности. Следовательно, B 1 C 1 C = CC 1 A 1, т. е. C 1 C является биссектрисой угла B 1 C 1 A 1. Аналогичным образом показывается, что AA 1 и BB 1 являются биссектрисами углов B 1 A 1 C 1 и A 1 B 1 C 1. B C 1 А 1 H A B 1 C Самостоятельно исследовать случаи прямоугольного и тупоугольного треугольника.

Итерационные алгебраические методы реконструкции изображения

дипломная работа

4.1 Алгебраический метод

Пусть функция f(x) = f(x, y) описывает некоторое распределение плотностей в каком-либо выделенном сечении объекта. Основная задача вычислительной томографии состоит в восстановлении функции f(x) по набору экспериментально полученных проекций:

которые представляют собой линейные интегралы от искомого распределения вдоль прямых L:. Здесь - угол сканирования, - дельта-функция.

На практике, как правило, проекции заданы не для всех значений и, а только для конечного их числа. Существует целый ряд практических задач, для которых число дискретизаций по 0 весьма ограничено (от 3 до 5). Задачи такого типа относятся к задачам малоракурсной томографии и являются одними из наиболее трудно решаемых. Задача может быть поставлена следующим образом: по заданному конечному набору проекций функции двух переменных получить наилучшую оценку этой функции.

Сформулируем общую постановку задачи восстановления решения задачи (4.1) с помощью алгебраических методов, построим итерационный алгоритм восстановления таких задач. Применение алгебраических методов принципиально отличается от метода интегральных преобразований, поскольку предполагает дискретизацию изображения до начала алгоритма восстановления. Построение дискретной модели задачи реконструкции изображения можно описать следующим образом.

Пусть требуется восстановить двумерную функцию f(x)=f(x,y), заданную в области D R2. Предположим, что область восстановления D заключена в квадрат К, который разбит на п равных маленьких квадратиков, называемых элизами. Пронумеруем все элизы от 1 до п. При этом примем основное ограничение, которое заключается в том, что восстанавливаемая функция f(x) принимает постоянное значение fj внутри j-го элиза, т. е. функцию f (x) заменяем дискретизированным выражением

если (х) j-му элизу;

в противном случае. (4.3)

Предположим, что задано множество линейных непрерывных функционалов, которые представляют собой прямое преобразование Радона вдоль набора некоторых прямых:

Тогда -- проекция функции f(х) вдоль луча Li.

Применяя операторы к равенству (4.2) и учитывая их непрерывность и линейность, получаем систему линейных алгебраических уравнений

где, i = 1, ..., m; j = 1, ..., n.

Если семейство базисных функций {bj} задается формулой (4.3), то

Длина пересечения i-го луча с j-м элизом.

Матрицу коэффициентов обозначим А=(), вектор изображений -- f=(f1, f2, ..., fn), вектор проекций -- R=(R1, R1, ..., Rт). Тогда решение задачи сводится к решению системы линейных алгебраических уравнений вида

При этом вектор R задан заведомо с некоторой погрешностью.

Стоит отметить, что вид системы (4.5) зависит от конкретного выбора системы базисных функций bi и набора функционалов Ri. Существуют другие способы выбора сетки разбиения области D (а значит, и базисных функций bi). Функционалы выбираются не только в виде (4.4), но и с учетом реальной длины лучей и с использованием кусочно-постоянных функций. Кроме того, постановка задачи не зависит от геометрии лучей и легко формулируется для трехмерного случая.

4.2 Использование операторов интерлинации

В данном пункте рассматривается новый метод представления приближенного решения задачи плоской компьютерной томографии (РКТ) в виде кусочно-постоянных функций. Метод имеет более высокую точность, чем классический метод решения плоской задачи РКТ с использованием кусочно-постоянных функций.

разбиения Е2 на четырехугольники. Введем следующие обозначения.

Оператор О1 является оператором аппроксимации f(x,y) кусочно-постоянными функциями по x. Если y=const, то находится из условия наилучшей аппроксимации f(x,y) в полосе, yE. Аналогично, оператор О2 является оператором аппроксимации f(x,y) кусочно-постоянными функциями по y.

Если x=const, тогда j(x) находится из условия наилучшей аппроксимации f(x,y) в полосе, хE.

Введем следующие операторы:

Значения найдем из условия наилучшей аппроксимации f числом f(оij, ij) в

Лемма 3.1 Пусть функция, r=1,2 или и является функцией с ограниченной вариацией. Тогда операторы Onm обладают свойствами

Доказательство. Свойства (3.25) и (3,26) вытекают из того, что

Свойство (3,27) вытекает из того, что

Свойства (3,29) выполняются для всех дифференцируемых функций и для непрерывных функций с ограниченной вариацией.

Лемма 1 доказана.

Следствие 1. Для и для непрерывных функций с ограниченной вариацией мы получаем следующую оценку погрешности.

Следствие 2. Заменяя функции кусочно-постоянными функциями одной переменной с той же самой оценкой погрешности

получим оператор

Получим значения для gi (x)

Получим значения для Gi (y)

со следующими свойствами:

Следствие 3. Оператор

имеет следующие свойства:

Если, r=1,2 или и является функцией с ограниченной вариацией, тогда

Доказательство. Для погрешности можно написать равенство

Отсюда вытекает неравенство

Применяя оценки 3 и 4 к правой части полученного выражения, придем к оценке (3,42).

