Диффузия молекул. Диффузия: определение и примеры в окружающем мире

Определение 1

Диффузия молекул характеризуется процессом переноса распределяемого вещества, при этом она обусловлена хаотичным перемещением самих молекул.

Диффузия молекул выполняется без визуального перемещения участков фазы, молекулярное движение при этом будет тепловым. Молекулярная диффузия представляет процесс транспортировки веществ в самопроизвольного характера под воздействием градиента их концентрации.

Концентрационной диффузия будет называться при условии, если ее спровоцировало неоднородное распределение концентрации компонентов смеси.

Суть молекулярной диффузии

Молекулярная диффузия хорошо описана в законе Фика (первом). Согласно указанному закону, количество вещества $dM$, которое продиффундировало за определенное время $dt$ сквозь элементарную поверхность $dF$, станет пропорциональным градиенту концентрации $\frac{dc}{dn}$ такого вещества:

$dM = -{DdFdx}\frac{dc}{dn}$ (1)

$M = -{DFx}\frac{dc}{dn}$ (2)

Из второй формулы следует, что удельный поток переносимого молекулярной диффузией вещества через единицу поверхности $F$ равнозначна единице, в единицу времени $t$ (скорость молекулярной диффузии) составит:

$q_m = \frac{M}{Fx} = -{D}\frac{dc}{dn}$ (3)

Согласно своей структуре закон Фика подобен закону Фурье, в чьи задачи входит описание передачи тепла за счет теплопроводности. При этом в качестве аналога градиента температур в данном случае выступит градиент концентраций, характеризующий изменение концентрации продиффундировавшего вещества на единицу длины нормали между поверхностями постоянных, однако неодинаковых концентраций.

Коэффициент диффузии молекул

Что касается коэффициента пропорциональности $D$, то в выражении закона Фика он будет называться коэффициентом диффузии молекул. Согласно первой формуле (1), коэффициент диффузии выражается таким образом:

$D = \left(\frac{Mdn}{dcFx}\right) = \frac{м^2}{с}$ (4)

Коэффициент диффузии показывает то количество вещества, которое будет диффундировать в единицу времени через поверхность при единичном градиенте концентрации. Коэффициент диффузии $D$ можно считать аналогом коэффициента температуропроводности $а$.

Коэффициент молекулярной диффузии считается физической постоянной, характеризующей свойство проникновения данного вещества посредством процесса диффузии в неподвижную среду. Таким образом, величина $D$ не будет зависимой от гидродинамических условий, в которых наблюдается протекание процесса.

Значения коэффициента диффузии $D$ начнут повышаться при увеличении таких показателей, как давление и температура. Значение $D$ в каждом отдельно рассмотренном случае будет определяться, согласно теоретическим или полуэмпирическим уравнениям, с обязательным учетом давления и температуры.

Замечание 1

Коэффициенты диффузии газа в иную газовую среду получат значения 0,1 – 1 $см^3/с$. В то же время, если газ будет диффундировать в жидкость, они составят приблизительно 1 $см^3/сутки$. Таким образом, диффузия молекул представляет довольно медленный процесс, особенно в жидкой среде.

Примеры диффузии молекул

Замечание 2

Диффузия считается в физике процессом, осуществляемым на молекулярном уровне и определяющимся случайным характером отдельно перемещающихся молекул. Скорость диффузии оказывается пропорциональной, таким образом, средней скорости молекул. Процесс диффузии определяет максимальная тепловая скорость молекул. Имеется в виду скорость молекул самой маленькой массы.

Диффузию характеризует процесс переноса энергии (или материи) из среды высокой концентрации в такую же, только с низкой. Наиболее распространенным примером диффузии считается процесс перемешивания газов (жидкостей) (можно привести пример с попаданием капли чернил в воду и ее последующим равномерным окрашиванием).

В качестве еще одного яркого примера диффузии молекул может выступать эксперимент с твердым телом. Так, при нагревании одного конца стержня или его электрической зарядки, начнет распространяться тепло (а также электрический ток) в направлении от горячей части, которая зарядилась, к холодной (не заряженной).

В ситуации с металлическим стержнем фиксируется быстрое развитие тепловой диффузии при практически мгновенном перемещении тока. В случае с синтетическим стержнем, мы наблюдаем медленное протекание тепловой диффузии и очень медленную диффузию электрически заряженных частиц.

