Если окружность вписанная в четырехугольник то сумма. Вписанные и описанные четырехугольники

Четырехугольник является вписанным в окружность, если все его вершины лежат на этой окружности. Такая окружность является описанной около четырехугольника.

Как не каждый четырехугольник можно описать около окружности, также не каждый можно вписать в окружность.

Выпуклый четырехугольник, вписанный в окружность, обладает свойством: его противоположные углы в сумме составляют 180° . Так, если дан четырехугольник ABCD, у которого угол A противоположен углу C, а угол B противоположен углу D, то ∠A + ∠C = 180° и ∠B + ∠D = 180°.

Вообще, если одна пара противоположных углов четырехугольника в сумме составляет 180°, то и другая пара в сумме будет составлять столько же. Это следует из того, что у выпуклого четырехугольника сумма углов всегда равна 360°. В свою очередь данный факт следует из того, что у выпуклых многоугольников сумма углов определяется по формуле 180° * (n – 2), где n - количество углов (или сторон).

Доказать свойство вписанного четырехугольника можно следующим образом. Пусть в окружность O вписан четырехугольник ABCD. Требуется доказать, что ∠B + ∠D = 180°.

Угол B является вписанным в окружность. Как известно, такой угол равен половине дуги, на которую опирается. В данном случае угол B опирается на дугу ADC, значит, ∠B = ½◡ADC. (Поскольку дуга равна углу между образующими ее радиусами, то можно записать, что ∠B = ½∠AOC, внутренняя область которого содержит точку D.)

С другой стороны угол D четырехугольника опирается на дугу ABC, то есть ∠D = ½◡ABC.

Так как стороны углов B и D пересекают окружность в одних и тех же точках (A и C), то они разделяют окружность только на две дуги - ◡ADC и ◡ABC. Так как полная окружность в сумме составляет 360°, то ◡ADC + ◡ABC = 360°.

Таким образом получились следующие равенства:

∠B = ½◡ADC
∠D = ½◡ABC
◡ADC + ◡ABC = 360°

Выразим сумму углов:

∠B + ∠D = ½◡ADC + ½◡ABC

Вынесем ½ за скобку:

∠B + ∠D = ½(◡ADC + ◡ABC)

Заменим сумму дуг их числовым значением:

∠B + ∠D = ½ * 360° = 180°

Мы получили, что сумма противоположных углов вписанного четырехугольника равна 180°. Это и требовалось доказать.

То, что вписанный четырехугольник обладает таким свойством (сумма противоположных углов равна 180°), еще не означает, что любой четырехугольник, у которого сумма противоположных углов равна 180° можно вписать в окружность. Хотя на самом деле это так. Данный факт называется признаком вписанного четырехугольника и формулируется так: если сумма противоположных углов выпуклого четырехугольника равна 180°, то около него можно описать окружность (или вписать его в окружность) .

Доказать признак вписанного четырехугольника можно методом от противного. Пусть дан четырехугольник ABCD, у которого противоположные углы B и D в сумме составляют 180°. При этом угол D не лежит на окружности. Тогда возьмем на прямой, содержащей отрезок CD, такую точку E, чтобы она лежала на окружности. Получится вписанный четырехугольник ABCE. У этого четырехугольника противоположны углы B и E, а, значит, они составляют в сумме 180°. Это следует из свойства вписанного четырехугольника.

Получается, что ∠B + ∠D = 180° и ∠B + ∠E = 180°. Однако угол D четырехугольника ABCD по отношению к треугольнику AED является внешним, а значит больше угла E этого треугольника. Таким образом, мы пришли к противоречию. Значит, если сумма противоположных углов четырехугольника в сумме составляет 180°, то он всегда может быть вписан в окружность.

Вам понадобится

Инструкция

Измерьте все углы данного вам четырехугольника. Найдите суммы противолежащих углов. Вписать четырехугольник в окружность можно только в том случае, если суммы противоположных углов равны 180°. Таким образом, построить описанную окружность всегда можно вокруг квадрата, и трапеции.

Начертите окружность с радиусом R. Определите ее центр. Как , он обозначается О. Найдите на самой окружности произвольную точку и назовите ее любой буквой. Допустим, это будет точка А. Ваши дальнейшие действия от того, именно четырехугольник вам дан. У квадрата диагонали перпендикулярны друг другу и являются радиусами описанной окружности. Поэтому постройте два диаметра, угол между которыми составляет 90°. Точки их пересечения с окружность ю последовательно соедините прямыми линиями.

