Алгебраическое уравнение. Решение алгебраических уравнений

Материал из Юнциклопедии


Алгебраические уравнения - уравнения вида P(x 1 , ..., x n) = O, где P - многочлен от переменных x 1 , ..., x n . Эти переменные называют неизвестными. Упорядоченный набор чисел (a 1 , ..., a n) удовлетворяет этому уравнению, если при замене x 1 на a 1 , x 2 на a 2 и т.д. получается верное числовое равенство (например, упорядоченная тройка чисел (3, 4, 5) удовлетворяет уравнению x 2 + y 2 = z 2 , поскольку 3 2 + 4 2 = 5 2). Число, удовлетворяющее алгебраическому уравнению с одним неизвестным, называют корнем этого уравнения. Множество всех наборов чисел, удовлетворяющих данному уравнению, есть множество решений этого уравнения. Два алгебраических уравнения, имеющих одно и то же множество решений, называются равносильными. Степень многочлена P называется степенью уравнения P(x 1 , ..., x n) = 0. Например, Зx - 5у + z = c - уравнение первой степени, x 2 + y 2 = z 2 - второй степени, а x 4 - Зx 3 + 1 = 0 - четвертой степени. Уравнения первой степени называют также линейными (см. Линейные уравнения).

Алгебраическое уравнение с одним неизвестным имеет конечное число корней, а множество решений алгебраического уравнения с большим числом неизвестных может представлять собой бесконечное множество определенных наборов чисел. Поэтому обычно рассматривают не отдельные алгебраические уравнения с n неизвестными, а системы уравнений и ищут наборы чисел, одновременно удовлетворяющие всем уравнениям данной системы. Совокупность всех этих наборов образует множество решений системы. Например, множество решений системы уравнений x 2 + y 2 = 10, x 2 - y 2 = 8 таково: {(3; 1), (3; -1), (-3; 1), (-3; -1)}.

Алгебраические уравнения 1-й степени с одним неизвестным решали уже в Древнем Египте и Древнем Вавилоне. Вавилонские писцы умели решать и квадратные уравнения, а также простейшие системы линейных уравнений и уравнений 2-й степени. С помощью особых таблиц они решали и некоторые уравнения 3-й степени, например x 3 + x = a. В Древней Греции квадратные уравнения решали с помощью геометрических построений. Греческий математик Диофант (III в.) разработал методы решения алгебраических уравнений и систем таких уравнений со многими неизвестными в рациональных числах. Например, он решил в рациональных числах уравнение x 4 - y 4 + z 4 = n 2 , систему уравнений y 3 + x 2 = u 2 , z 2 + x 2 = v 3 и т.д. (см. Диофантовы уравнения).

Некоторые геометрические задачи: удвоение куба, трисекция угла (см. Классические задачи древности), построение правильного семиугольника - приводят к решению кубических уравнений. По ходу решения требовалось отыскать точки пересечения конических сечений (эллипсов, парабол и гипербол). Пользуясь геометрическими методами, математики средневекового Востока исследовали решения кубических уравнений. Однако им не удалось вывести формулу для их решения. Первым крупным открытием западноевропейской математики была полученная в XVI в. формула для решения кубического уравнения. Поскольку в то время отрицательные числа еще не получили распространения, пришлось отдельно разбирать такие типы уравнений, как x 3 + px = q, x 3 + q = px и т. д. Итальянский математик С. дель Ферро (1465-1526) решил уравнение x 3 + px = q и сообщил решение своему зятю и ученику А. М. Фиоре, который вызвал на математический турнир замечательного математика-самоучку Н. Тарталью (1499-1557). За несколько дней до турнира Тарталья нашел общий метод решения кубических уравнений и победил, быстро решив все предложенные ему 30 задач. Однако найденная Тартальей формула для решения уравнения x 3 + px + q = 0

x = 3 √(-q/2 + √(q 2 /4 + p 3 /27)) + 3 √(-q/2 + √(q 2 /4 + p 3 /27))

Создание алгебраической символики и обобщение понятия числа вплоть до комплексных чисел позволили в XVII-XVIII вв. исследовать общие свойства алгебраических уравнений высших степеней, а также общие свойства многочленов от одного и нескольких переменных.

Одной из самых важных задач теории алгебраических уравнений в XVII-XVIII вв. было отыскание формулы для решения уравнения 5-й степени. После бесплодных поисков многих поколений алгебраистов усилиями французского ученого XVIII в. Ж. Лагранжа (1736-1813), итальянского ученого П. Руффини (1765-1822) и норвежского математика Н. Абеля в конце XVIII - начале XIX в. было доказано, что не существует формулы, с помощью которой можно выразить корни любого уравнения 5-й степени через коэффициенты уравнения, используя лишь арифметические операции и извлечение корней. Эти исследования были завершены работами Э. Галуа, теория которого позволяет для любого уравнения определить, выражаются ли его корни в радикалах. Еще до этого К. Ф. Гаусс решил проблему выражения в квадратных радикалах корней уравнения x n - 1 = 0, к которому сводится задача о построении с помощью циркуля и линейки правильного n-угольника. В частности, невозможно с помощью этих инструментов построить правильный семиугольник, девятиугольник и т.д. - такое построение возможно лишь в случае, когда n - простое число вида 2 2k + 1 или произведение различных простых чисел такого вида.