Следствие 3 доказано.

Если m=n, тогда оператор имеет погрешность (он использует постоянных); приближение оператором имеет погрешность. То есть оператор (он использует постоянных) имеет ту же погрешность, как и оператор:

В следующих пунктах отмечаются преимущества указанного метода.

Количество неизвестных

Использование интерлинации функций при построении приближенного решения, а именно представление приближенного решения в виде:

привело к появлению 2n3+n2 постоянных, которые являются неизвестными. Следовательно оператор использует O(n3) постоянных-неизвестных. Оператор имеет погрешность.

Использование оператора - классическое представление приближенного решения - приводит к появлению n4 постоянных, которые являются неизвестными. Следовательно оператор использует O(n4) постоянных-неизвестных. Оператор имеет погрешность.

Обобщая сказанное, делаем вывод, что использование оператора требует нахождение O(n3) неизвестных, в то время как использование оператора требует нахождения O(n4) неизвестных для приближения решения с той же самой погрешностью.

Поэтому использование оператора дает значительные преимущества по количеству арифметических операций, так как для достижения той же точности необходимо решать систему линейных алгебраических уравнений меньшей размерности.

Для иллюстрации указанного факта приводим следующую таблицу:

Таблица 1

Неизвестных

Неизвестных

Погрешность

Сравнения показывают, что для достижения одной и той же точности, при использовании оператора, можно брать меньшее количество уравнений. Например, для n=9 количество неизвестных в классическом методе в 4 раза больше.

В силу того, что система должна быть переопределенной, а для n=9 неизвестных 1539 (для случая с интерлинацией) и 6561(для классического метода), и следует брать число уравнений больше, чем число неизвестных, то ясно, что в методе с интерлинацией этих уравнений будет меньше.

Вычислительный эксперимент, проведенный с помощью разработанных алгоритмов и программ, подтвердил указанные утверждения.

Дискретизация области

Применение схем решения задачи плоской компьютерной томографии, основанных на использовании и обуславливает дискретизацию области.

Для - нерегулярная сетка: разбивка на квадраты со стороной и прямоугольники со сторонами, и, вытянутые вдоль оси Ox и Oy соответственно. Узлы сетки располагаются в центрах квадратов и прямоугольников.

Для - регулярная сетка: разбивка на квадраты со стороной. Узлы сетки располагаются в центрах квадратов.

Положительный эффект применения оператора достигается за счет другого расположения узлов, что вызывает связь между следующим соотношением:

Которые совпадают с узлами, расположенными в центрах соответствующего квадрата, вертикального и горизонтального прямоугольников.

Для этих точек, т.к. в этих центрах, то имеем точные решения.

Значит, приближенное решение, построенное с помощью, представляет собой интерполяционную формулу. С ее помощью подсчитывается значение функции в любых точках области D, отличных от указанных, в которых наблюдается точное совпадение

Относительно точного совпадения в указанных центрах. Значит,

Антагонистическая игра

Возможны два случая для решения задач алгебраическим методом: 1. матрица имеет седловую точку; 2. матрица не имеет седловую точку. В первом случае решение - это пара стратегий, образующих седловую точку игры. Рассмотрим второй случай...

Вычислительная математика

Метод деления отрезка пополам является самым простым и надежным способом решения нелинейного уравнения. Пусть из предварительного анализа известно, что корень уравнения (2.1) находится на отрезке , т. е. x*, так, что f(x*) = 0...

Вычислительная математика

Метод Ньютона является наиболее эффективным методом решения нелинейных уравнений. Пусть корень x* , так, что f(a)f(b) < 0. Предполагаем, что функция f(x) непрерывна на отрезке и дважды непрерывно дифференцируема на интервале (a, b). Положим x0 = b...

Вычислительная математика

В этом и следующем разделе рассмотрим модификации метода Ньютона. Как видно из формулы (2.13), метод Ньютона требует для своей реализации вычисления производной, что ограничивает его применение. Метод секущих лишен этого недостатка...

Итерационные алгебраические методы реконструкции изображения

Пусть функция f(x) = f(x, y) описывает некоторое распределение плотностей в каком-либо выделенном сечении объекта. Основная задача вычислительной томографии состоит в восстановлении функции f(x) по набору экспериментально полученных проекций: (4...

x2, x4, x5, x6 - базисные переменные, x1, x3 - свободные переменные x1?F? x3?F? Выбираем x3 ? x4 x2, x3, x5, x6 - базисные переменные, x1, x4 - свободные переменные x1?F? x4?F? Выбираем x1 ? x5 x1, x2, x3, x6 - базисные переменные, x4...

Линейное и нелинейное программирование

Метод поиска глобального минимума, называемый методом поиска по координатной сетке, является надежным, но применим только для задач малой размерности (n<4). Неправильный выбор начального шага сетки может привести к тому...

Линейное и нелинейное программирование

Итерация 1. Счет итераций k = 0 Итерация 2. Счет итераций k = 1 Поиск завершен 3.3...

Теоретические сведения Пусть функция y = f(x) непрерывна на отрезке . Нам требуется вычислить определенный интеграл. Так же как в методе парабол разбиваем отрезки. Суть метода прямоугольников заключается в том...

