Найти корреляционную функцию и дисперсию случайного процесса. Корреляционной функции случайного процесса

Погрешности измерений, обусловленные наведенными помехами и собственными шумами электронных приборов, описываются с помощью математической теории, получившей название "теория случайных процессов ". Напомним основные понятия этой теории, которые мы будем использовать в дальнейшем изложении и которые используются ГОСТ 8.009 [ГОСТ ] при нормировании случайной составляющей погрешности измерений.

,
.
.

В пределе, при приведенные оценки параметров стремятся к их истинным значениям. В приведенных формулах для оценок параметров и самих параметров использованы одни и те же обозначения, поскольку в дальнейшем мы будем использовать только оценки, если иное не оговорено специально.

Отдельно взятая реализация случайного процесса является детерминированной (неслучайной) функцией, поэтому для нее можно найти спектральную характеристику с помощью преобразования Фурье:

В соответствии с этим определением, шума измеряется в или , и т. п. Отметим, что в теории случайных процессов понятие мощности отличается от общепринятого: предполагается, что энергия шума выделяется на сопротивлении в 1 Ом, но размерность не указывается, поэтому вместо размерности мощности используется , . Аналогично, энергия измеряется не в , а в .

Автокорреляционная функция и спектральная плотность мощности связаны между собой преобразованием Фурье (теорема Винера-Хинчина [Баскаков ]):

;
,

Если энергетический спектр лежит в диапазоне частот от >0 до , например, благодаря применению фильтра, то можно считать, что за пределами указанного диапазона частот его значения равны нулю и это позволяет изменить пределы интегрирования в (4.16):

.

При использовании формул (4.16) и (4.19) надо помнить, что в ней применен двусторонний энергетический спектр (симметричный относительно начала оси ординат). В случае одностороннего спектра , заданного в диапазоне частот , коэффициент "2" должен отсутствовать:

В зарубежной справочной литературе на графиках спектральной плотности мощности шума транзисторов, операционных усилителей и др. обычно по оси ординат откладывается корень квадратный из спектральной плотности мощности шума , имеющий размерность , и т. п. В этом случае напряжение шума (среднеквадратическое значение) можно найти как

.

Для белого шума и предыдущее выражение упрощается:

.

Рассмотрим суммирование двух случайных погрешностей и с нулевым математическим ожиданием (т. е. центрированных случайных величин). Дисперсия суммы двух случайных величин по определению равна математическому ожиданию квадрата их суммы:

= ,

где и - операторы дисперсии и математического ожидания ; , - среднеквадратические отклонения случайных величин и . Величина

называется ковариацией ("совместной вариацией") случайных величин и .

Ковариацию дискретных случайных величин можно оценить по их дискретным значениям и с помощью формулы среднего арифметического:

.

Коэффициентом корреляции называют отношение ковариации к произведению среднеквадратических отклонений и случайных величин и :

.

Здесь знак "-" используется когда случайные величины вычитаются, например, если находится разность напряжений двух измерительных каналов. При этом наличие корреляции между каналами частично уменьшает погрешность разности.

В случае, когда случайные величины статистически независимы (), предыдущее выражение упрощается:

.

Такое суммирование называют геометрическим , поскольку оно выполняется аналогично нахождению гипотенузы прямоугольного треугольника.

Если коэффициент корреляции , то, то коэффициент корреляции можно оценить как. Тангенс угла наклона линии называется коэффициентом регрессии. Уравнение линии регрессии можно получить

Статистическая зависимость между погрешностями средств измерений в общем случае нелинейная, однако этой нелинейностью обычно пренебрегают.

При исследовании вопросов зависимости или независимости двух или более сечений случайных процессов знание лишь математического ожидания и дисперсии с.п. не достаточно.

Для определения связи между различными случайными процессами используется понятие корреляционной функции – аналог понятия ковариации случайных величин (см. Т.8)

Корреляционной (ковариационной, автоковариационной, автокорреляционной) функцией случайного процесса
называется неслучайная функция двух аргументов

равна корреляционному моменту соответствующих сечений
и
:

или (с учётом обозначения центрированной случайной функции
) имеем

Приведём основные свойства корреляционной функции
случайного процесса
.

1. Корреляционная функция при одинаковых значениях аргументов равна дисперсии с.п.

Действительно,

Доказанное свойство позволяет вычислить м.о. и корреляционную функцию являющимися основными характеристиками случайного процесса, необходимость в подсчёте дисперсии отпадает.