Наряду с поисками формул для решения конкретных уравнений был исследован вопрос о существовании корней у любого алгебраического уравнения. В XVIII в. французский философ и математик Ж. Д"Аламбер доказал, что любое алгебраическое уравнение ненулевой степени с комплексными коэффициентами имеет хотя бы один комплексный корень. В доказательстве Д"Аламбера были пропуски, восполненные потом Гауссом. Из этой теоремы следовало, что любой многочлен n-й степени от x разлагается в произведение n линейных множителей.

В настоящее время теория систем алгебраических уравнений превратилась в самостоятельную область математики, называемую алгебраической геометрией. В ней изучаются линии, поверхности и многообразия высших размерностей, задаваемые системами таких уравнений.

Для учащихся, интересующихся математикой, при решении алгебраических уравнений высших степеней эффективным методом быстрого нахождения корней, деление с остатком на двучлен х – a или на ах + b, является схема Горнера.

Рассмотрим схему Горнера.

Обозначим неполное частное при делении Р(х) на х – a через

Q(x) = b 0 x n-1 + b 1 x n-2 + … + b n-1 , а остаток через b n .

Так как Р(х) = Q(x)(х–) + b n , то имеет место равенство

а 0 x n + а 1 x n-1 + … + а n = (b 0 x n-1 + b 1 x n-2 + … + b n-1)(х–a) + b n

Раскроем в правой части скобки и сравним коэффициенты при одинаковых степенях х слева и справа. Получим, что а 0 = b 0 и при 1 < k < n имеют место соотношения а k = b k - a b k-1 . Отсюда следует, что b 0 = а 0 и b k = а k + a b k-1 , 1 < k < n.

Вычисление коэффициентов многочлена Q(x) и остатка b n запишем в виде таблицы:

b 1 =а 1 + b 0

b 2 =а 2 + b 1

b n-1 =а n-1 + b n-2

b n = а n + b n-1

Пример 1. Разделить многочлен 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1.

Решение. Используем схему Горнера.

При делении 2x 4 – 7x 3 – 3х 2 + 5x – 1 на х + 1 получим 2x 3 – 9х 2 + 6x – 1

Ответ: 2x 3 – 9х 2 + 6x – 1

Пример 2. Вычислить Р(3), где Р(х) = 4x 5 – 7x 4 + 5х 3 – 2х + 1

Решение. Используя теорему Безу и схему Горнера, получим:

Ответ: Р(3) = 535

Упражнение

1) Используя схему Горнера, разделить многочлен

4x 3 – x 5 + 132 – 8х 2 на х + 2;

2) Разделить многочлен

2x 2 – 3x 3 – х + х 5 + 1 на х + 1;

3) Найти значение многочлена Р 5 (х) = 2х 5 – 4х 4 – х 2 + 1 при х = 7.

1.1. Отыскание рациональных корней уравнений с целыми коэффициентами

Способ отыскания рациональных корней алгебраического уравнения с целыми коэффициентами дается следующей теоремой.

Теорема: Если уравнение с целыми коэффициентами имеет рациональные корни, то они есть частное от деления делителя свободного члена на делитель старшего коэффициента.

Доказательство: а 0 x n + а 1 x n-1 + … + а n = 0

Пусть х = р/q – рациональный корень, q, p – взаимнопростые.

Подставив дробь р/q в уравнение, и освободившись от знаменателя, получим

а 0 р n + а 1 р n-1 q+ … + а n-1 pq n-1 + a n q n = 0 (1)

Перепишем (1) двумя способами:

a n q n = р(– а 0 р n-1 – а 1 р n-2 q – … – а n-1 q n-1) (2)

а 0 р n = q (– а 1 р n-1 –… – а n-1 рq n-2 – а n q n-1) (3)

Из равенства (2) следует, что a n q n делится на р, и т.к. q n и р взаимно просты, то a n делится на р. Аналогично из равенства (3) следует, что а 0 делится на q. Теорема доказана.

Пример 1. Решить уравнение 2x 3 – 7x 2 + 5х – 1 = 0.

Решение. Целых корней уравнение не имеет, находим рациональные корни уравнения. Пусть p/q несократимая дробь является корнем уравнения, тогда р находим среди делителей свободного члена, т.е. среди чисел ± 1, а q среди положительных делителей старшего коэффициента: 1; 2.

Т.е. рациональные корни уравнения надо искать среди чисел ± 1, ± 1/2, обозначим Р 3 (х) = 2x 3 – 7x 2 + 5х – 1, Р 3 (1) 0, Р 3 (–1) 0,

Р 3 (1/2) = 2/8 – 7/4 + 5/2 – 1 = 0, 1/2 – корень уравнения.

2x 3 – 7x 2 + 5х – 1 = 2x 3 – x 2 – 6 x 2 + 3х + 2х– 1 = 0.

Получим: x 2 (2х – 1) – 3x(2х – 1)+ (2х– 1) = 0; (2х– 1)(x 2 – 3x + 1) = 0.