Математическое моделирование и численные методы в решении технических задач

Теоретические сведения Пусть нам требуется вычислить определенный интеграл, где y = f(x) непрерывна на отрезке . Разобьем отрезок на n равных интервалов длины h точками. В этом случае шаг разбиения определяется так же как в методе парабол...

Методы решения дифференциальных уравнений

Метод прямоугольников - метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке...

Системный анализ групп преобразований состояний кубика Рубика

CFOP - это название четырёх стадий сборки(рисунок 3.2): Cross, F2L, OLL, PLL: 1) Cross - сборка креста...

Системы линейных уравнений

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных, называется определителем системы...

Системы линейных уравнений

Метод Гаусса основывается на следующей теореме: элементарным преобразованиям строк расширенной матрицы системы отвечает превращение этой системы в эквивалентную. С помощью элементарных преобразований строки расширенной матрицы...

Численные методы решения трансцендентных уравнений

Пусть уравнение (1) имеет корень на отрезке , причем f (x) и f "(x) непрерывны и сохраняют постоянные знаки на всем интервале . Геометрический смысл метода Ньютона состоит в том, что дуга кривой y = f(x) заменяется касательной...

Алгебраический метод

Возможны два случая для решения задач алгебраическим методом:

1. матрица имеет седловую точку;

2. матрица не имеет седловую точку.

В первом случае решение - это пара стратегий, образующих седловую точку игры. Рассмотрим второй случай. Решения здесь следует искать в смешанных стратегиях:

Отыщем стратегии и. При использовании первым игроком своей оптимальной стратегии второй игрок может, например, применить две такие чистые стратегии

При этом в силу свойства, если один из игроков применяет оптимальную смешанную стратегию, а другой - любую чистую, входящую в его оптимальную смешанную стратегию с вероятностью не равной нулю, то математическое ожидание выигрыша всегда остается неизменным и равным цене игры, т.е.

Выигрыш должен в каждом из этих случаев быть равен цене игры V. В таком случае справедливы такие соотношения:

Систему уравнений, аналогичную (2.5), (2.6) можно составить и для оптимальной стратегии второго игрока:

Принимая во внимание условие нормировки:

Решим совместно уравнение (1.37) - (1.41) относительно неизвестных можно решать и не все сразу, а по три: отдельно (1.36), (1.38), (1.40) и (1.37), (1.39), (1.41). В результате решения получим:

Графический метод

Приближенное решение игры 22 можно довольно просто получить воспользовавшись графическим методом. Суть его заключается в следующем:

Рисунок 1.1- нахождение участка единичной длинны

Выделить на оси абсцисс участок единичной длины. Левый конец его будет изображать первую стратегию первого игрока, а правый вторую. Все промежуточные точки соответствуют смешанным стратегиям первого игрока, причем длина отрезка справа от точки равна вероятности применения первой стратегии, а длина отрезка слева от - вероятности применения второй стратегии первым игроком.

Проведены две оси I-I и II-II. На I-I будем откладывать выигрыш при использовании первым игроком первой стратегии, на II-II при использовании им второй стратегии. Пусть, например, второй игрок применил свою первую стратегию, тогда на оси I-I следует отложить величину, а на оси II-II - величину

При любой смешанной стратегии первого игрока его выигрыш определится величиной отрезка. Линия I-I соответствует применению первой стратегии вторым игроком, будем её называть первой стратегией второго игрока. Аналогично можно построить и вторую стратегию второго игрока. Тогда в целом графическое отображение матрицы игры примет такой вид:

Рисунок 1.2 - нахождение цены игры

Следует однако отметить, что это построение проводилось для первого игрока. Здесь длина отрезка ровна цене игры V.

Линия 1N2 называется нижней границей выигрыша. Здесь наглядно видно, что точка N соответствует максимальной величине гарантированного выигрыша первого игрока.

1. Общие замечания к решению задач алгебраическим методом.

2. Задачи на движение.

3. Задачи на работу.

4. Задачи на смеси и проценты.

    Использование алгебраического метода для нахождения арифметического пути решения текстовых задач.

1. При решении задач алгебраическим методом искомые величины или другие величины, зная которые можно определить искомые, обозначают буквами (обычно х, у, z ). Все независимые между собой соотношения между данными и неизвестными величинами, которые либо непосредственно сформулированы в условии (в словесной форме), либо вытекают из смысла задачи (например, физические законы, которым подчиняются рассматриваемые величины), либо следуют из условия и некоторых рассуждений, записываются в виде равенства неравенств. В общем случае эти соотношения образуют некоторую смешанную систему. В частных случаях эта система может не содержать неравенств либо уравнений или она может состоять лишь из одного уравнения или неравенства.

Решение задач алгебраическим методом не подчиняется какой-либо единой, достаточно универсальной схеме. Поэтому всякое указание, относящееся ко всем задачам, носит самый общий характер. Задачи, которые возникают при решении практических и теоретических вопросов, имеют свои индивидуальные особенности. Поэтому их исследование и решение носят самый разнообразный характер.

Остановимся на решении задач, математическая модель которых задается уравнением с одним неизвестным.

Напомним, что деятельность по решению задачи состоит из четырех этапов. Работа на первом этапе (анализ содержания задачи) не зависит от выбранного метода решения и не имеет принципиальных отличий. На втором этапе (при поиске пути решения задачи и составлении плана ее решения) в случае применения алгебраического метода решения осуществляются: выбор основного соотношения для составления уравнения; выбор неизвестного и введение обозначения для него; выражение величин, входящих в основное соотношение, через неизвестное и данные. Третий этап (осуществление плана решения задачи) предполагает составление уравнения и его решение. Четвертый этап (проверка решения задачи) осуществляется стандартно.

