Дисперсией называется зависимость. Зависимость показателя преломления вещества и скорости света в нём от частоты световой волны называется дисперсией света

Проследим причины образования спектра. С точки зрения волновой теории всякий колебательный процесс можно характеризовать частотой колебаний, амплитудой и фазой. Амплитуда колебаний, точнее ее квадрат, определяет энергию колебаний. Фаза играет основную роль в явлении интерференции. Цвет всех лучей связан с частотой колебаний. В безвоздушном пространстве лучи любой частоты или длины волны распространяются с одинаковой скоростью. На основании соотношения с= , частота  обратно пропорциональна длине волны  (с=3.10 8м / с - скорость света в вакууме).

Опыт показывает, что во всех более или менее плотных средах волны различной длины распространяются с различной скоростью. в силу этого, показатель преломления, представляющий отношение скорости с света в вакууме к скорости в данной среде:

будет в одной и той же среде иметь различные значения для волн различной длины. Таким образом, входя в призму и выходя из нее, составные части белого луча испытывают различное преломление и выходят расходящимся цветным пучком.

Угол  между гранями призмы /рис.1/, через одну из которых свет проходит, а через другую входит, называется п р е л о м л я ю щ и м

у г л о м п р и з м ы. Противоположная ему грань называется о с н о в а н и е м п р и з м ы. При прохождении через призму лучи отклоняются к основанию призмы. Опыт Ньютона показывает, что среди лучей видимого света наименее преломляемыми являются лучи красного цвета, за ними, по степени преломляемости, идут оранжевые, желтые, зеленые, голубые, синие, фиолетовые лучи. n фиол > n кр

Зависимость показателя преломления среды от длины волны света, а также оптические явления, в которых эта зависимость обнаруживается, носят названия д и с п е р с и я света, а получаемую на экране цветную полосу называют дисперсионным спектром. Дисперсия называется н о р м а л ь н о й, если показатель преломления возрастает с уменьшением длины. В противном случае дисперсия называется а н о м а л ь н о й.

После двухкратного преломления на входной и выходной гранях призмы луч оказывается отклоненным от первоначального направления на угол , называемый углом о т к л о н е н и я. Угол  имеет наименьшее значение при симметричном ходе лучей, т.е. когда AB параллельно основанию призмы. Угол  между крайними лучами дисперсионного спектра называется у г л о м дисперсии. Количественной мерой дисперсии света является отношение изменения показателя преломления n к соответствующему изменению длины световой волны :

На явлении нормальной дисперсии основано действие призматических спектроскопов и спектрографов.

3. Сериальные формулы

Вопрос о спектрах представляется одним из центральных в современной физике: сюда относятся, например, такие обширные отделы современной физики, как учение о строении атома и молекул, учение об изотопах и др.

Линейчатые спектры состоят из ряда тонких прямых линий, которые могут быть расположены как в видимой, так и в инфракрасной и в ультрафиолетовой частях спектра. В видимой части они представляются светлыми линиями на темном фоне, причем цвет линии одинаков с цветом того места сплошного спектра, которые они занимают.

Линейчатый спектр показывает, что данное вещество испускает лучи не всевозможных длин волн / хотя бы в определенных пределах, но только лучи как бы избранные по каким-то правилам или законам. В течение долгого времени ученые тщетно старались найти какие-либо закономерности в распределении спектральных линий различных элементов, т.е. найти зависимость длины  или частоты  от какого-либо параметра.

Такую зависимость установил в 1885 году Бальмер для спектра водорода. Спектр водорода в видимой части состоит из пяти линий: красной, зеленой, синей, фиолетовой 1 и фиолетовой 2.

Бальмер эмпирически установил, что длина волны спектральных линий водорода с большой точностью определяется формулой:

где R - постоянное число, получившее название постоянной Ридберга

R= 10967758 ; сR = 3,29 10 15 1/сек;

n - целые числа, начиная с 3-х;

 - длина волны;

- получило название в о л н о в о е число:
;

 - частота колебаний;

С - скорость распространения света в вакууме.

Подставляя в формулу (2) n = 3 получим значение длины волны для красной линии водорода; при n = 4 - для зеленой; при n = 5 - для синей и т.д.

Ряд спектральных линий, для которых  (или ) связаны между собой одной формулой, называется серией спектральных линий, а сама формула с е р и а л ь н о й.

Серия водородных линий, определяемых формулой (2), называется серией Бальмера. Она продолжается в ультрафиолетовой части спектра. Всего в ней было найдено 29 линий (от n=3 до n=31).

Были получены и другие сериальные формулы водородных линий. В общем случае сериальная формула для водорода имеет вид:

Известны серии Лаймана при n 1 =1, для линий в ультрафиолетовой части спектра. Серия Пашена при n 1 = 3, для линий в инфракрасной части спектра. Известны и другие серии при

n 1 = 4, n 1 = 5, n 1 = 6.

Р. Ридберг показал, что в линейчатых спектрах не только водорода, но и других элементов, наблюдаются спектральные серии, причем частоты  всех линий данной серии удовлетворяют соотношение:

 = Т (n 1) - Т (n 2)

где n 1 и n 2 - целые числа, причем n 2 n 1 +1. Для данной серии n 1 имеет постоянное значение. Изменение числа n дает все линии данной серии. Функции T (n 1) и T (n 2) называются спектральными т е р м а м и. В. Ритц установил справедливость положения названного комбинационным принципом Ритца: частоты спектральных линий излучения любого атома могут быть представлены в виде разности двух термов; составляя различные комбинации термов можно найти все возможные частоты спектральных линий этого атома. Например, беря разность термов для зеленой и красной линии водорода, получим:

R (
-R (
=R (

первую линию водорода серии Пашена. При неограниченном возрастании n частоты  всех серий спектра сходятся к соответствующим границам. Граничные частоты серии водородного спектра Т (n) = .