2. Корреляционная функция не меняется относительно замены аргументов, т.е. является симметрической функцией относительно своих аргументов: .

Это свойство непосредственно выводится из определения корреляционной функции.

3. Если к случайному процессу прибавить неслучайную функцию, то корреляционная функция не меняется, т.е. если
, то. Другими словами

является периодической функцией относительно любой неслучайной функции.

Действительно, из цепочки рассуждений

следует, что . Отсюда получим требуемое свойство 3.

4. Модуль корреляционной функции не превосходит произведения с.к.о., т.е.

Доказательство свойства 4. проводится аналогично как в пункте 12.2. (теорема 12..2), с учётом первого свойства корреляционной функции с.п.
.

5. При умножении с.п.
на неслучайный множитель
её корреляционная функция умножится на произведение
, т.е., если
, то

5.1. Нормированная корреляционная функция

Наряду с корреляционной функцией с.п. рассматривается также нормированная корреляционная функция (или автокорреляционная функция )
определяемая равенством

.

Следствие. На основании свойства 1 имеет место равенство

.

По своему смыслу
аналогичен коэффициенту корреляции для с.в., но не является постоянной величиной, а зависит от аргументови.

Перечислим свойства нормированной корреляционной функции :

1.

2.

3.
.

Пример 4. Пусть с.п. определяется формулой, т.е.
с.в.,

распределена по нормальному закону с

Найти корреляционную и нормированную функции случайного процесса

Решение. По определению имеем

т.е.
Отсюда с учётом определения нормированной корреляционной функции и результатов решения предыдущих примеров получим
=1, т.е.
.

5.2. Взаимная корреляционная функция случайного процесса

Для определения степени зависимости сечений двух случайных процессов используют корреляционную функцию связи или взаимную корреляционную функцию.

Взаимной корреляционной функцией двух случайных процессов
и
называется неслучайная функция
двух независимых аргументови, которая при каждой паре значенийиравна корреляционному моменту двух сечений
и

Два с.п.
и
называютсянекоррелированными, если их взаимная корреляционная функция тождественно равна нулю, т.е. если для любыхиимеет место
Если же для любыхиокажется
, то случайные процессы
и
называютсякоррелированными (илисвязанными ).

Рассмотрим свойства взаимной корреляционной функции, которые непосредственно выводятся из её определения и свойств корреляционного момента (см. 12.2):

1.При одновременной перестановке индексов и аргументов взаимная корреляционная функция не меняется, то есть

2. Модуль взаимной корреляционной функции двух случайных процессов не превышает произведения их средних квадратичных отклонений, то есть

3. Корреляционная функция не изменится, если к случайным процессам
и
прибавить неслучайные функции
и
соответственно, то есть
, где соответственно
и

4. Неслучайные множители
можно вынести за знак корреляции, то есть, если
и, то

5. Если
, то.

6. Если случайные процессы
и
некоррелированные , то корреляционная функция их суммы равна сумме их корреляционных функций, то есть.

Для оценки степени зависимости сечений двух с.п. используют также нормированную взаимную корреляционную функцию
, определяемую равенством:

Функция
обладает теми же свойствами, что и функция
, но свойство 2

заменяется на следующее двойное неравенство
, т.е. модуль нормированной взаимной корреляционной функции не превышает единицы.

Пример 5. Найти взаимную корреляционную функцию двух с.п.
и
, где
случайная величина, при этом

Решение. Так как,.

Математическое ожидание и дисперсия являются важными характеристиками случайного процесса, но они не дают достаточного представления о том, какой характер будут иметь отдельные реализации случайного процесса. Это хороню видно из рис. 9.3, где показаны реализации двух случайных процессов, совершенно различных по своей структуре, хотя и имеющих

одинаковые значения математического ожидания и дисперсии. Штриховыми линиями на рис. 9.3 показаны значения для случайных процессов.

Процесс, изображенный на рис. 9.3, а, от одного сечения к другому протекает сравнительно плавно, а процесс на рис. 9.3, б обладает сильной изменчивостью от сечения к сечению Поэтому статистическая связь между сечениями в первом случае больше, чем во втором, однако ни по математическому ожиданию, ни по дисперсии этого установить нельзя.