Обычно при составлении уравнений с одним неизвестным х придерживаются следующих двух правил.

Правило I . Одна из данных величин выражается через неизвестное х и другие данные (то есть составляется уравнение, в котором одна часть содержит данную величину, а другая – ту же величину, выраженную посредством х и других данных величин).

Правило II . Для одной и той же величины составляются два алгебраических выражения, которые затем приравниваются друг к другу.

Внешне кажется, что первое правило проще второго.

В первом случае всегда требуется составить одно алгебраическое выражение, а во втором – два. Однако часто встречаются задачи, в которых удобнее составить два алгебраических выражения для одной и той же величины, чем выбрать уже известную и составить для нее одно выражение.

Процесс решения текстовых задач алгебраическим способом выполняется по следующему алгоритму:

1. Сначала выбирают соотношение, на основании которого будет составлено уравнение. Если задача содержит более двух соотношений, то за основу для составления уравнения надо взять то соотношение, которое устанавливает некоторую связь между всеми неизвестными.

    Затем выбирают неизвестное, которое обозначают соответствующей буквой.

    Все неизвестные величины, входящие в выбранное для составления уравнения соотношение, необходимо выразить через выбранное неизвестное, опираясь на остальные соотношения, входящие в задачу кроме основного.

4. Из указанных трех операций непосредственно вытекает составление уравнения как оформление словесной записи при помощи математических символов.

Центральное место среди перечисленных операций занимает выбор основного соотношения для составления уравнений. Рассмотренные примеры показывают, что выбор основного соотношения является определяющим при составлении уравнений, вносит логичную стройность в порою расплывчатый словесный текст задачи, дает уверенность в ориентации и предохраняет от беспорядочных действий для выражения всех входящих в задачу величин через данные и искомые.

Алгебраический метод решения задач имеет огромное практическое значение. С его помощью решают самые разнообразные задачи из области техники, сельского хозяйства, быта. Уже в средней школе уравнения применяются учащимися при изучении физики, химии, астрономии. Там, где арифметика оказывается бессильной или, в лучшем случае, требует крайне громоздких рассуждений, там алгебраический метод легко и быстро приводит к ответу. И даже в так называемых «типовых» арифметических задачах, сравнительно легко решаемых арифметическим путем, алгебраическое решение, как правило, является и более коротким, и более естественным.

Алгебраический метод решения задач позволяет легко показать, что некоторые задачи, отличающиеся друг от друга лишь фабулой, имеют не только одни и те же соотношения между данными и искомыми величинами, но и приводят к типичным рассуждениям, посредством которых устанавливаются эти соотношения. Такие задачи дают лишь различные конкретные интерпретации одного и того же математического рассуждения, одних и тех же соотношений, то есть имеют одну и ту же математическую модель.

2. К группе задач на движение относятся задачи, в которых говорится о трех величинах: пути (s ), скорости (v ) и времени (t ). Как правило, в них речь идет о равномерном прямолинейном движении, когда скорость постоянна по модулю и направлению. В этом случае все три величины связаны следующим соотношением: S = vt . Например, если скорость велосипедиста 12 км/ч, то за 1,5 ч. он проедет 12 км/ч  1,5 ч = 18 км. Встречаются задачи, в которых рассматривается равноускоренное прямолинейное движение, то есть движение с постоянным ускорением (а). Пройденный путь s в этом случае вычисляется по формуле: S = v 0 t + at 2 /2, где v 0 начальная скорость движения. Так, за 10 с падения с начальной скоростью 5 м/с и ускорением свободного падения 9,8 м 2 /с тело пролетит расстояние, равное 5 м/с  10с + 9,8 м 2 /с  10 2 с 2 /2 = 50 м + 490 м = 540 м.

Как уже отмечалось, в ходе решения текстовых задач и в первую очередь в задачах, связанных с движением, весьма полезно сделать иллюстративный чертеж (построить вспомогательную графическую модель задачи). Чертеж следует выполнить так, чтобы на нем была видна динамика движения со всеми встречами, остановками и поворотами. Грамотно составленный чертеж позволяет не только глубже понять содержание задачи, но и облегчает со­ставление уравнений и неравенств. Примеры таких чертежей бу­дут приведены ниже.

Обычно в задачах на движение принимаются следующие соглашения.

    Если специально не оговорено в задаче, то движение на отдельных участках считается равномерным (будь то движение по прямой или по окружности).

    Повороты движущихся тел считаются мгновенными, то есть происходят без затрат времени; скорость при этом также меняется мгновенно.

Данную группу задач, в свою очередь, можно разбить на задачи, в которых рассматриваются движения тел: 1) навстречу друг другу; 2) в одном направлении («вдогонку»); 3) в противоположных направлениях; 4) по замкнутой траектории; 5) по течению реки.

    Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 а ), то при движении тел навстречу друг другу время, через которое они встретятся, равно S /(v 1 + v 2).

2. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 б ), то при движении тел в одну сторону (v 1 > v 2) время, через которое первое тело догонит второе, равно S /(v 1 v 2).

3. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 в ), то, отправившись одновременно в противоположных направлениях, тела будут через время t находиться на расстоянии S 1 = S + (v 1 + v 2 ) t .

Рис. 16

4. Если тела движутся в одном направлении по замкнутой траектории длиной s со скоростями v 1 и v 2 , то время, через которое тела опять встретятся (одно тело догонит другое), отправившись одновременно из одной точки, находится по формуле t = S /(v 1 v 2) при условии, что v 1 > v 2 .

Это следует из того, что при одновременном старте по замкнутой траектории в одном направлении тело, скорость которого больше, начинает догонять тело, скорость которого меньше. В первый раз оно догоняет его, пройдя расстояние на S большее, чем другое тело. Если же оно обгоняет его во второй, в третий раз и так далее, это означает, что оно проходит расстояние на 2S , на 3S и так далее большее, чем другое тело.

Если тела движутся в разных направлениях по замкнутой траектории длиной S со скоростями v 1 и v 2 , то время, через которое они встретятся, отправившись одновременно из одной точки, находится по формуле t = v (v 1 + v 2). В этом случае сразу после начала движения возникает ситуация, когда тела начинают двигаться навстречу друг другу.

5. Если тело движется по течению реки, то его скорость относительно берега и слагается из скорости тела в стоячей воде v и скорости течения реки w : и = v + w . Если тело движется против течения реки, то его скорость и = v w . Например, если скорость катера v = 12 км/ч, а скорость течения реки w = 3 км/ч, то за 3 ч. по течению реки катер проплывет (12 км/ч + 3 км/ч)  3 ч. = 45 км, а против течения – (12 км/ч – 3 км/ч)  3 ч. = 27 км. Считают, что скорость предметов, имеющих нулевую скорость движения в стоячей воде (плот, бревно и т. п.), равна скорости течения реки.

Рассмотрим несколько примеров.

Пример .Из одного пункта в одном направлении через каждые 20 мин. выезжают автомобили. Второй автомобиль едет со скоростью 60 км/ч, а скорость первого на 50% больше скорости второго. Найдите скорость движения третьего автомобиля, если известно, что он обогнал первый автомобиль на 5,5 ч позже, чем второй.

Решение . Пусть х км/ч – скорость третьего автомобиля. Скорость первого автомобиля на 50% больше скорости второго, значит, она равна

При движении в одном направлении время встречи находится как отношение расстояния между объектами к разности их скоростей. Первый автомобиль за 40 мин. (2/3 ч) проедет 90  (2/3) = 60 км. Следовательно, третий его догонит (они встретятся) через 60/(х – 90) часов. Второй за 20 мин. (1/3 ч) проедет 60  (1/3) = 20 км. Значит, третий его догонит (они встретятся) через 20/(х – 60) ч. (рис. 17).

П
о условию задачи

Рис. 17

После несложных преобразований получим квадратное уравнение 11х 2 – 1730х + 63000 = 0, решив которое найдем

Проверка показывает, что второй корень не удовлетворяет условию задачи, так как в этом случае третий автомобиль не догонит другие автомобили. Ответ: скорость движения третьего автомобиля 100 км/ч.

Пример .Теплоход прошел по течению реки 96 км, вернулся обратно и некоторое время простоял под погрузкой, затратив на все 32 ч. Скорость течения реки равна 2 км/ч. Определите скорость теплохода в стоячей воде, если время погрузки составляет 37,5% от времени, затраченно­го на весь путь туда и обратно.

Решение . Пусть х км/ч – скорость теплохода в стоячей воде. Тогда (х + 2) км/ч – его скорость по течению; (х – 2) км/ч – против течения; 96/(х + 2) ч. – время движения по течению; 96/(х – 2) ч. – время движения против течения. Так как 37,5% от общего количества времени теплоход стоял под погрузкой, то чистое время движения равно 62,5%  32/100% = 20 (ч.). Следовательно, по условию задачи имеем уравнение:

Преобразовав его, получим: 24(х – 2 + х + 2) = 5(х + 2)(х – 2) => 5х 2 – 4х – 20 = 0. Решив квадратное уравнение, находим: х 1 = 10; х 2 = -0,4. Второй корень не удовлетворяет условию задачи.

Ответ: 10 км/ч – скорость движения теплохода в стоячей воде.

Пример . Автомобиль проехал путь из города А в город С через город В без остановок. Расстояние АВ, равное 120 км, он проехал с постоянной скоростью на 1 ч. быстрее, чем расстояние ВС, равное 90 км. Определите среднюю скорость движения автомобиля от города А до города С, если известно, что скорость на участке АВ на 30 км/ч больше скорости на участке ВС.

Решение . Пусть х км/ч – скорость автомобиля на участке ВС.

Тогда (х + 30) км/ч – скорость на участке АВ, 120/(х + 30) ч, 90/х ч – время, закоторое автомобиль проезжает путиАВ и ВС соответственно.

Следовательно, по условию задачи имеем уравнение:

.

Преобразуем его:

120х + 1(х + 30)х = 90(х + 30) => х 2 + 60х – 2700 = 0.