Все усилия физиков вывести сериальные формулы из общих законов электромагнитной теории света оказалась безуспешным. Не только вывод формул, но даже простое качественное описание возникновения линейчатых спектров оказалось не под силу старой классической физике, хотя предложенная Резерфордом ядерная модель строения атома и была, в основном, правильной.

ОПРЕДЕЛЕНИЕ

Дисперсией света называют зависимость показателя преломления вещества (n) от частоты () или длины волны () света в вакууме (часто индекс 0 опускают):

Иногда дисперсию определяют как зависимость фазовой скорости (v) волн света от частоты.

Всем известное следствие дисперсии - это разложение белого света в спектр при прохождении сквозь призму. Первым свои наблюдения дисперсии света зафиксировал И. Ньютон. Дисперсия является следствием зависимости поляризованности атомов от частоты.

Графическая зависимость показателя преломления от частоты (или длины волны) - дисперсионная кривая.

Дисперсия возникает в результате колебаний электронов и ионов.

Дисперсия света в призме

Если монохроматический пучок света попадает на призму, показатель преломления вещества которой равен n, под углом (рис.1), то после двойного преломления луч отклоняется от первоначального направления на угол :

Если углы А, - маленькие, следовательно малыми являются все остальные углы в формуле (2). В таком случае закон преломления можно записать не через синусы этих углов, а непосредственно через величины самих углов в радианах:

Зная, что , имеем:

Следовательно, угол отклонения лучей при помощи призмы прямо пропорционален величине преломляющего угла призмы:

и зависит от величины . А нам известно, что показатель преломления - функция длины волны. Получается, что лучи, имеющие разные длины волн после того, как пройдут через призму, отклонятся на разные углы. Становится понятным, почему пучок белого света разложится в спектр.

Дисперсия вещества

Величина (D), равная:

называется дисперсией вещества . Она показывает быстроту изменения показателя преломления в зависимости от длины волны.

Показатель преломления для прозрачных веществ при уменьшении длины волны монотонно увеличивается, значит, величина D по модулю растет с уменьшением длины волны. Данная дисперсия называется нормальной. Явление нормальной дисперсии положено в основу действия призменных спектрографов, которые могут использоваться для исследования спектрального состава света.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоят основные различия в дифракционном и призматическом спектрах?
Решение Дифракционная решетка раскладывает свет по длинам волн. По полученным и измеренным углам на направления соответствующих максимумов можно рассчитать длину волны. В отличи от дифракционной решетки призма раскладывает свет по величинам показателя преломления, следовательно, для нахождения длины волны света необходимо иметь зависимость .

Кроме сказанного выше цвета в спектре, полученном в результате дифракции, и призматическом спектре расположены по-разному. Для дифракционной решетки было получено, что синус угла отклонения является пропорциональным длине волны. Значит, красные лучи дифракционная решетка отклоняет больше, чем фиолетовые. Призма раскладывает лучи по величинам показателя преломления, а он для всех прозрачных веществ при росте длины волны монотонно уменьшается. Получается, что красные лучи, обладающие меньшим показателем преломления, будут отклоняться призмой меньше, чем фиолетовые (рис.2).


ПРИМЕР 2

Задание Каким будет угол отклонения () луча стеклянной призмой, если он нормально падает на ее грань? Показатель преломления вещества призмы равен n=1,5. Преломляющий угол призмы составляет тридцать градусов ().
Решение При решении задачи можно воспользоваться рис. 1 в теоретической части статьи. Следует учесть, что . Из рис.1 следует, что

По закону преломления запишем:

Так как , получим, что . Из формулы (2.1) получим, что:

Свет и цвет.

Изучая звуковые явления, мы познакомились с понятием интерференции, которое заключается в том, что при наложении двух когерентных волн (то есть волн с одинаковой частотой и постоянной разностью фаз) образуется так называемая интерференционная картина, то есть не меняющаяся со временем картина распределения амплитуд колебаний в пространстве .

В 1802 году Томас Юнг открыл интерференцию света в результате опыта по сложению пучков света от двух источников. Так как явление интерференции присуще только волновым процессам, то опыт Юнга явился неопровержимым доказательством того, что свет обладает волновыми свойствами.

Юнг не только доказал, что свет – это волна, но и измерил длину волны. Оказалось, что свету разных цветов соответствуют разные интервалы волн. Самые большие значения длин волн у красного света: от до . Дальше в порядке убывания идут: оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Фиолетовый свет самый коротковолновый: от до

Так как между длиной волны и частотой колебаний в ней обратно пропорциональная зависимость, то наибольшей длине волны соответствует наименьшая частота колебаний, а наименьшей длине волны соответствует наибольшая частота колебаний. У красного света частота колебаний находится в диапазоне от до . Волнам фиолетового света соответствуют частоты от до .


Так как во времена Юнга ни о каких волнах, кроме механических, ещё не знали, то свет стали представлять как механическую упругую волну, для распространения которой нужна среда. Но свет от Солнца и звёзд доходит до нас через космическое пространство, где вещества нет. Поэтому возникла гипотеза о существовании особой среды – светоносного эфира. Когда в конце второго десятилетия XIX в. выяснилось, что световые волны – поперечные (а поперечные упругие волны распространяются только в твёрдых телах), получилось, что светоносный эфир должен быть твёрдым, то есть звёзды и планеты движутся в твёрдом светоносном эфире, не встречая сопротивления.