Чтобы вписать прямоугольник, вам нужно знать угол между диагоналями или же размеры сторон. Во втором случае угол можно будет , использовав теоремы Пифагора, синусов или косинусов. Проведите один из диаметров. Обозначьте его, например, точками А и С. От точки О, которая одновременно является и серединой диагонали, отложите угол между диагоналями. Через центр и новую точку проведите второй диаметр. Точно так же, как и в случае с квадратом, соедините последовательно точки пересечения диаметров с окружность ю.

Для построения равнобедренной трапеции найдите на окружности произвольную точку. Постройте от нее хорду, равную верхнему или нижнему основанию. Найдите ее середину и проведите через нее и центр окружности диаметр, перпендикулярный . Отложите на диаметре высоты трапеции. Через эту точку проведите перпендикуляр в обе стороны до пересечения с окружность ю. Соедините попарно концы .

Полезный совет

При построении вписанных многоугольников в программе AutoCAD сначала найдите в главном меню выпадающее окно "Рисование", а в нем - функцию "Многоугольник". Количество сторон квадрата выставляется сразу. После того, как он появится на экране, перейдите к функции "Вписанный/описанный многоугольник". Нужное построение тут же появится на экране.

Для построения в этой программе трапеции или прямоугольника найдите координаты точки пересечения диагоналей. Она же будет являться и центром описанной окружности.

Трапецией называют плоскую четырехугольную фигуру, две стороны которой (основания) параллельны, а две другие (боковые стороны) обязательно должны быть не параллельны. Если все четыре вершины трапеции лежат на одной окружности, этот четырехугольник называется вписанным в нее. Построить такую фигуру несложно.

Вам понадобится

  • Бумага, карандаш, угольник, циркуль.

Инструкция

Если никаких дополнительных требований к вписанной трапеции нет, вы можете стороны любой длины. Поэтому начните построение с произвольной , например, в нижней левой четверти . Обозначьте ее буквой А - здесь будет одна из вершин вписанной в окружность трапеции.

Проведите горизонтальную линию, начинающуюся в А и заканчивающуюся в месте пересечения с окружность ю в нижней правой . Это место пересечение обозначьте буквой В. Построенный отрезок АВ - это нижнее основание трапеции.

Любым удобным способом начертите параллельный нижнему основанию отрезок, выше центра . Например, если в вашем распоряжении есть , это можно сделать так: приложите его к основанию АВ и начертите вспомогательную перпендикулярную линию. Затем приложите инструмент к вспомогательной линии выше центра круга и начертите перпендикуляры в обе стороны от нее, заканчивая каждый на пересечении с окружность ю. Эти два перпендикуляра должны лежать на одной и тогда они образуют верхнее основание трапеции. Левую крайнюю точку этого основания обозначьте буквой D, а правую - буквой С.

Если угольника нет, но есть циркуль, то построение верхнего основания будет еще проще. Поставьте на левой верхней четверти окружности произвольную точку. Единственное условие - она не должна располагаться строго вертикально над точкой А, иначе построенная фигура будет квадратом. Обозначьте точку буквой D и отложите на циркуле расстояние между точками А и D. Затем установите циркуль в точку В и в правой верхней четверти окружности отметьте точку, соответствующую отложенному расстоянию. Обозначьте ее буквой С и начертите верхнее основание, соединив точки D и С.

Начертите боковые стороны вписанной трапеции, проведя отрезки АD и ВС.

Видео по теме

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом совершенно неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция или что-то иное. Также не играет роли, правильный или неправильный это многоугольник. Необходимо лишь учитывать, что существуют многоугольники, вокруг которых окружность описать нельзя. Всегда можно описать окружность вокруг треугольника. Что касается четырехугольников, то окружность можно описать около квадрата или прямоугольника или равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические понятия и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

Постройте многоугольник с заданными параметрами и , можно ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Каждая из них должна равняться 180°.

Для того, чтобы описать окружность , нужно вычислить ее радиус. Вспомните, где лежит центр окружности в разных многоугольниках. В треугольнике он в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для любого другого выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Разделив диаметр на 2, получаете радиус.

Вычислите радиус описанной окружности для треугольника. Поскольку параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Вместо этой стороны можно взять сторону и противолежащий ей угол.

Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - известные по условиям основания трапеции, h - высота, d - диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту можно вычислить по теореме синусов или косинусов, длины сторон трапеции и углы заданы в условиях . Зная высоту и учитывая подобия треугольников, вычислите диагональ. После этого останется вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет

Чтобы вычислить радиус окружности, описанной вокруг другого многоугольника, выполните ряд дополнительных построений. Получите более простые фигуры, параметры которых вам известны.

Задача вписать в окружность многоугольник нередко может поставить взрослого человека в тупик. Ребенку-школьнику необходимо объяснить ее решение, поэтому родители отправляются в серфинг по всемирной паутине в поисках решения.

Инструкция

Начертите окружность . Поставьте иголку циркуля на сторону окружности, при этом радиус не изменяйте. Проводите две дуги, перекрещивающие окружность , поворачивая циркуль вправо и влево.

Переместите иголку циркуля по окружности в точку пересечения с ней дуги. Снова поворачиваете циркуль и прочерчиваете еще две дуги, пересекая контур окружности. Данную процедуру повторяете до пересечения с первой точкой.

Нарисуйте окружность . Проведите диаметр через ее центр, линии должна быть горизонтальной. Постройте перпендикуляр к через центр окружности, получите вертикальную линию (СВ, например).

Разделите радиус пополам. Отметьте эту точку на линии диаметра (обозначьте ее А). Постройте окружность с центром в точке А и радиусом АС. При пересечении с горизонтальной линией вы получите еще одну точку (D, например). В результате отрезок СD будет являться стороной пятиугольника, который требуется вписать.

Откладывайте полуокружности, радиус которых равен CD, по контуру окружности. Таким образом, исходная окружность будет поделена на пять равных частей. Соедините точки линейкой. Задача по вписыванию пятиугольника в окружность также выполнена.

Далее описывается по вписыванию в окружность квадрата. Проведите линию диаметра . Возьмите транспортир. Поставьте его в точку пересечения диаметра со стороной окружности. Растворите циркуль на длину радиуса.

Проведите две дуги до пересечения с окружность ю, поворачивая циркуль в одну и другую сторону. Переставьте ножку циркуля в противоположную точку и проведите еще две дуги тем же раствором. Соедините полученные точки.

Возведите диаметр в квадрат, разделите на два и извлеките корень. В итоге получите сторону квадрата, который легко впишется в окружность . Растворите циркуль на эту длину. Ставьте его иголку на окружность и рисуйте дугу, пересекающую одну сторону окружности. Перемещайте ножку циркуля в полученную точку. Снова проведите дугу.

Повторите процедуру и нарисуйте еще две точки. Соедините все четыре точки. Это более простой способ вписать квадрат в окружность .

Рассмотрите задачу по вписыванию в окружность . Нарисуйте окружность . Возьмите точку произвольно на окружности - она будет вершиной треугольника. От этой точки, сохраняя циркуля, проведите дугу до пересечения с окружность ю. Это будет вторая вершина. Из нее аналогичным способом постройте третью вершину. Соедините точки линейкой. Решение найдено.

Видео по теме

Вписать квадрат в окружность легко можно с помощью чертежных инструментов. Но эта задача решается даже при полном их отсутствии. Необходимо только помнить некоторые свойства квадрата.

Вам понадобится

  • -циркуль
  • -карандаш
  • -угольник
  • -ножницы

Инструкция

Нарисуйте к задаче. Очевидно, что диаметр окружности является диагональю вписанного в эту . Вспомните известное свойство квадрата: его диагонали взаимно перпендикулярны. Используйте эту взаимосвязь диагоналей при построении заданного квадрата.

Начертите в окружности диаметр. Из центра с помощью угольника проведите второй диаметр под углом 90 градусов к первому. Соедините точки пересечения перпендикулярных диаметров с окружностью и получите вписанный в эту окружность квадрат.

Если из чертежных инструментов у вас имеется только циркуль, начертите окружность. Отметьте на окружности произвольную точку и проведите через нее диаметр с помощью с ровным краем. Теперь нужно с помощью циркуля разделить половину окружности между концами диаметра на две равные части. Из точек пересечения диаметра с окружностью сделайте две засечки, сохраняя неизменным раствор циркуля. Через точку пересечения этих засечек и центр окружности проведите второй диаметр. Очевидно, что он будет перпендикулярен первому.