Чтобы в какой-то мере охарактеризовать внутреннюю структуру случайного процесса, т. е. учесть связь между значениями случайного процесса в различные моменты времени или, иными словами, учесть степень изменчивости случайного процесса, необходимо ввести понятие о корреляционной (автокорреляционной) функции случайного процесса.

Корреляционной функцией случайного процесса называют неслучайную функцию двух аргументов которая для каждой пары произвольно выбранных значений аргументов (моментов времени) равна математическому ожиданию произведения двух случайных величин соответствующих сечений случайного процесса:

где - двумерная плотность вероятности; - центрированный случайный процесс; - математическое ожидание (среднее значение) случайного процесса.

Различные случайные процессы в зависимости от того, как изменяются их статистические характеристики с течением времени, делят на стационарные и нестационарные. Разделяют стационарность в узком смысле и стационарность в широком смысле.

Стационарным в узком смысле называют случайный процесс если его n-мерные функции распределения и плотности вероятности при любом не зависят от сдвига всех точек

Вдоль оси времени на одинаковую величину т. е.

Это означает, что два процесса имеют одинаковые статистические свойства для любого т. е. статистические характеристики стационарного случайного процесса неизменны во времени.

Стационарный случайный процесс - это своего рода аналог установившегося процесса в детерминированных системах. Любой переходный процесс не является стационарным.

Стационарным в широком смысле называют случайный процесс математическое ожидание которого постоянно:

а корреляционная функция зависит только от одной переменной - разности аргументов при этом корреляционную функцию обозначают

Процессы, стационарные в узком смысле, обязательно стационарны и в широком смысле; однако обратное утверждение, вообще говоря, неверно.

Понятие случайного процесса, стационарного в широком смысле, вводится тогда, когда в качестве статистических характеристик случайного процесса используются только математическое ожидание и корреляционная функция. Часть теории случайных процессов, которая описывает свойства случайного процесса через его математическое ожидание и корреляционную функцию, называют корреляционной теорией.

Для случайного процесса с нормальным законом распределения математическое ожидание и корреляционная функция полностью определяют его n-мерную плотность вероятности.

Поэтому для нормальных случайных процессов понятия стационарности в широком и узком смысле совпадают.

Теория стационарных процессов разработана наиболее полно и позволяет сравнительно просто производить расчеты для многих практических случаев. Поэтому допущение о стационарности иногда целесообразно делать также и для тех случаев, когда случайный процесс хотя и нестационарен но на рассматриваемом отрезке времени работы системы статистические характеристики сигналов не успевают сколько-нибудь существенно измениться. В дальнейшем, если не будет оговорено особо, будут рассматриваться случайные процессы, стационарные в широком смысле.

При изучении случайных процессов, стационарных в широком смысле, можно ограничиться рассмотрением только процессов с математическим ожиданием (средним значением), равным нулю, т. е. так как случайный процесс с ненулевым математическим ожиданием представляют как сумму процесса с нулевым математическим ожиданием и постоянной неслучайной (регулярной) величиной, равной математическому ожиданию этого процесса (см. далее § 9.6).

При выражение для корреляционной функции

В теории случайных процессов пользуются двумя понятиями средних значений. Первое понятие о среднем значении - это среднее значение по мнооюеству (или математическое ожидание), которое определяется на основе наблюдения над множеством реализацчй случайного процесса в один и тот же момент времени. Среднее значение по множеству принято обозначать волнистой чертой над выражением, описывающим случайную функцию:

В общем случае среднее значение по множеству является функцией времени

Другое понятие о среднем значении - это среднее значение по времени, которое определяется на основе наблюдения за отдельной реализацией случайного процесса на протяжении

достаточно длительного времени Т. Среднее значение по времени обозначают прямой чертой над соответствующим выражением случайной функции и определяют по формуле:

если этот предел существует.

Среднее значение по времени в общем случае различно для отдельных реализаций множества, определяющих случайный процесс. Вообще говоря, для одного и того же случайного процесса среднее по множеству и среднее по времени значения различны. Однако существует класс стационарных случайных процессов, называемых эргодическими, для которых среднее по множеству равно среднему по времени, т. е.