Появление теории Максвелла о существовании электромагнитных волн, способных распространяться в даже вакууме, теоретически обоснованный вывод Максвелла об общей природе световых и электромагнитных волн (электромагнитные волны, как и световые, – это поперечные волны, скорость которых в вакууме равна скорости света в вакууме) положили конец разговорам о «светоносном эфире». Дальнейшее развитие физики подтвердило предположение Максвелла, что свет – это частное проявление электромагнитных волн. Видимый свет – это только небольшой диапазон электромагнитных волн с длиной волны от до или с частотами от до . Повторим таблицу из темы об электромагнитных волнах, чтобы можно было наглядно представить себе этот диапазон.

Волновая теория позволяет объяснить известное вам с восьмого класса явление преломления света, открытое ещё в 1621 году голландским учёным Виллебордом Синеллиусом.

После открытия Синеллиуса несколькими учёными была выдвинута гипотеза о том, что преломление света обусловлено изменением его скорости при переходе через границу двух сред. Справедливость этой гипотезы была теоретически доказана французским юристом и математиком Пьером Ферма (в 1662 году) и, независимо от него, голландским физиком Христианом Гюйгенсом (в 1690 году). Разными путями они пришли к одному и тому же результату, позволяющему сформулировать Закон преломления света известным вам образом:

Лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

– это относительный показатель преломления второй среды относительно первой при переходе луча из первой среды во вторую, имеющую оптическую плотность отличную от оптической плотности первой среды.

Если свет переходит из вакуума в какую-либо среду, то мы имеем дело с абсолютным показателем преломления данной среды (), равным отношению скорости света в вакууме к скорости света в данной среде:

Значение абсолютного показателя преломления любого вещества больше единицы, что видно из таблицы, представленной ниже.

Причина уменьшения скорости света при его переходе из вакуума в вещество кроется во взаимодействии световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света в этой среде. То есть, скорость света в среде и абсолютный показатель преломления среды определяются свойствами этой среды.

Чтобы понять, как изменение скорости света на границе двух сред влияет на преломление светового луча, рассмотрим рисунок. Световая волна на рисунке переходит из менее плотной оптической среды, например, воздуха, в более плотную оптическую среду, например, в воду.

Скорости света в воздухе соответствует длина волны (как известно, частота волны остаётся неизменной, а связь между скоростью волны, её длиной и частотой выражается формулой ). Скорость света в воде равна , а соответствующая ей длина волны равна .

Световая волна падает на границу раздела двух сред под углом .

Первой до границы раздела двух сред доходит точка волны. За промежуток времени точка , перемещаясь в воздухе с прежней скоростью , достигнет точки . За это время точка , перемещаясь в воде со скоростью , пройдёт меньшее расстояние, достигнув только точки . При этом так называемый фронт волны в воде окажется повёрнутым на некоторый угол по отношению к фронту в воздухе, а вектор скорости, который всегда перпендикулярен к фронту волны и совпадает с направлением её распространения, повернётся, приближаясь к перпендикуляру , восставленному к границе раздела двух сред. В результате, угол преломления окажется меньше угла падения .

Как мы знаем, при прохождении через треугольную стеклянную призму, белый свет не только преломляется, отклоняясь к более широкой части призмы, но ещё и раскладывается на спектр, с одинаковым для всех случаев расположением цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый, при этом красный луч оказывается ближе всех к вершине призмы, а фиолетовый – ближайшим к основанию призмы. В восьмом классе мы говорили, что белый свет – сложный, а выделившиеся из белого луча при его прохождении через призму цветные лучи – простые (монохроматические), так как при прохождении через призму любого из полученных при разложении цветных лучей цвет такого луча не меняется. Мы также говорили, что разложение белого светового луча на спектр означает, что лучи разного цвета имеют разный коэффициент преломления на границе двух прозрачных сред. Получается, что показатель преломления зависит не только от свойств среды, но и от частоты (цвета) световой волны. Вспомнив, что наименьшая частота волны красного цвета вдвое меньше наибольшей частоты волны фиолетового цвета, и сопоставив с полученной картиной преломления разложенного на спектр луча, можно сделать вывод, что коэффициент преломления для волн с большей частотой больше, чем для волн с меньшей частотой. А так как коэффициент преломления – это отношение скорости света в первой среде к скорости света во второй, напрашивается вывод, что и скорость света в среде зависит от частоты световой волны. Поэтому немного уточним определение дисперсии света, дававшееся в восьмом классе:

Зависимость показателя преломления вещества и скорости света в нём от частоты световой волны называется дисперсией света.


Дополним имеющиеся у нас из восьмого класса знания о цвете предметов одним опытом. Пропустим белый световой луч через прозрачную стеклянную треугольную призму, чтобы на белом экране появилась картина спектра. Закроем правую часть спектра бумажной полоской зелёного цвета. Цвет полоски останется ярко-зелёным и не поменяет оттенка только там, где на неё падают зелёные лучи. В жёлтой части спектра зелёная бумажная полоска поменяет оттенок на желтовато-зелёный, а в других частях спектра станет тёмной. Значит, покрывающая полоску краска имеет способность отражать только зелёный свет и поглощать свет всех остальных цветов.

В настоящее время для получения чётких и ярких спектров используют специальные оптические приборы: спектрографы и спектроскопы. Спектрограф позволяет получить фотографию спектра – спектрограмму, а спектроскоп – наблюдать получающийся на матовом стекле спектр глазом, увеличив изображение с помощью линзы.

Спектроскоп был сконструирован в 1815 году немецким физиком Йозефом Фраунгофером для исследования явления дисперсии.

