Какие функции называются непрерывными. Непрерывность функций – теоремы и свойства

Зависимость сопротивления от температуры

Материал из Википедии - свободной энциклопедии

Перейти к: навигация, поиск

Сопротивление R однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины и сечения следующим образом:

Где ρ - удельное сопротивление вещества проводника, L - длина проводника, а S - площадь сечения. Величина, обратная удельному сопротивлению называется удельной проводимостью. Эта величина связана с температурой формулой Нернст-Эйнштейна:

T - температура проводника;

D - коэффициент диффузии носителей заряда;

Z - количество электрических зарядов носителя;

e - элементарный электрический заряд;

C - Концентрация носителей заряда;

Постоянная Больцмана.

Следовательно, сопротивление проводника связано с температурой следующим соотношением:

Сопротивление также может зависеть от параметров S и I поскольку сечение и длина проводника также зависят от температуры.

2) Идеальный газ - математическая модель газа, в которой предполагается, что: 1) потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией; 2) суммарный объём молекул газа пренебрежимо мал; 3) между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги; 4) время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями. В расширенной модели идеального газа частицы, из которого он состоит, имеют форму упругих сфер или эллипсоидов, что позволяет учитывать энергию не только поступательного, но и вращательно-колебательного движения, а также не только центральные, но и нецентральные столкновения частиц.

Давление газа:

Газ всегда заполняет объём, ограниченный непроницаемыми для него стенками. Так, например, газовый баллон или камера автомобильной шины практически равномерно заполнены газом.

Стремясь расшириться, газ оказывает давление на стенки баллона, камеры шины или любого другого тела, твёрдого или жидкого, с которым он соприкасается. Если не принимать во внимание действия поля тяготения Земли, которое при обычных размерах сосудов лишь ничтожно меняет давление, то при равновесии давления газа в сосуде представляется нам совершенно равномерным. Это замечание относится к макромиру. Если же представить себе, что происходит в микромире молекул, составляющих газ в сосуде, то ни о каком равномерном распределении давления не может быть и речи. В одних местах поверхности стенки молекулы газа ударяют в стенки, в то время как в других местах удары отсутствуют. Эта картина всё время беспорядочным образом меняется. Молекулы газа ударяют о стенки сосудов, а затем отлетают со скоростью почти что равной скорости молекулы до удара.

Идеальный газ. Для объяснения свойств вещества в газообразном состоянии используется модель идеального газа. В модели идеального газа предполагается следующее: молекулы обладают пренебрежимо малым объемом по сравнению с объемом сосуда, между молекулами не действуют силы притяжения, при соударениях молекул друг с другом и со стенками сосуда действуют силы отталкивания.

Задача к Билету№16

1)Работа равна мощность*время = (квадрат напряжения)/сопротивление * время

Сопротивление = 220 вольт *220 вольт * 600 секунд / 66000 джоулей = 440 Ом

1. Переменный ток. Действующее значение силы тока и напряжения.

2. Фотоэлектрический эффект. Законы фотоэффекта. Уравнение Эйнштейна.

3. Определите скорость красного света =671 нм в стекле с показателем преломления 1,64.

Ответы на Билет№17

Переменный ток - электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

Действующим (эффективным) значением силы переменного тока называют величину постоянного тока, действие которого произведёт такую же работу (тепловой или электродинамический эффект), что и рассматриваемый переменный ток за время одного периода. В современной литературе чаще используется математическое определение этой величины - среднеквадратичное значение силы переменного тока.

Иначе говоря, действующее значение тока можно определить по формуле:

Для гармонических колебаний тока Аналогичным образом определяются действующие значения ЭДС и напряжения.

Фотоэффект, Фотоэлектрический эффект - испускание электронов веществом под действием света (или любого другого электромагнитного излучения). В конденсированных (твёрдых и жидких) веществах выделяют внешний и внутренний фотоэффект.

Законы Столетова для фотоэффекта:

Формулировка 1-го закона фотоэффекта: Сила фототока прямо пропорциональна плотности светового потока.

Согласно 2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.

3-й закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если то фотоэффект уже не происходит. Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hν каждый, где h - постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода φ, покидает металл: максимальная кинетическая энергия, которую имеет электрон при вылете из металла.

Законы внешнего фотоэффекта

Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещённости катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):

И Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой.

Для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (зависящая от химической природы вещества и состояния поверхности), ниже которой фотоэффект невозможен.

Уравнения Эйнштейна (иногда встречается название «уравнения Эйнштейна - Гильберта») - уравнения гравитационного поля в общей теории относительности, связывающие между собой метрику искривлённого пространства-времени со свойствами заполняющей его материи. Термин используется и в единственном числе: «уравне́ние Эйнште́йна», так как в тензорной записи это одно уравнение, хотя в компонентах представляет собой систему уравнений в частных производных.