Решив квадратное уравнение, находим: х 1 = 30, х 2 = -90. Второй корень не удовлетворяет условию задачи. Значит, скорость на участке ВС равна 30 км/ч, на участке АВ – 60 км/ч. Отсюда следует, что расстояние АВ автомобиль проехал за 2 ч. (120 км: 60 км/ч = 2 ч.), а расстояние ВС – за 3 ч. (90 км: 30 км/ч = 3 ч.), поэтому все расстояние АС он проехал за 5 ч. (3 ч. + 2 ч. = 5 ч.). Тогда средняя скорость движения на участке АС, протяженность которого 210 км, равна 210 км: 5 ч. = 42 км/ч.

Ответ: 42 км/ч – средняя скорость движения автомобиля на участке АС.

    К группе задач на работу относятся задачи, в которых говорится о трех величинах: работе А , времени t , в течение которого производится работа, производительности Р – работе, произведенной в единицу времени. Эти три величины связаны уравнением А = Р t . К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров (сосудов, баков, бассейнов и т. п.) с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

Задачи на работу, вообще говоря, можно отнести к группе задач на движение, так как в задачах такого типа можно считать, что вся работа или полный объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по фабуле эти задачи естественным образом различаются, причем часть задач на работу имеют свои специфические приемы решения. Так, в тех задачах, в которых объем выполняемой работы не задан, вся работа принимается за единицу.

Пример. Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно?

Решение . Пусть первая бригада выполняет задание за х дней, вторая бригада – за y дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, a 1/y второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение 12(1/х + 1/у ) = 1.

Из второго условия следует, что вторая бригада работала 15 дней, а первая – только 8 дней. Значит, второе уравнение имеет вид:

8/х + 15/у = 1.

Таким образом, имеем систему:

Вычтем из второго уравнения первое, получим:

21/y = 1 => у = 21.

Тогда 12/х + 12/21 = 1 => 12/ х – = 3/7 => х = 28.

Ответ: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

Пример . Рабочий А и рабочий В могут выполнить работу за 12 дней, рабочий А и рабочий С – за 9 дней, рабочий В и рабочий С – за 12 дней. За сколько дней они выполнят работу, работая втроем?

Решение . Пусть рабочий А может выполнить работу за х дней, рабочий В – за у дней, рабочий С – за z дней. Примем всю работу за единицу. Тогда 1/х, 1/ y и 1/z производительности рабочих А, В и С соответственно. Используя условие задачи, приходим к следующей системе уравнений, представленной в таблице.

Таблица 1

Преобразовав уравнения, имеем систему из трех уравнений с тремя неизвестными:

Сложив почленно уравнения системы, получим:

или

Сумма это совместная производительность рабочих, поэтому время, за которое они выполнят всю работу, будет равно

Ответ: 7,2 дня.

Пример . В бассейн проведены две трубы – подающая и отводя­щая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн и за сколько часов через одну вторую трубу может осушиться полный бассейн?

Решение . Пусть V м 3 – объем бассейна, х м 3 /ч – производительность подающей трубы, у м 3 /ч – отводящей. Тогда V / x ч. – время, необходимое подающей трубе для заполнения бассейна, V / y ч. – время, необходимое отводящей трубе на осушение бассейна. По условию задачи V / x V / y = 2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V /3)/(y x ), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V / x и V / y . Выделим в уравнениях комбинацию неизвестных V / x и V / y , записав систему в виде:

Вводя новые неизвестные V / x = а и V / y = b , получаем следующую систему:

Подставляя во второе уравнение выражение а = b + 2, имеем уравнение относительно b :

решив которое найдем b 1 = 6, b 2 = -8. Условию задачи удовлетворяет первый корень 6, = 6 (ч.). Из первого уравнения последней системы находим а = 8 (ч), то есть первая труба наполняет бассейн за 8 ч.

Ответ: через первую трубу бассейн наполнится через 8 ч., через вторую трубу бассейн осушится через 6 ч.

Пример . Одна тракторная бригада должна вспахать 240 га, а другая на 35% больше, чем первая. Первая бригада, вспахивая ежедневно на 3 га меньше второй, закончила работу на 2 дня раньше, чем вторая бригада. Сколько гектаров вспахивала каждая бригада ежедневно?

Решение . Найдем 35 % от 240 га: 240 га  35 % /100 % = 84 га.

Следовательно, вторая бригада должна была вспахать 240 га + 84 га = 324 га. Пусть первая бригада вспахивала ежедневно х га. Тогда вторая бригада вспахивала ежедневно (х + 3) га; 240/х – время работы первой бригады; 324/(х + 3) – время работы второй бригады. По условию задачи первая бригада закончила работу на 2 дня раньше, чем вторая, поэтому имеем уравнение

которое после преобразований можно записать так:

324х – 240х – 720 = 2х 2 + => 2х 2 – 78х + 720 = 0 => х 2 – 39х + 360 = 0.

Решив квадратное уравнение, находим х 1 = 24, х 2 = 15. Это норма первой бригады.

Следовательно, вторая бригада вспахивала в день 27 га и 18 га соответственно. Оба решения удовлетворяют условию задачи.

Ответ: 24 га в день вспахивала первая бригада, 27 га – вторая; 15 га в день вспахивала первая бригада, 18 га – вторая.

Пример . В мае два цеха изготовили 1080 деталей. В июне первый цех увеличил выпуск деталей на 15%, а второй увеличил выпуск деталей на 12%, поэтому оба цеха изготовили 1224 детали. Сколько деталей изготовил в июне каждый цех?