При разложении белого светового луча через прозрачную стеклянную призму получается спектр в виде сплошной полосы, в котором представлены все цвета (то есть волны всех частот от
до ), плавно переходящие один в другой. Такой спектр называется сплошным и непрерывным.

Сплошной спектр характерен для твёрдых и жидких излучающих тел, имеющих температуру порядка нескольких тысяч градусов Цельсия. Сплошной спектр дают также светящиеся газы и пары, если они находятся под очень высоким давлением (то есть, если силы взаимодействия между их молекулами достаточно велики). Например, сплошной спектр можно увидеть, если направить спектроскоп на свет от раскалённой нити электрической лампы (), светящуюся поверхность расплавленного металла, пламя свечи. В пламени свечи свет излучается мельчайшими раскалёнными твёрдыми частицами, каждая из которых состоит из огромного количества взаимодействующих между собой атомов.

Если в качестве источника света использовать светящиеся газы малой плотности, состоящие из атомов, взаимодействие между которыми пренебрежимо мало, имеющих температуру и выше, спектр будет выглядеть иначе. Например, если внести в пламя газовой горелки кусочек поваренной соли, то пламя окрасится в жёлтый цвет, а в спектре, наблюдаемом с помощью спектроскопа, будут видны две близко расположенные жёлтые линии, характерные для спектра паров натрия (под действием высокой температуры молекулы NaCl распались на атомы натрия и хлора, но свечение атомов хлора вызвать гораздо труднее, чем свечение атомов натрия).

Другие химические элементы дают другие наборы отдельных линий определённых длин волн. Такие спектры называются линейчатыми .

Спектры (как сплошные, так и линейчатые), получаемые при излучении света раскалённым веществом, называются спектрами испускания .

Кроме спектров испускания, существуют спектры поглощения. Спектры поглощения тоже могут быть линейчатыми.

Линейчатые спектры поглощения дают газы малой плотности, состоящие из изолированных атомов, когда сквозь них проходит свет от яркого и более горячего (по сравнению с температурой самих газов) источника, дающего непрерывный спектр.

Например, если пропустить свет от лампы накаливания через сосуд, содержащий пары натрия, температура которых меньше температуры нити лампы накаливания, в сплошном спектре от света лампы появятся две узкие чёрные линии в том месте, где располагаются жёлтые линии в спектре испускания натрия. Это и будет линейчатый спектр поглощения натрия. То есть линии поглощения атомов натрия точно соответствуют его линиям испускания.

Совпадение линий испускания и линий поглощения можно наблюдать и в спектрах других элементов.

В 1859 году немецкий физик Густав Кирхгоф установил закон излучения (не путать Закон излучения Кирхгофа с Правилами Кирхгофа для расчёта электрических цепей и химическим Законом Кирхгофа), согласно которому атомы данного элемента поглощают световые волны тех же самых частот, на которых они излучают .

Спектр атомов каждого химического элемента уникален, благодаря чему появился метод спектрального анализа, разработанный в 1859 году Густавом Кирхгофом и Робертом Бунзеном.

Спектральным анализом называется метод определения химического состава вещества по его линейчатому спектру.

Для проведения спектрального анализа исследуемое вещество приводят в состояние атомарного газа (атомизируют) и одновременно с этим возбуждают атомы, то есть сообщают им дополнительную энергию. Для атомизации и возбуждения используют высокотемпературные источники света: пламя или электрические разряды. В них помещают образец исследуемого вещества в виде порошка или аэрозоля (то есть мельчайших капелек раствора, распылённого в воздухе). Затем с помощью спектрографа получают фотографию спектров атомов элементов, входящих в состав данного вещества. В настоящее время существуют таблицы спектров всех химических элементов. Отыскав в таблице точно такие же спектры, какие были получены при анализе исследуемого образца, узнают, какие химические элементы входят в его состав.

Спектральный анализ используется в металлургии, машиностроении, атомной индустрии, геологии, археологии, криминалистике, астрономии. В астрономии методом спектрального анализа определяют химический состав атмосфер планет и звёзд, температуру звёзд и магнитную индукцию их полей. По смещению спектральных линий в спектрах галактик была определена их скорость, что позволило сделать вывод о расширении Вселенной.

Почему атомы каждого химического элемента имеют свой строго индивидуальный набор спектральных линий? Почему совпадают линии излучения и поглощения в спектре данного элемента? Чем обусловлены различия в спектрах атомов разных элементов? Ответы на эти вопросы дала возникшая в XX веке квантовая механика, одним из основоположников которой был датский физик Нильс Бор.

Нильс Бор пришёл к заключению, что свет излучается атомами вещества, исходя из чего сформулировал в 1913 году два постулата:

Атом может находиться только в особых, стационарных состояниях. Каждому состоянию соответствует определённое значение энергии – энергетический уровень. Находясь в стационарном состоянии, атом не излучает и не поглощает.

Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. Номера стационарных орбит и энергетических уровней (начиная с первого) в общем случае обозначаются латинскими буквами: , и т.д. Радиусы орбит, как и энергии стационарных состояний, могут принимать не любые, а определённые дискретные значения. Первая орбита расположена ближе всех к ядру.

Дисперсия света

Дисперсия – это зависимость показателя преломления среды от частоты или длины волны. Более физично надо сказать, что дисперсия это зависимость фазовой скорости от частоты.

Следствием дисперсии является разложение призмой белого света в спектр. Данное явление впервые обнаружил Ньютон в 1672г. Угол отклонения Д лучей зависит от преломленного угла призмы Р и показатель преломления n. В призме наиболее сильно отклоняются фиолетовые лучи, а наибольшее слабо– красное. Следовательно, угол отклонения зависит от длины волны света.