Выглядят уравнения следующим образом:

Где тензор Риччи, получающийся из тензора кривизны пространства-времени посредством свёртки его по паре индексов, R - скалярная кривизна, то есть свёрнутый тензор Риччи, метрический тензор, о

космологическая постоянная, а представляет собой тензор энергии-импульса материи, (π - число пи, c - скорость света в вакууме, G - гравитационная постоянная Ньютона).

Задача к Билету№17

к = 10 * 10 в 4= 10 в 5 н/м=100000н/м

F=k*дельта L

дельта L = mg/k

ответ 2 см

1. Уравнение Менделеева-Клапейрона. Термодинамическая шкала температур. Абсолютный нуль.

2. Электрический ток в металлах. Основные положения электронной теории металлов.

3.Какую скорость приобретает ракета за 1мин, двигаясь из состояния покоя с ускорением 60м/с2?

Ответы на Билет№18

1) Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

P-давление

Vm- молярный объём

R- универсальная газовая постоянная

T- абсолютная температура, К.

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

Уравнение, выведенное Клапейроном, содержало некую неуниверсальную газовую постоянную r значение которой необходимо было измерять для каждого газа:

Менделеев же обнаружил, что r прямо пропорциональна u коэффициент пропорциональности R он назвал универсальной газовой постоянной.

ТЕРМОДИНАМИЧЕСКАЯ ТЕМПЕРАТУРНАЯ шкала (Кельвина шкала) - абсолютная шкала температур, не зависящая от свойств термометрического вещества (начало отсчета - абсолютный нуль температуры). Построение термодинамической температурной шкалы основано на втором начале термодинамики и, в частности, на независимости кпд Карно цикла от природы рабочего тела. Единица термодинамической температуры - кельвин (К) - определяется как 1/273,16 часть термодинамической температуры тройной точки воды.

Абсолютный нуль температуры (реже - абсолютный ноль температуры) - минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.

Электрический ток - направленное (упорядоченное) движение заряженных частиц. Такими частицами могут являться: в металлах - электроны, в электролитах - ионы (катионы и анионы), в газах - ионы и электроны, в вакууме при определенных условиях - электроны, в полупроводниках - электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток имеет следующие проявления:

нагревание проводников (в сверхпроводниках не происходит выделения теплоты);

изменение химического состава проводников (наблюдается преимущественно в электролитах);

создание магнитного поля (проявляется у всех без исключения проводников)

Теории кислот и оснований - совокупность фундаментальных физико-химических представлений, описывающих природу и свойства кислот и оснований. Все они вводят определения кислот и оснований - двух классов веществ, реагирующих между собой. Задача теории - предсказание продуктов реакции между кислотой и основанием и возможности её протекания, для чего используются количественные характеристики силы кислоты и основания. Различия между теориями лежат в определениях кислот и оснований, характеристики их силы и, как следствие - в правилах предсказания продуктов реакции между ними. Все они имеют свою область применимости, каковые области частично пересекаются.

Основные положения электронной теории металлов взаимодействия чрезвычайно распространенены в природе и находят широкое применение в научной и производственной практике. Теоретические представления о кислотах и основаниях имеют важное значение в формировании всех концептуальных систем химии и оказывают разностороннее влияние на развитие многих теоретических концепций во всех основных химических дисциплинах. На основе современной теории кислот и оснований разработаны такие разделы химических наук, как химия водных и неводных растворов электролитов, рН-метрия в неводных средах, гомо- и гетерогенный кислотно-основный катализ, теория функций кислотности и многие другие.

Задача на Билет№18

v=at=60м/с2*60с=3600м/с

Ответ: 3600м/с

1. Ток в вакууме. Электронно-лучевая трубка.

2. Квантовая гипотеза Планка. Квантовая природа света.

3. Жесткость стального провода равна 10000 Н/м. на сколько удлинится трос, если к нему подвесить груз массой 20 кг.

Ответы на Билет№19

1)Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj. Соответственно потенциальная энергия электрона уменьшается на eDj.

Кинескоп - электронно-лучевой прибор, преобразующий электрические сигналы в световые. Широко применяется в устройстве телевизоров, до 1990-х годов использовались телевизоры исключительно на основе кинескопа. В названии прибора отразилось слово «кинетика», что связано с движущимися фигурами на экране.

Основные части:

электронная пушка, предназначена для формирования электронного луча, в цветных кинескопах и многолучевых осциллографических трубках объединяются в электронно-оптический прожектор;

экран, покрытый люминофором - веществом, светящимся при попадании на него пучка электронов;

отклоняющая система, управляет лучом таким образом, что он формирует требуемое изображение.