Диффузия молекул как процесс будет происходить еще более медленными темпами. К примеру, кусок сахара (при условии его попадания в воду и без последующего перемешивания) станет однородной с водой массой только спустя несколько недель.

Более медленным будет процесс диффузии одного твердого вещества в иное. Так, медь, покрытая золотым слоем, пролежит еще несколько тысяч лет, прежде чем впитает в свою поверхность золотосодержащий слой. При этом глубина проникновения спустя это время составит только несколько микрометров.

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, — к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ — «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных х, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ΔT, равно числу молекул, находящихся к началу интервала ΔT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v ΔT. (Заметим, что здесь v — настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n_vΔT, где n_ — число особых молекул в единичном объеме слева от площадки (с точностью до множителя ˜ 1 / 6 , но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + vΔT, где n + — плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

А что понимать под n_ и n + ? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n_ — это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n + — плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим n а. Под n а (х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда разность (n + -n_) можно представить в виде

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n_, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1 / 3 . Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль у-и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J x и градиент плотности dn a /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l .

Если в уравнение (43.25) подставить l =vτ и τ=µm, то получится

Ho mv 2 зависит только от температуры. Мы еще помним, что

Таким образом, D, коэффициент диффузии, равен произведению kТ на µ, коэффициент подвижности:

Оказывается, что (43.31) — это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности µ скорость дрейфа дается соотношением

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем J x + J др = 0, или

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (—U/kT), где U — потенциальная энергия. Если говорить о плотности молекул n а, то это значит:

Дифференцируя (43.37) по х, получаем

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна —Fx, a—dU/dx = F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели exp(-U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

В школьной программе в курсе физики (приблизительно в седьмом классе) школьники узнают, что диффузия - это процесс, который представляет собой взаимное проникновение частиц одного вещества между частицами другого вещества, в результате чего происходит выравнивание концентраций во всем занимаемом объеме. Это достаточно сложное для понимания определение. Чтобы разобраться, что такое простая диффузия, закон диффузии, ее уравнение, необходимо подробно изучить материалы по этим вопросам. Однако если человеку достаточно общего представления, то приведенные ниже данные помогут получить элементарные знания.

Физическое явление - что это

В связи с тем, что многие люди путают или же вовсе не знают, что такое физическое явление и чем оно отличается от химического, а также к какому виду явлений относится диффузия, необходимо разобраться, что же такое физическое явление. Итак, как всем известно, физика является самостоятельной наукой, относящейся к области естествознания, которая занимается изучением общих природных законов о структуре и движении материи, а также изучает саму материю. Соответственно, физическое явление - это такое явление, в результате которого не образуется новых веществ, а лишь происходит изменение строения вещества. Отличие физического явления от химического заключается как раз в том, что в результате не получается новых веществ. Таким образом, диффузия - это физическое явление.

Определение термина диффузия

Как известно, формулировок того или иного понятия может быть много, однако общий смысл не должен изменяться. И явление диффузии не является исключением. Обобщенное определение имеет следующий вид: диффузия - это физическое явление, которое представляет собой взаимное проникновение частиц (молекул, атомов) двух и более веществ до равномерного распределения по всему занимаемому этими веществами объему. В результате диффузии не образуется новых веществ, поэтому она и является именно физическим явлением. Простой называют диффузию, в результате которой происходит перемещение частиц из области наибольшей концентрации в область меньшей концентрацией, которое обусловлено тепловым (хаотичным, броуновским) движением частиц. Иными словами, диффузия представляет собой процесс перемешивания частиц разных веществ, причем частицы при этом распределяются равномерно по всему объему. Это очень упрощенное определение, зато наиболее понятное.


Виды диффузии

Диффузию можно зафиксировать как при наблюдении за газообразными и жидкими веществами, так и за твердыми. Поэтому она включает несколько видов:

  • Квантовая диффузия - это процесс диффузии частиц или точечных дефектов (локальных нарушений кристаллической решетки вещества), который осуществляется в твердых телах. Локальные нарушения - это нарушение в определенной точке кристаллической решетки.