Приравнивая второй множитель к нулю, и решив уравнение, получим

Упражнения

Решить уравнения:

  1. 6x 3 – 25x 2 + 3х + 4 = 0;
  2. 6x 4 – 7x 3 – 6х 2 + 2х + 1 = 0;
  3. 3x 4 – 8x 3 – 2х 2 + 7х – 1 = 0;

1.2. Возвратные уравнения и методы решения

Определение. Уравнение с целыми степенями относительно неизвестного называется возвратным, если его коэффициенты, равноотстоящие от концов левой части, равны между собой, т.е. уравнение вида

аx n + bx n-1 + cx n-2 + … + cx 2 + bx + а = 0

Возвратное уравнение нечетной степени

аx 2n+1 + bx 2n + cx 2n-1 + … + cx 2 + bx + а = 0

всегда имеет корень х = – 1. Поэтому оно эквивалентно объединению уравнению х + 1 = 0 и . Последнее уравнение является возвратным уравнением четной степени. Таким образом, решение возвратных уравнений любой степени сводится к решению возвратного уравнения четной степени.

Как же его решать? Пусть дано возвратное уравнение четной степени

аx 2n + bx 2n-1 + … + dx n+1 + ex n + dx n-1 + … + bx + а = 0

Заметим, что х = 0 не является корнем уравнения. Тогда делим уравнение на х n , получим

аx n + bx n-1 + … + dx + e + dx -1 + … + bx 1-n + аx -n = 0

Группируем попарно члены левой части

а(x n + x -n) + b(x n-1 + x -(n-1) + … + d(x + x -1) + e = 0

Делаем замену х + х -1 = у. После подстановки выражений х 2 + х -2 = у 2 – 2;

х 3 + х -3 = у 3 – 3у; х 4 + х -4 = у 4 – 4у + 2 в уравнение получим уравнение относительно у Ау n + By n-1 +Cy n-2 + … + Ey + D = 0.

Для решения этого уравнения нужно решить несколько квадратных уравнений вида х + х -1 = у k , где к = 1, 2, … n. Таким образом, получим корни исходного уравнения.

Пример 1. Решить уравнение х 7 + х 6 – 5х 5 – 13х 4 – 13х 3 – 5х 2 + 2х + 1 = 0.

Решение. х = – 1 является корнем уравнения. Применим схему Горнера.

Наше уравнение примет вид:

(х + 1)(х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1) = 0

1) х + 1 = 0, х = -1;

2) х 6 + х 5 – 6х 4 – 7х 3 – 6х 2 + х + 1 = 0 | : x 3 ? 0; х 3 + х 2 – 6х – 7 – 6/х + 1/х 2 + 1/х 3 =0.

Группируя, получим: .

Вводим замену: ; ; .

Получим относительно у уравнение: у 3 – 3у + у 2 – 2 – 6у – 7 = 0;

у 3 + у 2 – 9у– 9 = 0; у 2 (у + 1) – 9(у + 1) = 0; (у + 1)(у 2 – 9); у 1 = -1, у 2,3 = ± 3.

Решая уравнения , , ,

получим корни: , , ,

Ответ: х 1 = -1, ,

Упражнения

Решить уравнения.

  1. 2х 5 + 5х 4 – 13х 3 – 13х 2 + 5х + 2 = 0;
  2. 2х 4 + 3х 3 – 16х 2 + 3х + 2 = 0;
  3. 15х 5 + 34х 4 + 15х 3 – 15х 2 – 34х – 15 = 0.

1.3. Метод замены переменной при решении уравнений

Метод замены переменной - самый распространенный метод. Искусство производить замену переменной заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Если дано уравнение

F(f(x)) = 0, (1)

то заменой неизвестной у = f(x) оно сначала сводится к уравнению

а потом после нахождения всех решений уравнения (2) у 1 , у 2 , …, y n , … сводится к решению совокупности уравнений f(x) =у 1, f(x) = у 2 ,…, f(x) = у 2 , …

Основными способами реализации метода замены переменной являются:

  • использование основного свойства дроби;
  • выделение квадрата двучлена;
  • переход к системе уравнений;
  • раскрытие скобок парами;
  • раскрытие скобок парами и деление обеих частей уравнения;
  • понижение степени уравнения;
  • двойная замена.

1.3.1. Понижение степени уравнения

Решить уравнение (х 2 + х + 2)(х 2 + х + 3) = 6 (3)

Решение. Обозначим х 2 + х + 2 = у, тогда полечим у(у+1)=6, решая последнее, получим у 1 = 2, у 2 = -3. Данное уравнение (3) равносильно совокупности уравнений х 2 + х + 2 = 2

х 2 + х + 2 = -3

Решая первое, получим х 1 = 0, х 2 = -1. Решая второе, получим ,

Ответ: х 1 = 0, х 2 = -1,

1.3.2. Уравнение четвертой степени вида (х + а)(х + b)(x + c)(x + d) = m, где а + b = c + d, или а + с = b + d, или а + d = b + c.

Пример. Решить уравнение (х - 1)(х - 7)(x -4)(x + 2) = 40

Решение. – 1- 4 = - 7 + 2, - 5 = - 5, перемножив эти пары скобок, получим уравнение (х 2 - 5х - 14)(х 2 - 5х + 4) = 40

Введем замену: х 2 - 5х – 14 = у, получим уравнение у(у + 18) = 40, у 2 + 18у = 40, у 2 + 18у – 40 = 0. у 1 = -20, у 2 = 2. Возвращаясь к исходной переменной, решим совокупность уравнений:

1.3.3. Уравнение вида (х + а)(х + b)(x + c)(x + d) = Ех 2 ,

где ab = cd, или ac =bd, или ad = bc. Раскрываем скобки парами и делим обе части на х 2 0.