Если чертежных инструментов у вас нет, можно вырезать круг, ограниченный заданной окружностью. Сложите вырезанную фигуру точно пополам. Повторите операцию. Нужно совместить концы линии сгиба, тогда криволинейные участки совпадут без дополнительных усилий. Зафиксируйте линии сложения. Теперь разверните круг. Линии сгибов отчетливо видны. Загните сегменты круга между точками пересечения линий сгибов с окружностью и отрежьте эти сегменты. Линии отреза являются сторонами искомого квадрата. Поместите вырезанный квадрат в заданную окружность, совместив ее центр с точкой пересечения линий сгиба круга. Вершины квадрата окажутся лежащими на окружности, что и требовалось выполнить.

Окружность называется вписанной в многоугольник, если она полностью размещается внутри этого многоугольника. Каждая сторона описанной фигуры имеет с окружностью общую точку.








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели.

Образовательная. Создание условий для успешного усвоения понятия описанного четырёхугольника, его свойства, признака и овладения умениями применять их на практике.

Развивающая. Развитие математических способностей, создание условий для умения обобщать и применять прямой и обратный ход мыслей.

Воспитательная. Воспитание чувства красоты эстетикой чертежей, удивления необычным

решением, формирование организованности, ответственность за результаты своего труда.

1. Изучить определение описанного четырёхугольника.

2. Доказать свойство сторон описанного четырёхугольника.

3. Познакомить с двойственностью свойств сумм противоположных сторон и противоположных углов вписанного и описанного четырёхугольников.

4. Дать опыт практического применения рассмотренных теорем при решении задач.

5. Провести первичный контроль уровня усвоения нового материала.

Оборудование:

  • компьютер, проектор;
  • учебник “Геометрия. 10-11 классы” для общеобразоват. учреждений: базовый и профил. уровни авт. А.В. Погорелов.

Программные средства: Microsoft Word, Microsoft Power Point.

Использование компьютера при подготовке учителя к уроку.

С помощью стандартной программы операционной системы Windows созданы к уроку:

  1. Презентация.
  2. Таблицы.
  3. Чертежи.
  4. Раздаточный материал.

План урока

  • Организационный момент. (2 мин.)
  • Проверка домашнего задания. (5 мин.)
  • Изучение нового материала. (28 мин.)
  • Самостоятельная работа. (7 мин.)
  • Домашнее задание.(1 мин.)
  • Итог урока. (2 мин.)
  • Ход урока

    1. Организационный момент. Приветствие. Сообщение темы и цели урока. Запись в тетради даты и темы урока.

    2. Проверка домашнего задания.

    3. Изучение нового материала.

    Работа над понятием описанного многоугольника.

    Определение. Многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.

    Вопрос. Какие из предложенных многоугольников являются описанными, а какие не являются и почему?

    <Презентация. Слайд №2>

    Доказательство свойств описанного четырёхугольника.

    <Презентация. Слайд №3>

    Теорема. В описанном четырёхугольнике суммы противоположных сторон равны.

    Учащиеся работают с учебником, записывают формулировку теоремы в тетрадь.

    1. Представить формулировку теоремы в форме условного предложения.

    2. Каково условие теоремы?

    3. Каково заключение теоремы?

    Ответ. Если четырёхугольник описан около окружности, то суммы противолежащих сторон равны.

    Проводится доказательство, учащиеся делают записи в тетради.

    <Презентация. Слайд №4>

    Учитель. Отметим двойственность ситуаций для сторон и углов описанного и вписанного четырёхугольников.

    Закрепление полученных знаний.

    Задачи.

  • Противоположные стороны описанного четырёхугольника 8 м и 12 м. Можно ли найти периметр?
  • Задачи по готовым чертежам. <Презентация. Слайд №5>
  • Ответ. 1. 10 м. 2. 20 м. 3. 21 м

    Доказательство признака описанного четырёхугольника.

    Сформулировать обратную теорему.

    Ответ. Если в четырёхугольнике суммы противоположных сторон равны, то в него можно вписать окружность. (Вернуться к слайду 2, рис.7) <Презентация. Слайд №2>

    Учитель. Уточните формулировку теоремы.

    Теорема. Если суммы противоположных сторон выпуклого четырёхугольника равны, то в него можно вписать окружность.

    Работа с учебником. Познакомиться с доказательством признака описанного четырёхугольника по учебнику.

    Применение полученных знаний.

    3. Задачи по готовым чертежам.

    1. Можно ли вписать окружность в четырёхугольник с противоположными сторонами 9 м и 4 м, 10 м и 3 м?

    2. Можно ли вписать окружность в равнобокую трапецию с основаниями 1 м и 9 м, высотой 3 м?