  • Коллоидная - диффузия, происходящая во всем объеме коллоидной системы. Коллоидная система представляет собой среду, в которой распределены частицы, пузырьки, капли другой, отличающейся по агрегатному состоянию и составу от первой, среды. Такие системы, а также протекающие в них процессы, подробно изучаются в курсе коллоидной химии.
  • Конвективная - перенос микрочастиц одного вещества макрочастицами среды. Особый раздел физики, называемый гидродинамикой, занимается изучением движения сплошных сред. Оттуда можно почерпнуть знания о состояниях потока.
  • Турбулентная диффузия - это процесс переноса одного вещества в другом, обусловленный турбулентным движением второго вещества (характерна для газов и жидкостей).

Подтверждается высказывание, что диффузия может протекать как в газах и жидкостях, так и в твердых телах.

Что такое закон Фика?

Немецким ученым, физиком Фиком, был выведен закон, показывающий зависимость плотности потока частиц через единичную площадку от изменения концентрации вещества на единицу длины. Этот закон и является законом диффузии. Закон можно сформулировать следующим образом: поток частиц, который направлен по оси, пропорционален производной от числа частиц по переменной, откладываемой вдоль той оси, относительно которой определяется направление потока частиц. Иными словами, движущийся в направлении оси поток частиц пропорционален производной от числа частиц по переменной, которая откладывается вдоль той же оси, что и поток. Закон Фика позволяет описать процесс переноса вещества во времени и пространстве.


Уравнение диффузии

Когда в веществе присутствуют потоки, происходит перераспределение самого вещества в пространстве. В связи с этим существует несколько уравнений, которые описывают этот процесс перераспределения с макроскопической точки зрения. Уравнение диффузии является дифференциальным. Оно вытекает из общего уравнения переноса вещества, которое также называют уравнением непрерывности. При наличии диффузии используется закон Фика, который описан выше. Уравнение имеет следующий вид:

dn/dt=(d/dx)*(D*(dn/dx)+q.

Диффузионные методы


Метод диффузии, точнее метод ее осуществления в твердых материалах, широко используется в последнее время. Это связано с преимуществами метода, одним из которых является простота используемого оборудования и самого процесса. Сущность метода диффузии из твердых источников заключается в нанесении легированных одним или несколькими элементами пленок на полупроводники. Существует еще несколько методов осуществления диффузии, помимо метода твердых источников:

  • в замкнутом объеме (ампульный способ). Минимальная токсичность является преимуществом метода, однако его дороговизна, обусловленная одноразовостью ампулы, является существенным недостатком;
  • в незамкнутом объеме (термическая диффузия). Исключаются возможности использования многих элементов из-за высоких температур, а также боковая диффузия являются большими недостатками данного метода;
  • в частично-замкнутом объеме (бокс-метод). Это промежуточный метод между двумя описанными выше.

Для того, чтобы больше узнать о методах и особенностях проведения диффузии, необходимо изучить дополнительную литературу, посвященную конкретно этим вопросам.

О таком понятии, как диффузия, слышали абсолютно все люди. Это было одной из тем на уроках физики в 7 классе. Несмотря на то что это явление окружает нас абсолютно везде, мало кто знает о нём. Что же оно всё-таки означает? В чём заключается его физический смысл , и как можно облегчить жизнь с её помощью? Сегодня мы с вами об этом и поговорим.

Диффузия в физике: определение

Это - процесс проникновения молекул одного вещества между молекулами другого вещества. Говоря простым языком, этот процесс можно назвать смешиванием. Во время этого смешивания происходит взаимное проникновение молекул вещества друг между другом . Например, при приготовлении кофе молекулы растворимого кофе проникают в молекулы воды и наоборот.

Скорость этого физического процесса зависит от следующих факторов:

  1. Температура.
  2. Агрегатное состояние вещества.
  3. Внешнее воздействие.

Чем выше температура вещества, тем быстрее движутся молекулы. Следовательно, процесс смешивания происходит быстрее при высоких температурах.

Агрегатное состояние вещества - важнейший фактор . В каждом агрегатном состоянии молекулы движутся с определённой скоростью.

Диффузия может протекать в следующих агрегатных состояниях:

  1. Жидкость.
  2. Твёрдое тело.

Скорее всего, у читателя сейчас возникнут следующие вопросы:

  1. Каковы причины возникновения диффузии?
  2. Где она протекает быстрее?
  3. Как она применяется в реальной жизни?