Пример. (х - 1)(х - 2)(x - 8)(x - 4) = 4х 2

Решение. Произведение чисел, стоящих в первой и третьей, во второй и четвертой скобках, равны, т.е. – 8 (- 1) = (- 2)(- 4). Перемножим указанные пары скобок и запишем уравнение (х 2 - 9х + 8)(х 2 - 6х + 8) = 4х 2 .

Поскольку х = 0 не является корнем уравнения, разделим обе части уравнения на х 2 0, получим: , замена: , исходное уравнение примет вид: t(t+3) =4, t 2 + 3t=4, t 2 + 3t – 4=0, t 1 =1, t 2 = - 4.

Вернемся к исходной переменной:

Первое уравнение решаем, получим х 1,2 = 5 ±

Второе уравнение не имеет корней.

Ответ: х 1,2 = 5 ±

1.3.4. Уравнение четвертой вида (ах 2 + b 1 х + c)(aх 2 + b 2 x + c) = Aх 2

Уравнение (ах 2 + b 1 х+ c)(aх 2 + b 2 x + c) = Aх 2 , где с 0, А 0, не имеет корня х = 0, поэтому, разделив уравнение на х 2 , получим равносильное ему уравнение , которое после замены неизвестной перепишется в виде квадратного и легко решается.

Наз. коэффициентами уравнения и являются данными, хназ. неизвестным и является искомым. Коэффициенты А. у. (1) предполагаются не все равными нулю. Если то наз. степенью уравнения.

Значения неизвестного х, к-рые удовлетворяют уравнению (1), т. е. при подстановке вместо хобращают уравнение в тождество, наз. корнями уравнения (1), а также корнями многочлена

f n (x) = a 0 x n + a 1 x n-1 +...+a n . (2)

Корни многочлена связаны с его коэффициентами по формулам Виета (см. Виета теорема ). Решить уравнение - значит найти все его корни, лежащие в рассматриваемой области значений неизвестного.

Для приложений наиболее важен случай, когда коэффициенты и корни уравнения - числа той или иной природы (напр., рациональные, действительные или комплексные). Рассматривается также и случай, когда коэффициенты и корни - элементы произвольного поля. Если данное число (или элемент поля) с - корень многочлена f n (х), то согласно Безу теореме f n (х).делится на х- с без остатка. Деление можно выполнять по Горнера схеме.

Число (или элемент поля) с наз. k-к ратным корнем многочлена f(x)(k - натуральное число), если f(x).делится на ( х- с ) k , но не делится на (x-с) k+1 . Корни кратности 1 наз. простыми корнями многочлена.

Каждый многочлен f(x).степени n>0 с коэффициентами из поля Римеет в Рне более пкорней, считая каждый корень столько раз, какова его кратность (и, значит, не более празличных корней).

В алгебраически замкнутом поле каждый многочлен степени пимеет ровно пкорней (считая их кратность). В частности, это справедливо для поля комплексных чисел.

Уравнение (1) степени пс коэффициентами из поля Рназ. неприводимым над полем Р, если многочлен (2) неприводим над этим полем, т. е. не может быть представлен в виде произведения других многочленов над полем Р, степени к-рых меньше п. В противном случае многочлен и соответствующее уравнение наз. приводимыми. Многочлены нулевой степени и сам не причисляются ни к приводимым, ни к неприводимым. Свойство данного многочлена быть приводимым или неприводимым над полем Рзависит от рассматриваемого поля. Так, многочлен х 2 -2 неприводим над полем рациональных чисел, т. к. иначе он имел бы рациональные корни, но приводим над полем действительных чисел: х 2 - 2=(х+ Ц2 )( х- Ц2 ) . Аналогично, многочлен х 2 + 1 неприводим над полем действительных чисел, но приводим над полем комплексных чисел. Вообще, над полем комплексных чисел неприводимы только многочлены 1-й степени, и всякий многочлен может быть разложен на линейные множители. Над полем действительных чисел неприводимы только многочлены 1-й степени и многочлены 2-й степени, не имеющие действительных корней (и всякий многочлен разлагается в линейных и неприводимых квадратных многочленов). Над полем рациональных чисел существуют неприводимые многочлены любых степеней, таковы, напр., многочлены вида Неприводимость многочлена над полем рациональных чисел устанавливается критерием Эйзенштейна: если для многочлена (2) степени с целыми коэффициентами существует р такое, что старший не делится на р, все остальные коэффициенты делятся на , а свободный член не делится на то этот многочлен не-нриводим над полем рациональных чисел.

Пусть Р - произвольное поле. Для любого многочлена степени неприводимого над полем Р, существует такое расширение поля Р, в к-ром содержится хотя бы один корень многочлена более того, существует многочлена т. е. поля Р, в к-ром этот многочлен может быть разложен на линейные множители. Любое поле имеет алгебраически замкнутое .