    <Презентация. Слайд №6>

    Письменная работа в тетрадях

    .

    Задача. Найти радиус окружности, вписанной в ромб с диагоналями 6 м и 8 м.

    <Презентация. Слайд № 7>

    4. Самостоятельная работа.

      1 вариант

    1. Можно ли вписать окружность

    1) в прямоугольник со сторонами 7 м и 10 м,

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 7 м и 10 м.

    Найти периметр четырёхугольника.

    3. Равнобокая трапеция с основаниями 4 м и 16 м описана около окружности.

    1) радиус вписанной окружности,

    2 вариант

    1. Можно ли вписать окружность:

    1) в параллелограмм со сторонами 6 м и 13 м,

    2) в квадрат?

    2. Противоположные стороны четырёхугольника, описанного около окружности, равны 9 м и 11 м. Найти периметр четырёхугольника.

    3. Равнобокая трапеция с боковой стороной 5 м описана около окружности с радиусом 2 м.

    1) основание трапеции,

    2) радиус описанной окружности.

    5. Домашнее задание. П.86, № 28, 29, 30.

    6. Итог урока. Проверяется самостоятельная работа, выставляются оценки.

    <Презентация. Слайд № 8>

    ABCD через a, b, с, d и его диагонали через x и y .Проведем AK ^ BС и СL ^ AD.

    Так как сумма противоположных углов вписанного четырехугольника равна 2d, то, если угол B острый, угол D должен быть тупым.

    Поэтому из треугольников ABС и ADС можем написать:

    x 2 = a 2 + b 2 - 2b . BK ;

    x 2 = с 2 + d 2 + 2d . DL .

    Прямоугольные треугольники ABK и СDL подобны , т.к. они содержат по равному острому углу (углы B и СDL равны, потому что каждый из них служит дополнением до 2d к углу ADС).

    Из их подобия выводим:

    откуда BK . с = DL . a .

    Таким образом, мы получим три уравнения с тремя неизвестными x, BK и DL.

    Чтобы исключить BK и DL , уравняем в первых двух уравнениях последние члены, для чего умножим уравнение на сd , а уравнение на ab .

    Сложив затем результаты и, приняв во внимание уравнение , найдем:

    (ab + сd)x 2 = a 2 сd + b 2 сd + с 2 ab + d 2 ab =aс(ad + bс) + bd(bс+ad)=(aс + bd)(ad+bс),

    .

    Заметим, что в числителе подкоренной величины первый множитель - сумма произведений противоположных сторон, а второй - сумма произведений сторон, сходящихся в концах определяемой диагонали, знаменатель же представляет сумму произведений сторон, сходящихся в концах другой диагонали.

    После этого мы можем, по аналогии, написать следующую формулу для диагонали y:

    .

    Следствие 1.

    Произведение диагоналей вписанного четырехугольника равно сумме произведений противоположных сторон.

    Действительно, перемножив выражения, выведенные для x и для y, получим:

    Это предложение известно под именем теоремы Птоломея .

    Следствие 2.

    Отношение диагоналей вписанного четырехугольника равно отношению суммы произведений сторон, сходящихся в концах первой диагонали, к сумме произведений сторон, сходящихся в концах второй диагонали.

    Действительно, разделив те же два равенства, найдем:

    .

    Эти два следствия удобны для запоминания. Из них можно обратно вывести формулы для x и y (перемножением или делением равенств, определяющих xy и x/y).

    «Описанная окружность» мы видели, что вокруг всякого треугольника можно описать окружность. То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:

    Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?

    Вот оказывается, что это НЕПРАВДА! НЕ ВСЕГДА четырехугольник можно вписать в окружность . Есть очень важное условие:

    На нашем рисунке:

    .

    Посмотри, углы и лежат друг напротив друга, значит, они противоположные. А что же тогда с углами и? Они вроде бы тоже противоположные? Можно ли вместо углов и взять углы и?

    Конечно, можно! Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет. Оставшиеся два угла тогда сами собой тоже дадут в сумме. Не веришь? Давай убедимся. Смотри:

    Пусть. Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, . То есть - всегда! . Но, → .

    Волшебство прямо!

    Так что запомни крепко-накрепко:

    Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

    и наоборот:

    Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

    Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна.

    Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма? Попробуем сперва «методом тыка».

    Вот как-то не получается.

    Теперь применим знание:

    предположим, что нам как-то удалось посадить на параллелограмм окружность. Тогда непременно должно быть: , то есть.