Ответы на них можно узнать ниже.

Причины возникновения

Абсолютно у всего в этом мире есть своя причина. И диффузия не является исключением . Физики прекрасно понимают причины её возникновения. А как донести их до обычного человека?

Наверняка каждый слышал о том, что молекулы находятся в постоянном движении. Причём это движение является беспорядочным и хаотичным, а его скорость очень большая. Благодаря этому движению и постоянному столкновению молекул происходит их взаимное проникновение.

Есть ли какие-то доказательства этого движения? Конечно! Вспомните, как быстро вы начинали чувствовать запах духов или дезодоранта? А запах еды, которую готовит ваша мама на кухне? Вспомните, как быстро готовится чай или кофе . Всего этого не могло быть, если бы не движение молекул. Делаем вывод - основная причина диффузии заключается в постоянном движении молекул.

Теперь остаётся только один вопрос - чем же обусловлено это движение? Оно обусловлено стремлением к равновесию. То есть, в веществе есть области с высокой и низкой концентрацией этих частиц. И благодаря этому стремлению они постоянно движутся из области с высокой концентрацией в низкоконцентрированную. Они постоянно сталкиваются друг с другом , и происходит взаимное проникновение.

Диффузия в газах

Процесс смешивания частиц в газах самый быстрый. Он может происходить как между однородными газами, так и между газами с разной концентрацией.

Яркие примеры из жизни:

  1. Вы чувствуете запах освежителя воздуха благодаря диффузии.
  2. Вы чувствуете запах приготовленной пищи. Заметьте, его вы начинаете чувствовать сразу, а запах освежителя через несколько секунд. Это объясняется тем, что при высокой температуре скорость движения молекул больше.
  3. Слезы, возникающие у вас при нарезании лука. Молекулы лука смешиваются с молекулами воздуха, и ваши глаза на это реагируют.

Как протекает диффузия в жидкостях

Диффузия в жидкостях протекает медленнее. Она может длиться от нескольких минут до нескольких часов.

Самый яркие примеры из жизни:

  1. Приготовление чая или кофе.
  2. Смешивание воды и марганцовки.
  3. Приготовление раствора соли или соды.

В этих случаях диффузия протекает очень быстро (до 10 минут). Однако если к процессу будет приложено внешнее воздействие, например, размешивание этих растворов ложкой, то процесс пойдёт гораздо быстрее и займёт не более одной минуты.

Диффузия при смешивании более густых жидкостей будет происходить гораздо дольше. Например, смешивание двух жидких металлов может занимать несколько часов. Конечно, можно сделать это за несколько минут, но в таком случае получится некачественный сплав .

Например, диффузия при смешивании майонеза и сметаны будет протекать очень долго. Однако, если прибегнуть к помощи внешнего воздействия, то этот процесс и минуты не займёт.

Диффузия в твёрдых телах: примеры

В твёрдых телах взаимное проникновение частиц протекает очень медленно. Этот процесс может занять несколько лет. Его длительность зависит от состава вещества и структуры его кристаллической решётки.

Опыты, доказывающие, что диффузия в твёрдых телах существует.

  1. Слипание двух пластин разных металлов. Если держать эти две пластины плотно друг к другу и под прессом, в течение пяти лети между ними будет слой, имеющий ширину 1 миллиметр. В этом небольшом слое будут находиться молекулы обоих металлов. Эти две пластины будут слиты воедино.
  2. На тонкий свинцовый цилиндр наносится очень тонкий слой золота. После чего эта конструкция помещается в печь на 10 дней. Температура воздуха в печи - 200 градусов Цельсия. После того как этот цилиндр разрезали на тонкие диски, было очень хорошо видно, что свинец проник в золото и наоборот.

Примеры диффузии в окружающем мире

Как вы уже поняли, чем тверже среда, тем меньше скорость смешивания молекул. Теперь давайте поговорим о том, где в реальной жизни можно получить практическую пользу от этого физического явления.

Процесс диффузии происходит в нашей жизни постоянно. Даже когда мы лежим на кровати, очень тонкий слой нашей кожи остаётся на поверхности простыни. А также в неё впитывается пот. Именно из-за этого постель становится грязной, и её необходимо менять.