Разрешимость алгебраических уравнений в радикалах. Всякое А. у. степени, не превосходящей 4, решается в радикалах. Решение задач, приводящихся к частным видам уравнении 2-й и 3-й степеней, можно найти еще в древнем Вавилоне (2000 лет до н. э.) (см. Квадратное уравнение, Кубическое уравнение). Первое изложение теории решения квадратных уравнений дано в книге Диофанта «Арифметика» (3 в. н. э.). Решение в радикалах уравнений 3-Й л 4-Й степенен с буквенными коэффициентами было получено итальянскими математиками в 16 в. (см. Кардано , Феррари метод). В течение почти 300 лет после этого делались безуспешные попытки решить в радикалах уравнение с буквенными коэффициентами 5-й и более высоких степеней. Наконец, в 1826 Н. Абель (N. Abel) доказал, что такое невозможно.

Современная формулировка теоремы Абеля: пусть (1) Ч уравнение степени с буквенными коэффициентами Ч любое поле и РЧ поле рациональных функций от с коэффициентами из К; тогда корни уравнения (1) (лежащие в нек-ром расширении поля Р) нельзя выразить через коэффициенты этого уравнения при помощи конечного числа действий сложения, вычитания, умножения, деления (имеющих смысл в поле Р) и знаков корня (имеющих смысл в расширении поля Р). Иными словами, общее уравнение степени n>4 неразрешимо в радикалах (см. , с. 226).

Теорема Абеля не исключает, однако, того, что каждое А. у. с данными числовыми коэффициентами (или коэффициентами из данного поля) решается в радикалах. Уравнения любой степени пнек-рых частных видов решаются в радикалах (напр., двучленные уравнения). Полное решение вопроса о том, при каких условиях А. у. разрешимо в радикалах, было получено ок. 1830 Э. Галуа (Е. Galois).

Основная Галуа теории о разрешимости А. у. в радикалах формулируется следующим образом: пусть Ч многочлен с коэффициентами из поля K, неприводимый над K; тогда: 1) если хотя бы один корень уравнения выражается в радикалах через коэффициенты этого уравнения, причем показатели радикалов не делятся на характеристику ноля K, то Галуа этого уравнения над полем Кразрешима; 2) обратно, если группа Галуа уравнения f(x) = Q над полем Кразрешима, причем K или равна нулю, или больше всех порядков композиционных факторов этой группы, то все корни уравнения представляются в радикалах через его коэффициенты, причем все показатели встречающихся радикалов Ч простые числа, а соответствующие этим радикалам двучленные уравнения неприводимы над полями, к к-рым эти присоединяются.

Э. Галуа доказал эту теорему для случая, когда К Ч поле рациональных чисел; при этом все условия на характеристику поля K, содержащиеся в формулировке теоремы, становятся ненужными.

Теорема Абеля является следствием теоремы Галуа, так как группа Галуа уравнения степени пс буквенными коэффициентами над полем Ррациональных функции от коэффициентов уравнения с коэффициентами из любого поля КЧ симметрич. группа и при неразрешима. Для любого существуют уравнения степени пс рациональными (и даже целыми) коэффициентами, неразрешимые в радикалах. Примером такого уравнения для может служить уравнение , где рЧ простое число. В теории Галуа применяется метод сведения решения данного А. у. к цепочке более простых уравнений, наз. резольвентами данного уравнения.

Разрешимость уравнений в радикалах тесно связана с вопросом о геометрич. построениях с помощью циркуля и линейки, в частности задача о делении окружности на n равных частей (см. Деления круга многочлен, Первообразный корень).

Алгебраические уравнения с одним неизвестным с числовыми коэффициентами. Для отыскания корней А. у. с коэффициентами из поля действительных или комплексных чисел степени выше 2-й, как правило, используются методы приближенных вычислений (напр., Парабол метод). При этом удобно сначала освободиться от кратных корней. Число с является k-кратным корнем многочлена тогда и только тогда, когда многочлен и его производные до порядка 1 включительно обращаются в нуль при . Если разделить на наибольший общий делитель этого многочлена и его производной, то получится многочлен, имеющий те же корни, что и многочлен , но только первой кратности. Можно даже построить многочлены, имеющие в качестве простых корней все корни многочлена одинаковой кратности. Многочлен имеет кратные корни тогда и только тогда, когда его дискриминант равен нулю.

Часто возникают задачи определения границ и числа корней. За верхнюю границу модулей всех корней (как действительных, так и комплексных) А. у. (1) с любыми комплексными коэффициентами можно взять число

В случае действительных коэффициентов более точную границу обычно дает Ньютона метод. К определению верхней границы положительных корней сводится определение нижней границы положительных, а также верхней и нижней границ отрицательных корней.

Для определения числа действительных корней проще всего применить Декарта теорему. Если известно, что все корни данного многочлена действительны (как, напр., для характеристич. многочлена действительной симметрич. матрицы), то теорема Декарта дает точное число корней. Рассматривая многочлен , можно с помощью этой же теоремы найти число отрицательных корней . Точное число действительных корней, лежащих на данном интервале (в частности, число всех действительных корней) многочлена с действительными коэффициентами, не имеющего кратных корней, можно найти по Штурма правилу. Теорема Декарта является частным случаем Бюдана Ч Фурье теоремы, дающей оценку сверху числа действительных корней многочлена с действительными коэффициентами, заключенных в нек-ром фиксированном интервале.