2) Гипотеза Планка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию Е, пропорциональную частоте ν излучения:

где h или коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики.

Квантовая природа света - элементарная частица, квант электромагнитного излучения (в узком смысле - света). Это безмассовая частица, способная существовать в вакууме только двигаясь со скоростью света. Электрический заряд фотона также равен нулю. Фотон может находиться только в двух спиновых состояниях с проекцией спина на направление движения (спиральностью) ±1. В физике фотоны обозначаются буквой γ.

Классическая электродинамика описывает фотон как электромагнитную волну с круговой правой или левой поляризацей. С точки зрения классической квантовой механики, фотону как квантовой частице свойственен корпускулярно-волновой дуализм, он проявляет одновременно свойства частицы и волны.

Задача к Билету№19

F=k*дельта L

дельта L = mg/k

дельта L = 20кг*10000н/кг / 100000н/м = 2 см

ответ 2 см

1. Электрический ток в полупроводниках. Собственная проводимость полупроводников на примере кремния.

2. Законы отражения и преломления света.

3. Какую работу совершает электрическое поле по перемещению 5х10 18 электронов на участке цепи с разностью потенциалов 20 В.

Ответы на Билет№20

Электрический ток в полупроводниках- материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия - к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира - полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

Возрастает кинетическая энергия атомов и ионов, они начинают сильнее колебаться около положений равновесия, электронам не хватает места для свободного движения.

2. Как зависит удельное сопротивление проводника от его температуры? В каких единицах измеряется температурный коэффициент сопротивления?

Удельное сопротивление проводников линейно возрастает с увеличением температуры по закону

3. Чем можно объяснить линейную зависимость удельного сопротивления проводника от температуры?

Удельное сопротивление проводника линейно зависит от частоты столкновений электронов с атомами и ионами кристаллической решетки, а эта частота зависит от температуры.

4. Почему удельное сопротивление полупроводников уменьшается при увеличении температуры?

При увеличении температуры возрастает число свободных электронов, а так как возрастает количество носителей заряда, то сопротивление полупроводника уменьшается.

5. Опишите процесс собственной проводимости в полупроводниках.

Атом полупроводника теряет электрон, становясь положительно заряженным. В электронной оболочке образуется дырка - положительный заряд. Таким образом, собственная проводимость полупроводника осуществляется двумя видами носителей: электронами и дырками.

>>Физика: Зависимость сопротивления проводника от температуры

Различные вещества имеют разные удельные сопротивления (см. § 104). Зависит ли сопротивление от состояния проводника? от его температуры ? Ответ должен дать опыт.
Если пропустить ток от аккумулятора через стальную спираль, а затем начать нагревать ее в пламени горелки, то амперметр покажет уменьшение силы тока. Это означает, что с изменением температуры сопротивление проводника меняется.
Если при температуре, равной 0°С, сопротивление проводника равно R 0 , а при температуре t оно равно R , то относительное изменение сопротивления, как показывает опыт, прямо пропорционально изменению температуры t :

Коэффициент пропорциональности α называют температурным коэффициентом сопротивления . Он характеризует зависимость сопротивления вещества от температуры. Температурный коэффициент сопротивления численно равен относительному изменению сопротивления проводника при нагревании на 1 К. Для всех металлических проводников коэффициент α > 0 и незначительно меняется с изменением температуры. Если интервал изменения температуры невелик, то температурный коэффициент можно считать постоянным и равным его среднему значению на этом интервале температур. У чистых металлов α ≈ 1/273 K -1 . У растворов электролитов сопротивление с ростом температуры не увеличивается, а уменьшается . Для них α < 0. Например, для 10%-ного раствора поваренной соли α ≈ -0,02 K -1 .
При нагревании проводника его геометрические размеры меняются незначительно. Сопротивление проводника меняется в основном за счет изменения его удельного сопротивления. Можно найти зависимость этого удельного сопротивления от температуры, если в формулу (16.1) подставить значения
. Вычисления приводят к следующему результату:

Так как α мало меняется при изменении температуры проводника, то можно считать, что удельное сопротивление проводника линейно зависит от температуры (рис.16.2 ).