Корреляционная функция эргодического стационарного случайного процесса неограниченно убывает по модулю при

Однако надо иметь в виду, что не всякий стационарный случайный процесс является эргодическим, например случайный процесс каждая реализация которого постоянна во времени (рис. 9.4), является стационарным, но не эргодическим. В этом случае средние значения, определенные по одной реализации и в результате обработки множества реализаций, не совпадают. Один и тот же случайный процесс в общем случае может быть эргодическим по отношению к одним статистическим характеристикам и неэргодическим по отношению к другим. В дальнейшем будем считать, что по отношению ко всем статистическим характеристикам условия эргодичности выполняются.

Свойство эргодичности имеет очень большое практическое значение. Для определения статистических свойств некоторых объектов, если трудно осуществить одновременное наблюдение за ними в произвольно выбранный момент времени (например, при наличии одного опытного образца), его можно заменить длительным наблюдением за одним объектом. Иными словами, отдельная реализация эргодического случайного

процесса на бесконечном промежутке времени полностью определяет весь случайный процесс с его бесконечными реализациями. Собственно говоря, этот факт лежит в основе описанного ниже метода экспериментального определения корреляционной функции стационарного случайного процесса по одной реализации.

Как видно из (9.25), корреляционная функция представляет собой среднее значение по множеству. Для эргодических случайных процессов корреляционную функцию можно определить как среднее по времени от произведения , т. е.

где - любая реализация случайного процесса; х - среднее значение по времени, определяемое по (9.28).

Если среднее значение случайного процесса равно нулю то

Основываясь на свойстве эргодичности, можно дисперсию [см. (9.19)] определить как среднее по времени от квадрата центрированного случайного процесса, т. е.

Сравнивая выражения (9.30) и (9.32) при можно установить очень важную связь между дисперсией и корреляционной функцией - дисперсия стационарного случайного процесса равна начальному значению корреляционной функции:

Из (9.33) видно, что дисперсия стационарного случайного процесса постоянна, а следовательно, постоянно и среднее квадратическое отклонение:

Статистические свойства связи двух случайных процессов можно характеризовать взаимной корреляционной функцией которая для каждой пары произвольно выбранных значений аргументов равна

Для эргодических случайных процессов вместо (9.35) можно записать

где - любые реализации стационарных случайных процессов соответственно.

Взаимная корреляционная функция характеризует взаимную статистическую связь двух случайных процессов в разные моменты времени, отстоящие друг от друга на промежуток времени . Значение характеризует эту связь в один и тот же момент времени.

Из (9.36) следует, что

Если случайные процессы статистически не связаны друг с другом и имеют равные нулю средние значения, то их взаимная корреляционная функция для всех равна нулю. Однако обратный вывод о том, что если взаимная корреляционная функция равна нулю, то процессы независимы, можно сделать лишь в отдельных случаях (в частности, для процессов с нормальным законом распределения), общей же силы обратный закон не имеет.

Заметим, что корреляционные функции могут вычисляться и для неслучайных (регулярных) функций времени. Однако когда говорят о корреляционной функции регулярной функции то под этим понимают просто результат формального

применения к регулярной функции операции, выражаемой интегралом:

Приведем некоторые основные свойства корреляционных функций

1. Начальное значение корреляционной функции [см. (9.33)] равно дисперсии случайного процесса:

2. Значение корреляционной функции при любом не может превышать ее начального значения, т. е.

Чтобы доказать это, рассмотрим очевидное неравенство из которого следует

Находим средние значения по времени от обеих частей последнего неравенства:

Таким образом, получим неравенство

3. Корреляционная функция есть четная функция , т. е.

Это вытекает из самого определения корреляционной функции. Действительно,

поэтому на графике корреляционная функция всегда симметрична относительно оси ординат.

4. Корреляционная функция суммы случайных процессов определяется выражением

где - взаимные корреляционные функции

Действительно,

5. Корреляционная функция постоянной величины равна квадрату этой постоянной величины (рис. 9.5, а), что вытекает из самого определения корреляционной функции:

6. Корреляционная функция периодической функции, например представляет собой косинусоиду (рис. 9-5, 5), т. е.

имеющую ту же частоту что и и не зависящую от сдвига фазы

Чтобы доказать это, заметим, что при нахождении корреляционных функций периодических функций можно использовать следующее равенство:

где - период функции

Последнее равенство получается после замены интеграла с пределами от -Т до Т при Т со суммой отдельных интегралов с пределами от до , где и использования периодичности подынтегральных функций.

Тогда, учитывая сказанное выше, получим т.