Иногда интересуются разысканием корней специального вида, так, напр., критерий Гурвица дает необходимое и достаточное условие для того, чтобы все корни уравнения (с комплексными коэффициентами) имели отрицательные действительные части (см. Рауса Ч Гурвица критерий).

Для многочлена с рациональными коэффициентами существует метод вычисления всех его рациональных корней. Многочлен с рациональными коэффициентами имеет те же корни, что и многочлен с целыми коэффициентами, получающийся из умножением на общее всех знаменателей коэффициентов Рациональными корнями многочлена с целыми коэффициентами могут быть только те несократимые дроби вида , у к-рых рЧ числа , а Ч делитель числа (и даже только те из этих дробей, для к-рых при любом целом число делится на ).

Если , то все рациональные корни многочлена (если они у него вообще есть) Ч целые числа, являющиеся делителями свободного члена, и могут быть найдены перебором.

Системы алгебраических уравнений. О системах А. у. 1-й степени см. Линейное уравнение.

Систему двух А. у. любых степеней с двумя неизвестными х и у можно записать в виде:

где Ч многочлены от одного неизвестного х.

Если хпридать нек-рое числовое значение, получится система двух уравнений от одного неизвестного ус постоянными коэффициентами . Результантом этой системы будет следующий определитель:

Справедливо утверждение: число тогда и только тогда является корнем результанта , когда или многочлены и имеют общий корень , или оба старших коэффициента и равны нулю.

Таким образом, для решения системы (3) надо найти все корни результанта , подставить каждый из этих корней в систему (3) и найти общие корни этих двух уравнений с одним неизвестным у. Кроме того, надо найти общие корни двух многочленов и и также подставить их в систему (3) и проверить, не имеют ли полученные уравнения с одним неизвестным уобщих корней. Иными словами, решение системы двух А. у. с двумя неизвестными сводится к решению одного уравнения с одним неизвестным и вычислению общих корней двух уравнений с одним неизвестным (общие корни двух или нескольких многочленов с одним неизвестным являются корнями их наибольшего общего делителя). - АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ, уравнение, которое можно преобразовать так, что в левой части будет многочлен от неизвестных, а в правой нуль. Степень многочлена называется степенью уравнения. Простейшие алгебраические уравнения: линейное уравнение… … Иллюстрированный энциклопедический словарь

Уравнение, получающееся при приравнивании двух алгебраических выражений. Напр., x2+xy+y2 =x+1. Алгебраическое уравнение с одним неизвестным может быть преобразовано к виду aо + a1x + ... + anxn=0 … Большой Энциклопедический словарь

алгебраическое уравнение - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN polynomial equation … Справочник технического переводчика - ур ние, получающееся при приравнивании двух алгебр. выражений. Напр., х2 + ху + у2 = х+ 1. А. у. с одним неизвестным х может быть преобразовано к виду ао + а1х+ ...+аnхn = 0 … Естествознание. Энциклопедический словарь

Уравнение четвёртой степени в математике алгебраическое уравнение вида: . Четвёртая степень для алгебраических уравнений является наивысшей, при которой существует аналитическое решение в радикалах в общем виде (то есть при любом значении… … Википедия

График полинома 6 й степени, с 5 критическими точками. Уравнение шестой степени это алгебраическое уравнение, имеющее максимальную степень 6. В общем виде может быть записано следующим образом … Википедия

ТИПЫ УРАВНЕНИЙ

Алгебраические уравнения. Уравнения вида f n = 0, где f n – многочлен от одной или нескольких переменных, называются алгебраическими уравнениями. Многочленом называется выражение вида

f n = a 0 x i y j ... v k + a 1 x l y m ... v n + ¼ + a s x p y q ... v r ,

где x , y , ..., v – переменные, а i , j , ..., r – показатели степеней (целые неотрицательные числа). Многочлен от одной переменной записывается так:

f (x ) = a 0 x n + a 1 x n – 1 + ... + a n – 1 x + a n

или, в частном случае, 3x 4 – x 3 + 2x 2 + 4x – 1. Алгебраическим уравнением с одним неизвестным называется любое уравнение вида f (x ) = 0. Если a 0 ¹ 0, то n называется степенью уравнения. Например, 2x + 3 = 0 – уравнение первой степени; уравнения первой степени называются линейными, так как график функции y = ax + b имеет вид прямой. Уравнения второй степени называются квадратными, а уравнения третьей степени – кубическими. Аналогичные названия имеют и уравнения более высоких степеней.

Трансцендентные уравнения. Уравнения, содержащие трансцендентные функции, такие, как логарифмическая, показательная или тригонометрическая функция, называются трансцендентными. Примером могут служить следующие уравнения:

где lg – логарифм по основанию 10.

Дифференциальные уравнения. Так называются уравнения, содержащие одну или несколько функций и их производные или дифференциалы. Дифференциальные уравнения оказались исключительно ценным средством точной формулировки законов природы.

Интегральные уравнения. Уравнения, содержащие неизвестную функцию под знаком интеграла, например, f (s ) = òK (s, t ) f (t ) dt , где f (s ) и K (s ,t ) заданы, а f (t ) требуется найти.