Так, проявление этого процесса в быту может быть следующим:

  1. При намазывании масла на хлеб оно в него впитывается.
  2. При засолке огурцов соль сначала диффундирует с водой, после чего солёная вода начинает диффундировать с огурцами. В результате чего мы получаем вкуснейшую закуску. Банки необходимо закатывать. Это нужно для того, чтобы вода не испарялась. А точнее, молекулы воды не должны диффундировать с молекулами воздуха.
  3. При мытье посуды молекулы воды и чистящего средства проникают в молекулы оставшихся кусочков еды. Это помогает им отлипать от тарелки, и сделать её более чистой.

Проявление диффузии в природе:

  1. Процесс оплодотворения происходит именно благодаря этому физическому явлению. Молекулы яйцеклетки и сперматозоида диффундируют, после чего появляется зародыш.
  2. Удобрение почв. Благодаря использованию определённых химических средств или компоста почва становится более плодородной. Почему так происходит? Суть в том, что молекулы удобрения диффундируют с молекулами почвы. После чего процесс диффузии происходит между молекулами почвы и корня растения. Благодаря этому сезон будет более урожайным.
  3. Смешивание производственных отходов с воздухом сильно загрязняет его. Из-за этого в радиусе километра воздух становится очень грязным. Его молекулы диффундируют с молекулами чистого воздуха из соседних районов. Именно так ухудшается экологическая обстановка в городе.

Проявление этого процесса в промышленности:

  1. Силицирование - процесс диффузионного насыщения кремнием. Он проводится в газовой атмосфере. Насыщенный кремнием слой детали имеет не очень высокую твёрдость, но высокую коррозионную стойкость и повышенную износостойкость в морской воде, азотной, соляной в серной кислотах.
  2. Диффузия в металлах при изготовлении сплавов играет большую роль. Для получения качественного сплава необходимо производить сплавы при высоких температурах и с внешним воздействием. Это значительно ускорит процесс диффузии.

Эти процессы происходят в различных областях промышленности:

  1. Электронная.
  2. Полупроводниковая.
  3. Машиностроение.

Как вы поняли, процесс диффузии может оказывать на нашу жизнь как положительный, так и отрицательный эффект. Нужно уметь управлять своей жизнью и максимально использовать пользу от этого физического явления, а также минимизировать вред.

Теперь вы знаете, в чём сущность такого физического явления, как диффузия. Она заключается во взаимном проникновении частиц благодаря их движению. А в жизни движется абсолютно все. Если вы школьник, то после прочтения нашей статьи вы точно получите оценку 5. Успехов вам!

— явление проникновения молекул одного вещества в промежутки между молекулами другого вещества.

Мы ощущаем запах духов на некотором расстоянии от флакона. Это объясняется тем, что молекулы духов, так же как и молекулы воздуха, движутся. Между молекулами существуют промежутки. Молекулы духов проникают в промежутки между молекулами воздуха, а молекулы воздуха - в промежутки между молекулами духов.

Опыты показывают, что диффузии в газах - самый быстрый процесс, в жидкостях он протекает гораздо медленнее, но может наблюдаться даже в твердых телах . Соединив гладко отполированными поверхностями два бруска из разных металлов, например из меди и алюминия, и оставив их в таком положении на длительное время (на 4-5 лет), мы обнаружим их сращивание за счет проникновения атомов меди в алюминиевый образец и, наоборот, проникновения атомов алюминия в медный.

Диффузия в газах происходит быстрее, чем в жидкостях, потому, что газы имеют меньшую плотность, чем жидкости, т.е. молекулы газов расположены на больших расстояниях друг от друга. Ещё медленнее происходит диффузия в твёрдых телах, поскольку молекулы твёрдых тел находятся ещё ближе друг к другу, чем молекулы жидкостей.

Скорость диффузии зависит не только от агрегатного состояния вещества, но и от температуры . При более высокой температуре диффузия будет происходить быстрее. Это происходит потому, что при повышении температуры быстрее движутся молекулы. Скорость движения молекул и температура тела взаимосвязаны. Чем больше средняя скорость движения молекул тела, тем выше его температура.

Проявление диффузии: окрашивание, склеивание, проникновение питательных веществ из кишечника в кровь.



Понравилась статья? Поделитесь с друзьями!