Решение . Пусть х деталей изготовил в мае первый цех, у деталей – второй. Так как в мае изготовлено 1080 деталей, то по условию задачи имеем уравнение x + y = 1080.

Найдем 15% от х :

Итак, на 0,15х деталей увеличил выпуск продукции первый цех, следовательно, в июне он выпустил х + 0,15 х = 1,15 x деталей. Аналогично найдем, что второй цех в июне изготовил 1,12 y деталей. Значит, второе уравнение будет иметь вид: 1,15 x + 1,12 у = 1224. Таким образом, имеем систему:

из которой находим х = 480, у = 600. Следовательно, в июне цеха изготовили 552 детали и 672 детали соответственно.

Ответ: первый цех изготовил 552 детали, второй – 672 детали.

4. К группе задач на смеси и процентыотносятся задачи, в которых речь идет о смешении различных веществ в определенных пропорциях, а также задачи на проценты.

Задачи на концентрацию и процентное содержание

Уточним некоторые понятия. Пусть имеется смесь из п различных веществ (компонентов) А 1 А 2 , ..., А n соответственно, объемы которых равны V 1 , V 2 , ..., V n . Объем смеси V 0 складывается из объемов чистых компонентов: V 0 = V 1 + V 2 + ... + V n .

Объемной концентрацией вещества А i (i = 1, 2, ..., п) в смеси называется величина с i , вычисляемая по формуле:

Объемным процентным содержанием вещества А i (i = 1, 2, ..., п) в смеси называется величина p i , вычисляемая по формуле р i = с i , 100%. Концентрации с 1, с 2 , ..., с n , являющиеся безразмерными величинами, связаны равенством с 1 + с 2 + ... + с n = 1, а соотноше­ния

показывают, какую часть полного объема смеси составляют объе­мы отдельных компонентов.

Если известно процентное содержание i -го компонента, то его концентрация находится по формуле:

то есть Pi это концентрация i -го вещества в смеси, выраженная в процентах. Например, если процентное содержание вещества составляет 70%, то его соответствующая концентрация равна 0,7. И наоборот, если концентрация равна 0,33, то процентное содержание равно 33%. Таким образом, сумма р 1 + р 2 + …+ р n = 100%. Если известны концентрации с 1 , с 2 , ..., с n компонентов, составляющих данную смесь объема V 0 , то соответствующие объемы компонентов находятся по формулам:

Аналогичным образом вводятся понятия весовые (массовые) кон центрации компонентов смеси и соответствующие процентные со­держания. Они определяются как отношение веса (массы) чистого вещества А i , в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.

Встречаются задачи, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать плотности (удельные веса) компонентов, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонентов с 1 и с 2 1 + с 2 = 1) и удельными весами компонентов d 1 и d 2 . Масса смеси может быть найдена по формуле:

в которой V 1 и V 2 объемы составляющих смесь компонентов. Весовые концентрации компонентов находятся из равенств:

которые определяют связь этих величин с объемными концентрациями.

Как правило, в текстах таких задач встречается одно и то же повторяющееся условие: из двух или нескольких смесей, содержащих компоненты A 1 , A 2 , А 3 , ..., А n , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты А 1, А 2 , А 3 , ..., А n войдут в получившуюся смесь. Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих ее компонентов А 1, А 2 , А 3 , ..., А n . С помощью концентраций нужно «расщепить» каждую смесь на отдельные компоненты, а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждого компонента входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонентов А 1, А 2 , А 3 , ..., А n в новой смеси.

Пример .Имеются два куска сплава меди и цинка с процентным содержанием меди 80% и 30% соответственно. В каком отношении нужно взять эти сплавы, чтобы, переплавив взятые куски вместе, получить сплав, содержащий 60% меди?

Решение . Пусть первого сплава взято х кг, а второго – у кг. По условию концентрация меди в первом сплаве равна 80/100 = 0,8, во втором – 30/100 = 0,3 (ясно, что речь идет о весовых концентрациях), значит, в первом сплаве 0,8х кг меди и (1 – 0,8)х = 0,2х кг цинка, во втором – 0,3 у кг меди и (1 – 0,3)y = 0,7у кг цинка. Количество меди в получившемся сплаве равно (0,8  х + 0,3  у) кг, а масса этого сплава составит (х + у) кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна

По условию задачи эта концентрация должна равняться 0,6. Следова­тельно, получаем уравнение:

Данное уравнение содержит два неизвестных х и у. Однако по условию задачи требуется определить не сами величины х и у, а только их отношение. После несложных преобразований получаем

Ответ: сплавы надо взять в отношении 3: 2.

Пример .Имеются два раствора серной кислоты в воде: первый – 40%-ный, второй – 60%-ный. Эти два раствора смешали, после чего добавили 5 кг чистой воды и получили 20%-ный раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-ного раствора, то получили бы 70%-ный раствор. Сколько было 40%-ного и 60%-ного растворов?

Решение . Пусть х кг – масса первого раствора, у кг – второго. Тогда масса 20%-ного раствора (х + у + 5) кг. Так как в х кг 40%-ного раствора содержится 0,4х кг кислоты, в у кг 60%-ного раствора содержится 0,6y кг кислоты, а в (х + у + 5) кг 20%-ного раствора содержится 0,2(х + у + 5) кг кислоты, то по условию имеем первое уравнение 0,4х + 0,6y = 0,2(х +у + 5).