Диофантовы уравнения. Диофантовым уравнением называется алгебраическое уравнение с двумя или более неизвестными с целыми коэффициентами, решение которого ищется в целых или рациональных числах. Например, уравнение 3x – 5y = 1 имеет решение x = 7, y = 4; вообще же его решениями служат целые числа вида x = 7 + 5n , y = 4 + 3n .

РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Для всех перечисленных выше типов уравнений общих методов решения не существует. И все же во многих случаях, особенно для алгебраических уравнений определенного типа, имеется достаточно полная теория их решения.

Линейные уравнения. Эти простые уравнения решаются путем их сведения к эквивалентному уравнению, из которого непосредственно видно значение неизвестного. Например, уравнение x + 2 = 7 можно свести к эквивалентному уравнению x = 5 вычитанием числа 2 из правой и левой частей. Шаги, совершаемые при сведении простого уравнения, например, x + 2 = 7, к эквивалентному, основаны на использовании четырех аксиом.


1. Если равные величины увеличить на одно и то же число, то результаты будут равны.

2. Если из равных величин вычесть одно и то же число, то результаты будут равны.

3. Если равные величины умножить на одно и то же число, то результаты будут равны.

4. Если равные величины разделить на одно и то же число, то результаты будут равны.

Например, чтобы решить уравнение 2x + 5 = 15, мы воспользуемся аксиомой 2 и вычтем число 5 из правой и левой частей, в результате чего получим эквивалентное уравнение 2x = 10. Затем мы воспользуемся аксиомой 4 и разделим обе части полученного уравнения на 2, в результате чего исходное уравнение сведется к виду x = 5, что и является искомым решением.

Квадратные уравнения. Решения общего квадратного уравнения ax 2 + bx + c = 0 можно получить с помощью формулы

Таким образом, существуют два решения, которые в частном случае могут совпадать.

Другие алгебраические уравнения. Явные формулы, аналогичные формуле для решения квадратного уравнения, можно выписать только для уравнений третьей и четвертой степеней. Но и эти формулы сложны и далеко не всегда помогают легко находит корни. Что же касается уравнений пятой степени или выше, то для них, как доказал Н.Абель в 1824, нельзя указать общую формулу, которая выражала бы корни уравнения через его коэффициенты при помощи радикалов. В отдельных частных случаях уравнения высших степеней удается легко решить, факторизуя их левую часть, т.е. разлагая ее на множители.

Например, уравнение x 3 + 1 = 0 можно записать в факторизованном виде (x + 1)(x 2 – x + 1) = 0. Решения мы находим, полагая каждый из множителей равным нулю:

Таким образом, корни равны x = –1, , т.е. всего 3 корня.

Если уравнение не факторизуется, то следует воспользоваться приближенными решениями. Основные методы нахождения приближенных решений были разработаны Горнером, Ньютоном и Греффе. Однако во всех случаях существует твердая уверенность в том, что решение существует: алгебраическое уравнение n -й степени имеет ровно n корней.

Системы линейных уравнений. Два линейных уравнения с двумя неизвестными можно записать в виде

Решение такой системы находится с помощью определителей

Оно имеет смысл, если Если же D = 0, то возможны два случая. (1) По крайней мере один из определителей и отличен от нуля. В этом случае решения уравнений не существует; уравнения несовместны. Численный пример такой ситуации – система

(2) Оба определителя равны нулю. В этом случае второе уравнение просто кратно первому и существует бесконечное число решений.

Общая теория рассматривает m линейных уравнений с n переменными:

Если m = n и матрица (a ij ) невырожденна, то решение единственно и может быть найдено по правилу Крамера:

где A ji алгебраическое дополнение элемента a ij в матрице (a ij ). В более общем плане существуют следующие теоремы. Пусть r – ранг матрицы (a ij ), s – ранг окаймленной матрицы (a ij ; b i ), которая получается из a ij присоединением столбца из чисел b i . Тогда: (1) если r = s , то существует n – r линейно независимых решений; (2) если r < s , то уравнения несовместны и решений не существует.

АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ, уравнение, имеющее вид F(x 1 ,…,x m)=0, где F - многочлен от m переменных, которые называются неизвестными.

Предполагается, что коэффициенты многочлена принадлежат фиксированному основному полю К. Решением алгебраического уравнения называется такой набор х * 1 ,..., х * m значений неизвестных из поля К (или его расширения), который после подстановки в многочлен F обращает его в нуль. Основной задачей теории алгебраического уравнения является выяснение условий, когда у заданного алгебраического уравнения имеется решение и описание множества всех решений.

Алгебраическое уравнения с одним неизвестным имеет вид

Предполагается, что n>0 и а 0 ≠ 0. Число n называется степенью уравнения, а числа а 0 , а 1 ..., а n - его коэффициентами. Значения неизвестного х, являющиеся решениями уравнения, называются его корнями, а также корнями многочлена F(х). Если α - корень уравнения (1), то многочлен F(х) делится без остатка на (х-α) (теорема Безу). Элемент α основного поля К (или его расширения) называется k-кратным корнем алгебраического уравнения, если многочлен F(х) делится на (х-α)к и не делится на (х-α)к+1. Корни кратности 1 называются также простыми корнями уравнения.