    А теперь вспомним о свойствах параллелограмма:

    у всякого параллелограмма противоположные углы равны.

    У нас получилось, что

    А что же углы и? Ну, то же самое конечно.

    Вписанный → →

    Параллелограмм→ →

    Потрясающе, правда?

    Получилось, что если параллелограмм вписан в окружность, то все его углы равны, то есть это прямоугольник!

    И ещё при этом - центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника . Это, так сказать, в качестве бонуса прилагается.

    Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность - прямоугольник .

    А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция . Почему?

    Вот пусть трапеция вписана в окружность. Тогда опять, но из-за параллельности прямых и.

    Значит, имеем: → → трапеция равнобокая.

    Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо - пригодиться:

    Давай ещё раз перечислим самые главные утверждения , касающиеся четырехугольника, вписанного в окружность:

    1. Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна
    2. Параллелограмм, вписанный в окружность - непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
    3. Трапеция, вписанная в окружность - равнобокая.

    Вписанный четырехугольник. Средний уровень

    Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике? Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность , а есть такая теорема:

    Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна .

    На нашем рисунке -

    Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему. Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.

    Расшифровываем:

    1. «Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна.
    2. «Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна, то такой четырехугольник можно вписать в окружность.

    Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».

    А теперь разбираемся, отчего же верно и 1, и 2?

    Сначала 1.

    Пусть четырехугольник вписан в окружность. Отметим её центр и проведём радиусы и. Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального? Если помнишь - сейчас применим, а если не очень - загляни в тему «Окружность. Вписанный угол» .

    Вписанный

    Вписанный

    Но посмотри: .

    Получаем, что если - вписанный, то

    Ну, и ясно, что и тоже в сумме составляет. (нужно так же рассмотреть и).

    Теперь и «наоборот», то есть 2.

    Пусть оказалось так, что у четырехугольника сумма каких - то двух противоположных углов равна. Скажем, пусть

    Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника мы гарантированно окружность описать можем. Так и сделаем это.

    Если точка не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.

    Рассмотрим оба случая.

    Пусть сначала точка - снаружи. Тогда отрезок пересекает окружность в какой-то точке. Соединим и. Получился вписанный (!) четырехугольник.

    Про него уже знаем, что сумма его противоположных углов равна, то есть, а по условию у нас.

    Получается, что должно бы быть так, что.

    Но это никак не может быть поскольку - внешний угол для и значит, .

    А внутри? Проделаем похожие действия. Пусть точка внутри.

    Тогда продолжение отрезка пересекает окружность в точке. Снова - вписанный четырехугольник, а по условию должно выполняться, но - внешний угол для и значит, то есть опять никак не может быть так, что.

    То есть точка не может оказаться ни снаружи, ни внутри окружности - значит, она на окружности!

    Доказали всю-всю теорему!

    Теперь посмотрим, какие же хорошие следствия даёт эта теорема.

    Следствие 1

    Параллелограмм, вписанный в окружность, может быть только прямоугольником.

    Давай-ка поймём, почему так. Пусть параллелограмм вписан в окружность. Тогда должно выполняться.

    Но из свойств параллелограмма мы знаем, что.

    И то же самое, естественно, касательно углов и.

    Вот и получился прямоугольник - все углы по.

    Но, кроме того, есть ещё дополнительный приятный факт: центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.

    Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр - прямой.

    Диаметр,

    Диаметр

    а значит, - центр. Вот и всё.

    Следствие 2

    Трапеция, вписанная в окружность - равнобедренная.

    Пусть трапеция вписана в окружность. Тогда.

    И так же.

    Всё ли мы обсудили? Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно), а докажем только в последнем уровне теории.

    Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону из точек и, равны), то такой четырехугольник - вписанный.

    Это очень важный рисунок - в задачах часто бывает легче найти равные углы, чем сумму углов и.

    Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:

    « - вписанный» - и всё будет отлично!

    Не забывай этот важный признак - запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачки.

    Вписанный четырехугольник. Краткое описание и основные формулы

    Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна

    и наоборот:

    Если у четырехугольника есть два противоположных угла, сумма которых равна, то такой четырехугольник вписанный.

    Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна.

    Параллелограмм, вписанный в окружность - непременно прямоугольник , и центр окружности совпадает с точкой пересечения диагоналей.

    Трапеция , вписанная в окружность - равнобокая .



    Понравилась статья? Поделитесь с друзьями!