Призма, как и дифракционная решетка, является спектральным прибором, но в дифракционной решетке наиболее сильно отклоняются красные лучи. При помощи дифракционной решетки непосредственно определять длину волны падающего света. Призма же дает лишь зависимость угла отклонения от длины волны. Отношение называется дисперсией вещества . Она показывает, как быстро изменяется показатель преломления среды с изменением длины волны . Чем больше длина волны, тем меньше n; или чем больше частота, тем больше n.

В формуле (1) при уменьшении длины волны увеличивается показатель преломления и соответственно увеличивается дисперсия. Такое поведение дисперсии называется нормальной. Вблизи линий и полос поглощения с уменьшением λ, показатель преломления уменьшается, соответственно уменьшается Д и такая дисперсия называется нормальной.

На явлении нормальной дисперсии основана работа спектрометров.

Взаимодействие электромагнитных волн с веществом

Дисперсия света

Дисперсией света называется зависимость показателя преломления n вещества от частоты v (длины волны l) света или зависимость фазовой скорости v световых волн (см. § 154) от его частоты v. Диспер­сия света представляется в виде зависи­мости

Следствием дисперсии является разложе­ние в спектр пучка белого света при про­хождении его через призму. Первые экспе­риментальные наблюдения дисперсии света принадлежат И. Ньютону (1672 г.). Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света па­дает на призму с показателем преломле­ния n (рис. 268) под углом a 1 . После двукратного преломления (на левой и пра­вой гранях призмы) луч оказывается от­клоненным от первоначального направления на угол j.

Из рисунка следует, что j=(a 1 -b 1)+(a 2 -b 2)=a 1 +a 2 -A . (185.2)

Предположим, что углыА и a 1 малы, тогда углы a 2 , b 1 и b 2 будут также малы и вместо синусов этих углов можно вос­пользоваться их значениями. Поэтому a 1 /b 1 =n, b 2 /a 2 =1/n, а так как b 1 +b 2 =А, то



a 2 =b 2 n=n(А -b 1)=n(А-a 1 /n) = nA-a 1 ,

a 1 +a 2 =nA. (185.3)

Из выражений (185.3) и (185.2) следу­ет, что

j=A(n-1), (185.4)

т. е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы.

Из выражения (185.4) вытекает, что угол отклонения лучей призмой зависит от величины n-1 , а n - функция длины во­лны, поэтому лучи разных длин волн после прохождения призмы окажутся отклонен­ными на разные углы, т. е. пучок белого света за призмой разлагается в спектр, что и наблюдалось И. Ньютоном. Таким образом, с помощью призмы, так же как и с помощью дифракционной решетки,

разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракцион­ном и призматическом спектрах.

1. Дифракционная решетка разлагает падающий свет непосредственно по дли­нам волн (см. (180.3)), поэтому по изме­ренным углам (по направлениям соответ­ствующих максимумов) можно вычислить длину волны. Разложение света в спектр в призме происходит по значениям показа­теля преломления, поэтому для определе­ния длины волны света надо знать за­висимость n =f (l) (185.1).

2. Составные цвета в дифракционном и призматическом спектрах располагают­ся различно. Из (180.3) следует, что в дифракционной решетке синус угла от­клонения пропорционален длине волны. Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. Призма же разлагает лучи в спектр по значениям показателя пре­ломления, который для всех прозрачных веществ с увеличением длины волны моно­тонно уменьшается (рис. 269). Следова­тельно, красные лучи, имеющие меньший показатель преломления, чем фиолетовые, отклоняются призмой слабее.

Величина

называемая дисперсией вещества, показы­вает, как быстро изменяется показатель преломления с длиной волны. Из рис. 269 следует, что показатель прелом­ления для прозрачных веществ с уменьше­нием длины волны монотонно увеличивается; следовательно, величина dn/dl по модулю также увеличивается с уменьшением l.



Такая дисперсия называетсянормаль­ной. Как будет показано ниже, ход кривой n (l) - кривой дисперсии - вблизи линий и полос поглощения будет иным: n умень­шается с уменьшением l. Такой ход за­висимости n от lназываетсяаномальной дисперсией.

На явлении нормальной дисперсии ос­новано действие призменных спектрогра­фов. Несмотря на их определенные недо­статки (например, необходимость градуи­ровки, различная дисперсия в разных участках спектра) при определении спек­трального состава света, призменные спектрографы находят широкое примене­ние в спектральном анализе. Это объясня­ется тем, что изготовление хороших призм значительно проще, чем изготовление хо­роших дифракционных решеток. В при­зменных спектрографах также легче полу­чить большую светосилу.

Дисперсия света

Поглощение света.

Закон Бугера

Экспериментально было установлено, что свет, проходя через вещество поглощается. Особенно сильное поглощение наблюдается для тех длин волн, частоты которых совпадают с собственными частотами для данного вещества. Интенсивность света изменяется по закону:

где α – коэффициент поглощения,

I 0 – интенсивность падающего света,

Толщина поглощающего слоя.

Знак минус показывает, что dI и имеют противоположные знаки, т.е. с ростом толщины поглощающего слоя интенсивность прошедшего света падает.

Закон Бугера

Коэффициент поглощения α есть величина обратная величине пути в данном веществе, проходя который, свет уменьшает свою интенсивность в е раз.

Если растворить поглощающие свет вещество в растворителе, который не поглощает данный цвет, то коэффициент поглощения раствора будет прямо пропорционален длине поглощающего вещества, т.е.