Если вместо 5 кг воды добавить 5 кг 80%-ного раствора, то получится раствор массой (х + у + 5) кг, в котором будет (0,4х + 0,6у + 0,8  5) кг кислоты, что составит 70% от (х + у + 5) кг.

Алгебраический метод

Алгебраический метод решения задач на построении - один из важнейших методов теории конструктивных задач. Именно с помощью этого метода решаются вопросы, связанные с разрешимостью задач тем или иным набором инструментов.

Кроме того, это один из самых мощных методов, позволяющий решать многие задачи, решение которых обычными способами затруднительно. Метод прекрасно демонстрирует тесную взаимосвязь алгебры и геометрии.

Но, к сожалению, в школьном курсе геометрии алгебраическому методу практически не уделяется внимания, хотя с методической точки зрения изучение этого метода не представляет особых сложностей.

Суть метода состоит в следующем:

а) задача сводится к построению некоторого отрезка;

б) используя известные геометрические соотношения между искомыми и данными, составляют уравнение (систему уравнений), связывающее искомые и данные;

в) решая уравнение или систему уравнений, выражают формулой длину искомого отрезка через длины данных;

г) по формуле строится искомый отрезок (если это возможно);

д) с помощью найденного отрезка строится искомая фигура.

Подготовительную работу составляет изучение основных формул и способов построения, где также отрабатываются некоторые элементы схемы решения задач алгебраическим методом, и усваивается сама идея такого подхода к решению задач на построение.

В школьном курсе геометрии обычно рассматривают построения циркулем и линейкой отрезков, заданных следующими некоторыми простейшими формулами :

1) х = а + b (рис. 8).

2) х = а -- b(а > b) (рис. 9).

Рис. 8

3) х = nа , где n -- натуральное число. Сводится к построению 1). На рис. 10 построен отрезок х , такой, что х = 6а .


Рис. 10

4) х = .

Строим луч, выходящий из какого-либо конца О данного отрезка а под произвольным углом к нему. Откладываем на этом луче n раз произвольный отрезок b , так что OB = nb (см. рис. 11). Соединяем точку В со вторым концом А отрезка а . Через точку В 1 , определяемую условием 1 = b , проводим прямую, параллельную АВ , и отмечаем точку A 1 , в которой она пересечет отрезок а .

5) х = а (n и m -- данные натуральные числа).

Разделим отрезок а на m равных частей и увеличим полученный отрезок в п раз.

6) х = (построение отрезка, четвертого пропорционального трем данным отрезкам).

Запишем условие в виде пропорции с: а = b: х . Пусть (рис. 12) ОА = а , ОС = с , так что члены одного из отношений отложены на одном луче, исходящем из точки О . На другом луче, исходящем из той же точки, откладываем известный член другого отношения ОB = b . Через точку А проводим прямую, параллельную ВС , и отмечаем точку X ее пересечения с прямой ОВ . Отрезок ОХ искомый, то есть ОХ = х .


Рис. 12

Можно воспользоваться построением 6), полагая b = а.

8) х = (построение среднего пропорционального двух данных отрезков).

Строим отрезки АС = а , ВС = b , так что АВ = а + b . На АВ как на диаметре строим полуокружность (см. рис. 13). В точке С восставим перпендикуляр к АВ и отметим точку D его пересечения с окружностью. Тогда х = CD .

9) х = Отрезок x строится как гипотенуза прямоугольного треугольника с катетами а и b (см. рис. 14).

10) х = (a > b). Отрезок x строится как катет прямоугольного треугольника с гипотенузой а и катетом b .

К рассмотренным построениям можно свести построение отрезков, заданных более сложными формулами.

Желательно постепенное изучение этих формул, когда каждая из них разбирается при рассмотрении теории, необходимой для осуществления соответствующего построения.

На этом месте целесообразно также введение простейших задач на алгебраический метод (например, задача о восстановлении отрезков по их сумме и разности) с тем, чтобы формулы рассматривались во взаимосвязи. В дальнейшем, перед серьезным изучением метода, формулы следует повторить.

В Приложении 4 приведена задача на алгебраический метод: “Из вершин данного треугольника как из центров описать три окружности, касающиеся попарно внешним образом”.

Вывод. Описанные методы рекомендуется использовать для решения геометрических задач на построение. При этом необходимо обращать внимание в том числе и на развитие инициативы учащихся, привитие им вкуса и навыков к решению конструктивных задач.

Было бы неправильно думать, что методы решения задач на построение могут служить основой для классификации самих задач. Существенным, а не случайным следует признавать то обстоятельство, что целый ряд задач на построение может одинаково успешно решаться различными методами. С другой стороны, существуют задачи, которые решаются просто комбинацией основных построений без явного применения какого-либо метода.

С методической точки зрения наиболее приемлемым является применение при обучении решению задач на построение следующего принципа. Необходимо осуществлять последовательный подбор задач в соответствии с целями курса геометрии и постепенное ознакомление учащихся с методами решения задач на построение.

В свою очередь, необходимо ознакомить учащихся с самими методами и научить определять, каким из них можно решить предложенную задачу. Для этого, прежде всего, учащихся необходимо научить выделять наиболее характерные признаки задач, решаемых тем или иным методом. Эти признаки определяются самим содержанием метода.



Понравилась статья? Поделитесь с друзьями!