7. Корреляционная функция временной функции, разлагаемой в ряд Фурье:

Рис. 9.5 (см. скан)

имеет на основании изложенного выше следующий вид:

8. Типичная корреляционная функция стационарного случайного процесса имеет вид, представленный на рис. 9.6. Ее можно аппроксимировать следующим аналитическим выражением:

С ростом связь между ослабевает и корреляционная функция становится меньше. На рис. 9.5, б, в приведены, например, две корреляционные функции и две соответствующие им реализации случайного процесса. Легко заметить, что корреляционная функция, соответствующая случайному процессу с более тонкой структурой, убывает быстрее Другими словами, чем более высокие частоты присутствуют в случайном процессе, тем быстрее убывает соответствующая ему корреляционная функция.

Иногда встречаются корреляционные функции, которые могут быть аппроксимированы аналитическим выражением

где - дисперсия; - параметр затухания; - резонансная частота.

Корреляционные функции подобного вида имеют, например, случайные процессы типа турбулентности атмосферы, фединга радиолокационного сигнала, углового мерцания цели и т. п. Выражения (9.45) и (9.46) часто используются для аппроксимации корреляционных функций, полученных в результате обработки экспериментальных данных.

9. Корреляционная функция Стационарного случайного процесса, на которой наложена периодическая составляющая с частотой также будет содержать периодическую составляющую той же частоты.

Это обстоятельство можно использовать как один из способов обнаружения «скрытой периодичности» в случайных процессах, которая может не обнаруживаться при первом взгляде на отдельные записи реализации случайного процесса.

Примерный вид корреляционной функции процесса содержащего в своем составе кроме случайной также и периодическую составляющую, показан на рис. 9.7, где обозначена корреляционная функция, соответствующая случайной составляющей. Чтобы выявить скрытую периодическую составляющую (такая задача возникает, например, при выделении малого полезного сигнала на фоне большой помехи), лучше всего определить корреляционную функцию для больших значений когда случайный сигнал уже сравнительно слабо коррелирован и случайная составляющая слабо сказывается на виде корреляционной функции.

Помехи в системах связи описываются методами теории случайных процессов.

Функция называется случайной, если в результате эксперимента она принимает тот или иной вид, заранее неизвестно, какой именно. Случайным процессом называется случайная функция времени. Конкретный вид, который принимает случайный процесс в результате эксперимента, называется реализацией случайного процесса.

На рис. 1.19 показана совокупность нескольких (трех) реализаций случайного процесса , , . Такая совокупность называется ансамблем реализаций. При фиксированном значении момента времени в первом эксперименте получим конкретное значение , во втором – , в третьем – .

Случайный процесс носит двойственный характер. С одной стороны, в каждом конкретном эксперименте он представлен своей реализацией – неслучайной функцией времени. С другой стороны, случайный процесс описывается совокупностью случайных величин.

Действительно, рассмотрим случайный процесс в фиксированный момент времени Тогда в каждом эксперименте принимает одно значение , причем заранее неизвестно, какое именно. Таким образом, случайный процесс, рассматриваемый в фиксированный момент времени является случайной величиной. Если зафиксированы два момента времени и , то в каждом эксперименте будем получать два значения и . При этом совместное рассмотрение этих значений приводит к системе двух случайных величин. При анализе случайных процессов в N моментов времени приходим к совокупности или системе N случайных величин .

Математическое ожидание, дисперсия и корреляционная функция случайного процесса.Поскольку случайный процесс, рассматриваемый в фиксированный момент времени, является случайной величиной, то можно говорить о математическом ожидании и дисперсии случайного процесса:

, .

Так же, как и для случайной величины, дисперсия характеризует разброс значений случайного процесса относительно среднего значения . Чем больше , тем больше вероятность появления очень больших положительных и отрицательных значений процесса. Более удобной характеристикой является среднее квадратичное отклонение (СКО) , имеющее ту же размерность, что и сам случайный процесс.

Если случайный процесс описывает, например, изменение дальности до объекта, то математическое ожидание – средняя дальность в метрах; дисперсия измеряется в квадратных метрах, а Ско – в метрах и характеризует разброс возможных значений дальности относительно средней.

Среднее значение и дисперсия являются очень важными характеристиками, позволяющими судить о поведении случайного процесса в фиксированный момент времени. Однако, если необходимо оценить «скорость» изменения процесса, то наблюдений в один момент времени недостаточно. Для этого используют две случайные величины , рассматриваемые совместно. Так же, как и для случайных величин, вводится характеристика связи или зависимости между и . Для случайного процесса эта характеристика зависит от двух моментов времени и и называетсякорреляционной функцией: .