Для разряженных газов спектр поглощения является линейчатым. Для газа в молекулярном состоянии спектр поглощения является полосатым. Для твердых диэлектриков спектр поглощения сплошной в определенном интервале частот. Все другие частоты диэлектрик будет пропускать.

Дисперсия света в веществе. Нормальная и аномальная дисперсия. Объяснение дисперсии света.

Электромагнитная волна, а, значит, и световая волна, распространяется внутри вещества с фазовой скоростью υ

Зависимость показателя преломления n вещества от частоты или длины волны падающего на вещество света называется дисперсией света:

n = f(ν); n = f(λ).

Фазовая скорость света, следовательно, также есть функция частоты или длины волны света:

υ = f(ν); υ = f(λ).

Следствием дисперсии световых волн является разложе­ние пучка белого света в спектр при прохождении его через призму. Призматические спектры были известны людям из­давна, стеклянные призмы даже продавались для развлечения. Это явление объяснил Ньютон 6 февраля 1672 г. на заседании Коро­левского научного об­щества, сделав сооб­щение на тему “Новая теория света и цветов”. В этом сообщении Ньютон утверждал, что “наиболее удивительная и чудесная смесь цветов – белый свет”. Явление разло­жения белого света на составляющие Ньютон назвал дисперсией (от лат. dispersio - рассеяние). Призматический спектр изобра­жен на рис. В данном случае, в отличие от дифракционных спектров, свет более коротких волн (фиолетовых) преломляется призмой больше, чем длинных (красных).

Призма располагает световые лучи в спектр по значениям показателя преломления n, который для всех прозрачных веществ с увеличением длины волны уменьшается.

Зависимость n(ν) или n(λ) имеет нелинейный и немонотонный характер. Существуют области частот, для которых n увеличивается с ростом ν (или, что то же самое, уменьшается с ростом λ). Для этих областей частот выполняются условия:

.

В данном случае мы имеем дело с нормальной дисперсией света. Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света и в данном диапазоне частот наблюдается нормальная дисперсия света в стекле. При нормальной дисперсии групповая скорость световых волн в веществе u<υ.

Дисперсия света называется аномальной, если с ростом частоты показатель преломления уменьшается (или с ростом длины волны - увеличивается), т.е.

.

У обычного стекла аномальная дисперсия обнаруживается в ультрафиолетовом и инфракрасном диапазоне световых волн. При аномальной дисперсии групповая скорость больше фазовой u>υ.

Явление дисперсии объясняется с помощью электронной теории Лоренца. В этой теории дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны с частотой данной волны. При приближении частоты световой волны к частоте собственных колебаний электронов возникает явление резонанса, обусловливающее поглощение света. Наличие собственной частоты колебаний приводит к зависимости n от ν, передающей весь ход дисперсии света как вблизи полос поглощения, так и вдали от них (рис. 5.2). На рис. 5.2 АВ – область аномальной дисперсии, наблюдающейся вблизи резонансной частоты, остальные участки описывают аномальную дисперсию.

Отношение называется дисперсией вещества.

Дисперсией света объясняется явление радуги, игра цветов в драгоценных камнях и на хрустале и многие другие явления. 5. 3. Отражение и пропускание света. Окраска тел в природе. @

Отражение света – это явление, заключающееся в том, что при падении света из первой среды на границу раздела со второй средой взаимодействие света с веществом приводит к появлению световой волны, распространяющейся от границы раздела в первую среду. Несамосветящиеся тела становятся видимыми благодаря отражению света от их поверхности. Данное явление тесно связано с явлениями преломления и поглощения света.

Интенсивность отраженного света зависит от угла падения, поляризации падающего пучка лучей, показателей преломления обеих сред и характеризуется коэффициентом отражения R: , где I отр – интенсивность отраженного света. Коэффициент отражения всегда меньше единицы. Если неровности поверхности границы раздела малы по сравнению с длиной волны падающего света, то имеет место правильное, или зеркальное отражение света. Если же размеры неровностей соизмеримы с длиной волны или больше нее, то отражение называется диффузным. При зеркальном отражении фаза отраженного луча скачкообразно меняется. В случае нормального падения на оптически более плотную среду фаза отраженной волны сдвигается наπ. Наибольшим коэффициентом отражения обладают металлы и именно этим объясняется использование металлизированных поверхностей в зеркалах.

Пропускание света – это прохождение сквозь среду оптического излучения без изменения набора частот составляющих его монохроматических излучений и их относительной интенсивности. Процесс пропускания характеризуется коэффициентом пропускания Т, который зависит от размеров тела и состояния его поверхности, а также от спектрального состава, угла падения и поляризации излучения:

Где I проп – интенсивность света, пропущенного веществом. Коэффициент пропускания также всегда меньше единицы. Лучше всего пропускают свет прозрачные тела. Так, коэффициент пропускания обычного стекла близок к единице.

На основе вышеизложенного материала можно понять, от чего зависит окраска окружающих нас тел. Каждое тело, взаимодействуя со светом, имеет способность поглощать, пропускать или отражать свет тех или иных длин волн. Если тело хорошо поглощает падающий на него свет, а отражает и пропускает плохо, оно черное и непрозрачное, как, например, сажа. Белые тела наоборот хорошо отражают падающий на них свет, а поглощают плохо. Окраска всех непрозрачных тел определяется тем, какие длины волн тело лучше отражает. Тело, для которого коэффициент отражения красных длин волн значительно больше коэффициентов отражения других волн, будет красным и т.п. Окраска всех прозрачных тел определяется тем, какие длины волн тело лучше пропускает. Прозрачное тело будет бесцветным, если оно поглощает свет всех цветов в одинаковой мере и таким образом, в прошедшем свете не будет нарушено соотношение между различными составляющими белого света. Если же прозрачное тело обладает избирательным поглощением, то оно приобретает определенную окраску. Прозрачное тело, для которого коэффициент пропускания фиолетовых длин волн значительно больше коэффициентов пропускания других волн, будет фиолетовым и т.п. На этом свойстве основано изготовление светофильтров. Например, красный светофильтр изготавливают из стекла, которое менее всех поглощает и лучше всех пропускает свет красных длин волн. Если на такое стекло направить зеленый или синий свет, то оно будет казаться черным.