Увеличение сопротивления можно объяснить тем, что при повышении температуры увеличивается амплитуда колебаний ионов в узлах кристаллической решетки, поэтому свободные электроны сталкиваются с ними чаще, теряя при этом направленность движения. Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим. Так, сопротивление вольфрамовой нити лампы накаливания увеличивается при прохождении по ней тока более чем в 10 раз.
У некоторых сплавов, например у сплава меди с никелем (константан), температурный коэффициент сопротивления очень мал: α ≈ 10 -5 K -1 ; удельное сопротивление константана велико: ρ ≈ 10 -6 Ом м. Такие сплавы используют для изготовления эталонных сопротивлений и добавочных сопротивлений к измерительным приборам, т. е. в тех случаях, когда требуется, чтобы сопротивление заметно не менялось при колебаниях температуры.
Зависимость сопротивления металлов от температуры используют в термометрах сопротивления . Обычно в качестве основного рабочего элемента такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры хорошо известна. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить.
Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.
Удельное сопротивление металлов растет линейно с увеличением температуры. У растворов электролитов оно уменьшается при увеличении температуры.

???
1. Когда электрическая лампочка потребляет большую мощность: сразу после включения ее в сеть или спустя несколько минут?
2. Если бы сопротивление спирали электроплитки не менялось с температурой, то ее длина при номинальной мощности должна быть большей или меньшей?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Сопротив­ление металлов связано с тем, что электроны, движущиеся в провод­нике, взаимодействуют с ионами кристаллической решетки и теряют при этом часть энергии, которую они приобретают в электрическом поле.

Опыт показывает, что сопротив­ление металлов зави­сит от температуры. Каждое вещество можно харак­теризовать постоянной для него вели­чиной, называемой температурным коэффициентом сопротивления α . Этот коэффициент равен относитель­ному изменению удельного сопро­тивления проводника при его нагре­вании на 1 К: α =

где ρ 0 - удельное сопротивление при температуре T 0 = 273 К (0°С), ρ - удельное сопротивление при данной температуре T. Отсюда зависимость удельного сопротивления металли­ческого проводника от температуры выражается линейной функцией: ρ = ρ 0 (1+ αT).

Зависимость сопротивления от температуры выражается такой же функцией:

R = R 0 (1+ αT).

Температурные коэффициенты со­противления чистых металлов срав­нительно мало отличаются друготдруга и примерно равны 0,004 K -1 . Изменение сопротивления про­водников при изменении температу­ры приводит к тому, что их вольт-амперная характеристика не линейна. Это особенно заметно в тех слу­чаях, когда температура проводни­ков значительно изменяется, напри­мер при работе лампы накаливания. На рисунке приведена ее вольт - амперная характеристика. Как видно из рисунка, сила тока в этом случае не прямо пропорциональна напря­жению. Не следует, однако, думать, что этот вывод противоречит закону Ома. Зависимость, сформулированная в законе Ома, справедлива только при постоян­ном сопротивлении. Зависимость сопротивления ме­таллических проводников от темпе­ратуры используют в различных из­мерительных и автоматических уст­ройствах. Наиболее важным из них является термометр сопротивления . Основной частью термометра со­противления служит платиновая про­волока, намотанная на керамиче­ский каркас. Проволоку помещают в среду, температуру кото­рой нужно определить. Измеряя со­противление этой проволоки и зная ее сопротивление при t 0 = 0 °С (т. е. R 0), рассчитывают по последней формуле температуру среды.

Сверхпроводимость. Однако до конца XIX в. нельзя было прове­рить, как зависит сопротивление про­водников от температуры в области очень низких температур. Только в начале XX в. голландскому учено­му Г. Камерлинг-Оннесу удалось пре­вратить в жидкое состояние наибо­лее трудно конденсируемый газ - гелий. Температура кипения жидкого гелия равна 4,2 К. Это и дало воз­можность измерить сопротивление некоторых чистых металлов при их охлаждении до очень низкой темпе­ратуры.

В 1911г работа Камерлинг-Оннеса завершилась крупнейшим откры­тием. Исследуя сопротивление рту­ти при ее постоянном охлаждении, он обнаружил, что при температуре 4,12 К сопротивление ртути скачком падало до нуля. В даль­нейшем ему удалось это же явление наблюдать и у ряда других метал­лов при их охлаждении до темпе­ратур, близких к абсолютному нулю. Явление полной потери металлом электрического сопротивления при определенной температуре получило название сверхпроводимости.



Не все материалы могут стать сверхпроводниками, но их число до­статочно велико. Однако у многих из них было обнаружено свойство, которое значительно препятствовало их применению. Выяснилось, что у большинства чистых металлов сверхпроводимость исчезает, когда они находятся в силь­ном магнитном поле. Поэтому, когда по сверх­проводнику течет значительный ток, он создает вокруг себя магнитное поле и сверхпроводимость в нем исчезает. Всё же это препятствие оказалось преодолимым: было выяснено, что не­которые сплавы, например ниобия и циркония, ниобия и титана и др., обладают свойством сохранять свою сверхпроводимость при больших значениях силы тока. Это позволило более широко использовать сверх­проводимость.



Понравилась статья? Поделитесь с друзьями!