Каждый многочлен степени n с коэффициентами из поля К имеет в К не более n корней, считая корни с учётом их кратностей. Если поле К алгебраически замкнуто, то каждый такой многочлен имеет ровно n корней с учётом их кратностей. В частности, это верно для поля комплексных чисел С (основная теорема алгебры). Из теоремы Безу следует, что F(х) можно представить в виде

где α 1 ,.....α n - корни уравнения. Корни и коэффициенты уравнения связаны формулами Виета

Всякое уравнение степени n≤ 4 разрешается в радикалах. Это означает, что для корней уравнения имеются явные формулы, выражающие корни через коэффициенты уравнения и использующие лишь сложение, вычитание, умножение, деление и извлечение корня. В случае n=2 (квадратное уравнение) формулы имеют вид

Решения задач, сводящихся к частным видам уравнений 2-й и 3-й степеней, встречаются в клинописных текстах Древнего Вавилона. Первое изложение теории решения квадратных уравнений дано в «Арифметике» Диофанта (3 век). Решение в радикалах уравнений 3-й и 4-й степеней в общем виде было получено итальянскими математиками Дж. Кардано и Л. Феррари в 16 веке. Почти 300 лет делались попытки найти общее решение в радикалах уравнений степеней, больших 4. В 1826 году Н. Абелем было доказано, что это невозможно (однако не исключается возможность существования таких формул для конкретных уравнений степени n>4). Полное решение вопроса о том, при каких условиях алгебраическое уравнение разрешимо в радикалах, было получено Э. Галуа (около 1830). Вопрос о разрешимости уравнений в радикалах тесно связан с вопросом о геометрических построениях с помощью циркуля и линейки, в частности с делением окружности на n равных частей, с доказательством невозможности удвоения куба, трисекции угла и квадратуры круга.

Для приложений весьма важен случай, когда коэффициенты и корни уравнения являются числами (из полей Z целых, Q рациональных, R действительных или С комплексных чисел); при этом часто используются специальные свойства этих полей (например, наличие в них топологии или упорядоченности). В этом случае с использованием специальных функций можно получить явные формулы для решения уравнений степени, большей 4.

Для практического нахождения корней уравнений с коэффициентами из R и С используют приближённые методы. Для оценки сверху числа действительных корней уравнений с действительными коэффициентами можно использовать теорему Декарта: число положительных корней, с учётом их кратностей, равно или на чётное число меньше числа перемен знаков в последовательности ненулевых коэффициентов уравнения.

Имеются многочисленные оценки для величин корней. Так, над полем С величины |α i |, i = 1, ..., n, не превосходят

Если коэффициенты вещественны и а 0 ≥а 1 ≥ ... ≥a n ≥0, то все корни уравнения лежат на комплексной плоскости в единичном круге.

В связи с изучением вопроса об устойчивости механических систем возникает вопрос о том, когда все корни данного многочлена F(х) имеют отрицательные действительные части (проблема Рауса - Гурвица). Такие многочлены F называются устойчивыми. Основные результаты об устойчивых многочленах принадлежат Ш. Эрмиту, английскому учёному Э. Раусу, немецким математикам А. Гурвицу, И. Шуру.

Системы алгебраических уравнений с несколькими неизвестными изучаются в алгебраической геометрии. В отдельный раздел, теорию диофантовых уравнений, выделяется изучение алгебраических уравнений над незамкнутыми полями, такими, как поле Q.

Системой алгебраических уравнений называется система уравнений, имеющая вид

Системы уравнений степени 1 (линейных уравнений) изучаются в линейной алгебре.

Простейший результат о числе решений системы алгебраических уравнений относится к случаю, когда имеется k однородных уравнений от k + 1 переменной. Все решения х 1 * ,...,x x+1 k объединяются в классы решений λ 1 * ..., λх k+1 * , где λ≠0 принадлежит полю К. Тогда число ненулевых (классов) решений системы с учётом их кратностей в общем случае равно произведению степеней многочленов F 1 , ..., F k . Условие общности состоит в том, что коэффициенты многочленов F 1 , ..., F k не принадлежат некоторому алгебраическому многообразию в аффинном пространстве А коэффициентов, имеющем строго меньшую размерность, чем А (теорема Безу).

В случае, когда рассматриваются системы неоднородных алгебраических уравнений, для нахождения числа их решений необходимо использовать более тонкие инварианты, чем степень, а именно многогранники Ньютона. Если

где i=(i 1 ,..i n) Є Z n то многогранником Ньютона многочлена F называется выпуклая оболочка в пространстве R n точек i, для которых a i ≠ 0. Число решений системы арифметических уравнений выражается через многогранники Ньютона многочленов F 1 ,. . . ,F k .

Лит.: Мишина А. П., Проскуряков И. В. Высшая алгебра. Линейная алгебра, многочлены, общая алгебра. М., 1965; Курош А. Г. Курс высшей алгебры. М., 1975; Кострикин А. И. Введение в алгебру. М., 1977; Постников М. М. Устойчивые многочлены. М., 1981; Фадеев Д. К., Соминский И. С. Задачи по высшей алгебре. СПб., 2001.

И. В. Проскуряков, А. Н. Паршин.



Понравилась статья? Поделитесь с друзьями!