ДИСПЕРСИЯ СВЕТА

Дисперсия света - это совокупность оптических явлений, обусловленных зависимостью показателя преломления среды от частоты (или длины волны) проходящего света. Если преломление света происходит на границе пустота-вещество, то говорят о зависимости абсолютного значения коэффициента преломления от длины волны, т. е.

Поскольку , то

Что является математическим выражением дисперсии.

Если двум крайним длинам волн l 1 и l 2 интервала Dl=l 2 -l 1 соответствуют значения показателей преломления n 1 и n 2 , то можно определить величину средней дисперсии:

. (8.6)

Дисперсия света. Формула Коши. Нормальная и аномальная дисперсия показателя преломления. Электронная теория дисперсии.

Поляризатор и анализатор. Поляризатор (англ. polarizer) - устройство, применяемое для получения обычно полностью поляризованного света.

В зависимости от типа поляризованного света (эллиптический или плоскополяризованный), поляризаторы делятся на

1) линейные (плоскополяризованный свет)

поляризационные призмы (напр. Николя из исландского шпата). Втакого рода устройствах используется разложение света при входе в кристалл на два взаимоперпендикулярных пучка с разными показателями преломления (и, соответственно, разными направлениями движения), один из которых гасится в стенке призмы. Раньше применялись в поляризационных микроскопах, сейчас вытеснены дешёвыми поляроидами.

поляроиды - специальные плёнки, в органической основе которых расположены соориентированные кристаллики, обладающие дихроизмом (турмалин, сульфат йодистого хинина). Сейчас применяются поляроиды на поливиниловой основе с заключёнными в них кристалликами сульфата йодистого хинина. Недостатком таких поляроидов является ограниченный срок службы.

стопы - пачки тонких пластинок изотропных веществ, в которых происходит на границах пластинок гашение "лишней" составляющей.

2) циркулярные (эллиптически поляризованный свет)

Для получения такого света используют комбинацию линейного поляризатор и пластинки в долю волны. В частности, для получения света, поляризованного по кругу, используют пластинку в четверть волны.

В поляризационных микроскопах поляризаторы применяются в следующих частях:

поляризатор (поляроид) нижней оптической системы, включённый постоянно.

анализатор (поляроид) верхней оптической системы, используемый, в частности, для наблюдения интервереционной окраски. Может быть и включён, и выключен.

^Закон Малюса. Закон Малюса - физический закон, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла φ между плоскостями поляризации падающего света и поляризатора. где I0 - интенсивность падающего на поляризатор света, I - интенсивность света, выходящего из поляризатора, ka - коэффициент пропускания поляризатора. Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от φ и не учитываемые законом Малюса, определяются дополнительно.

^12. Дисперсия света. Формула Коши. Нормальная и аномальная дисперсия показателя приломления. Электронная теория дисперсии. испе́рсиясве́та (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является неодинаковая скорость распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно чем больше частота волны, тем больше показатель преломления среды и меньше ее скорость света в ней:

у красного цвета максимальная скорость в среде и минимальная степень преломления,

у фиолетового цвета минимальная скорость света в среде и максимальная степень преломления.

Однако в некоторых веществах (например в парах йода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров йода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света. Белый свет разлагается на спектр и в результате прохождения через дифракционную решётку или отражения от нее (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр - равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций - одних из аберраций оптических систем, в том числе фотографических и видео-объективов. Коши пришел к формуле, выражающей зависимость показателя преломления среды от длины волны: где:

λ - длина волны в вакууме;

a, b, c, … - постоянные, значения которых для каждого вещества должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Радуга, чьи цвета обусловлены дисперсией, - один из ключевых образов культуры и искусства. Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.

В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться, подчеркиваться.

^Нормальная и аномальная дисперсия показателя преломления. дисперсия света – это зависимость показателя преломления вещества от частоты световой волны Эта зависимость не линейная и не монотонная. Области значения ν, в которых или соответствуют нормальной дисперсии света (с ростом частоты ν показатель преломления n увеличивается). Нормальная дисперсия наблюдается у веществ, прозрачных для света. Например, обычное стекло прозрачно для видимого света, и в этой области частот наблюдается нормальная дисперсия света в стекле. На основе явления нормальной дисперсии основано «разложение» света стеклянной призмой монохроматоров. Дисперсия называется аномальной, если или т.е. с ростом частоты ν показатель преломления n уменьшается. Аномальная дисперсия наблюдается в областях частот, соответствующих полосам интенсивного поглощения света в данной среде. Например, у обычного стекла в инфракрасной и ультрафиолетовой частях спектра наблюдается аномальная дисперсия.

^Электронная теория дисперсии. Классическая электронная теория дисперсии рассматривает дисперсию света как результат вынужденных колебаний электронов, входящих в состав атома, под действием поля электромагнитной волны.

^13. Тепловой излучение. Излучательная и поглощательная способности вещества и их соотношение. Абсолютное черное тело. Закон Кирхгофа. Теплово́еизлуче́ние или лучеиспускание - передача энергии от одних тел к другим в виде электромагнитных волн за счёт их тепловой энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра, т.е на длины волн от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме.

Примером теплового излучения является свет от лампы накаливания.

Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана - Больцмана.

Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.

Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).

Равновесное излучение - тепловое излучение, находящееся в термодинамическом равновесии с веществом. Тепловое излучение происходит по всему спектру частот от нуля до бесконечности

Интенсивность теплового излучения неравномерна по частотам и имеет явно выраженный максимум при определенной частоте

C ростом температуры общая интенсивность теплового излучения возрастает

C ростом температуры максимум излучения смещается в сторону больших частот (меньших длин волн)

Тепловое излучение характерно для тел независимо от их агрегатного состояния

Отличительным свойством теплового излучения является равновесный характер излучения. Это значит, что если мы поместим тело в термоизолированный сосуд, то количество поглощаемой энергии всегда будет равно количеству испускаемой энергии. Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце. Закон излучения Кирхгофа - физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы. Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое тело излучает энергию по некоторому закону , именуемым излучательной способностью тела.

Величины и могут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры: По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него = 1. Поэтому функция совпадает с излучательной способностью абсолютно чёрного тела, описываемой законом Стефана - Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения - куба Лесли.

^14. Формула Рэлея-Джинса. Закон Стефана-Больцмана. Закон смещения Вина. Закон Рэлея-Джинса - закон излучения Рэлея-Джинса для равновесной плотности излучения абсолютно чёрного тела и для испускательной способности абсолютно чёрного тела который получили Рэлей и Джинс, в рамках классической статистики (теорема о равнораспределении энергии по степеням свободы и представление об электромагнитном поле как о бесконечномерной динамической системе). Правильно описывал низкочастотную часть спектра, при средних частотах приводил к резкому расхождению с экспериментом, а при высоких - к абсурдному результату (см. ниже), означавшему неудовлетворительность классической физики.Закон Стефана-Больцмана. Закон Стефана - Больцмана - закон излучения абсолютно чёрного тела. Определяет зависимость мощности излучения абсолютно чёрного тела от его температуры. Формулировка закона: Мощность излучения абсолютно чёрного тела прямо пропорциональна площади поверхности и четвёртой степени температуры тела:

Закон смещения Вина. Зако́нсмеще́нияВи́на даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела. λmax = b/T ≈ 0,002898 м·К × T −1 (K),

где T - температура, а λmax - длина волны с максимальной интенсивностью. Коэффициент b, называемый постоянной Вина, в системе СИ имеет значение 0,002898 м·К.

Для частоты света υ (в герцах) закон смещения Вина имеет вид где

α ≈ 2,821439… Гц/К - постоянная величина,

k - постоянная Больцмана,

h - постоянная Планка,

T - температура (в кельвинах).

^15. Ограниченность классической теории излучения. Формула Планка . Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком. Для плотности энергии излучения : Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн. Для вывода формулы Планк в 1900 году сделал предположение о том, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением: Коэффициент пропорциональности ћ последствии назвали постоянной Планка,ћ = 1.054 · 10−27 эрг·с. Вывод для абсолютно чёрного тела выражение для средней энергии колебания с частотой ω дается выражением: где ћ - постоянная Планка, k - постоянная Больцмана. Количество стоячих волн в трёхмерном пространстве равно:

Взаимодействие света с веществом. Дисперсия и поглощение света. Нормальная и аномальная дисперсия. Закон Бугера-Ламберта.

Дисперсией света называют явление зависимости абсолютного показателя преломления вещества n от частоты света ω (или длины волны λ):

Следствием дисперсии света является разложение в спектр пучка белого света при прохождении его через призму. Первое экспериментальное исследование дисперсии света в стеклянной призме было выполнено И. Ньютоном в 1672 г.

Дисперсия света называется нормальной в случае, если показатель преломления монотонно возрастает с увеличением частоты (убывает с увеличением длины волны); в противном случае дисперсия называется аномальной , рис.1.

Величина

называется дисперсией вещества и характеризует скорость изменения показателя преломления при изменении длины волны.

Нормальная дисперсия света наблюдается вдали от полос или линий поглощения света веществом, аномальная – в пределах полос или линий поглощения.

Рассмотрим дисперсию света в призме, рис.2.

Пусть монохроматический пучок света падает на прозрачную призму с преломляющим углом θ и показателем преломления n под углом α 1 . После двукратного отклонения (на левой и правой гранях призмы) луч оказывается отклоненным от первоначального направления на угол φ. Из геометрических преобразований следует, что

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол и показатель преломления вещества призмы. Поскольку n = f(λ), то лучи разных длин волн после прохождения призмы окажутся отклоненными на разные углы, т.е. пучок белого света, падающий на призму, за призмой разлагается в спектр, что и наблюдалось впервые Ньютоном. Значит, с помощью призмы, так же как и с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Следует помнить, что составные цвета в дифракционном и призматическом спектрах располагаются различно. В дифракционном спектре синус угла отклонения пропорционален длине волны, следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее. В призме же для всех прозрачных веществ с нормальной дисперсией показатель преломления n с увеличением длины волны уменьшается, поэтому красные лучи отклоняются призмой слабее, чем фиолетовые.

На явлении нормальной дисперсии основано действие призменных спектрометров , широко используемых в спектральном

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты .

Дисперсия света представляется в виде зависимости:

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

, (10.1.1)

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы .

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n , а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы . Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим , что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн , поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно . Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее . Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества , показывает, как быстро меняется показатель преломления с длиной волны .

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной . Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией . Рассмотрим подробнее эти виды дисперсии.



Понравилась статья? Поделитесь с друзьями!