Стационарные случайные процессы. Многие процессы в системах управления протекают однородно во времени. Их основные характеристики не изменяются. Такие процессы называютсястационарными. Точное определение можно дать следующим образом. Случайный процесс называется стационарным, если любые его вероятностные характеристики не зависят от сдвига начала отсчета времени. Для стационарного случайного процесса математическое ожидание, дисперсия и СКО постоянны: , .

Корреляционная функция стационарного процесса не зависит от начала отсчета t, т.е. зависит только от разности моментов времени:

Корреляционная функция стационарного случайного процесса имеет следующие свойства:

1) ; 2) ; 3) .

Часто корреляционные функции процессов в системах связи имеют вид, показанный на рис. 1.20.

Рис. 1.20. Корреляционные функции процессов

Интервал времени , на котором корреляционная функция, т.е. величина связи между значениями случайного процесса, уменьшается в М раз, называетсяинтервалом или временем корреляции случайного процесса. Обычно или . Можно сказать, что значения случайного процесса, отличающиеся по времени на интервал корреляции, слабо связаны друг с другом.

Таким образом, знание корреляционной функции позволяет судить о скорости изменения случайного процесса.

Другой важной характеристикой является энергетический спектр случайного процесса. Он определяется как преобразование Фурье от корреляционной функции:

.

Очевидно, справедливо и обратное преобразование:

.

Энергетический спектр показывает распределение мощности случайного процесса, например помехи, на оси частот.

При анализе САУ очень важно определить характеристики случайного процесса на выходе линейной системы при известных характеристиках процесса на входе САУ. Предположим, что линейная система задана импульсной переходной характеристикой . Тогда выходной сигнал в момент времени определяется интегралом Дюамеля:

,

где – процесс на входе системы. Для нахождения корреляционной функции запишем и после перемножения найдем математическое ожидание

Предметом корреляционного анализа является изучение вероятностных зависимостей между случайными величинами.

Величины являются независимы­ми если закон распределения каждой из них не зависит от значе­ния, которое приняла другая. Такими величинами можно считать, например, предел выносливости материала детали и теоретический коэффициент концентрации напряжений в опасном сечении детали.

Величины являются связанными вероятностными или стохастическими зависимостями, если известному значению одной ве­личины соответствует не конкретное значение, а закон распределе­ния другой. Вероятностные зависимости имеют место, когда вели­чины зависят не только от общих для них, но и от разных случайных факторов.

Полная информация о вероятностной связи двух случайных величин представляется совместной плотностью распределения f(x,у) или условными плотностями распределения f(x/y), f(y/x), т. е. плотностями распределения случайных величин X и Y при задании конкретных значений у и х соответственно.

Совместная плотность и условные плотности распределения связаны следующими соотношениями:

Основными характеристиками вероятностных зависимостей яв­ляются корреляционный момент и коэффициент корреляции.

Корреляционный момент двух случайных величин X и У – это математическое ожидание произ­ведения центрированных случайных величин:

для дискретных

для непрерывных

где m x и m y – математические ожидания величин X и Y; р ij – ве­роятность отдельных значений x i и у i .

Корреляционный момент одновременно характеризует связь между случайными величинами и их рассеяние. По своей размер­ности он соответствует дисперсии для независимой случайной величины. Для выделения характеристики связи между случайными величинами переходят к коэффициенту корреляции характеризует степень тесноты зависимости и может изменяться в пределах -1 ≤ ρ ≤ 1.

;

где S x и S y – средние квадратические отклонения случайных величин.

Значения ρ = 1 и ρ = –1 свидетельствуют о функциональной зависи­мости, значение ρ = 0 свидетельствует о некоррелированности слу­чайных величин

Рассматривают корреляцию как между величинами, так и между событиями, а также множественную корреляцию, характеризую­щую связь между многими величинами и событиями.

При более анализе вероятностной связи определяют условные математические ожидания случайных величин m y / x и m х/у, т. е. математические ожидания случайных величин У и X при заданных конкретных значениях х и у соответственно.

Зависимость условного математического ожидания т у/х от х называют регрессией У по X. Зависимость т х/у от у соответствует регрессии X по Y.

Для нормально распределенных величин Y и X уравнение регрессии имеет вид:

для регрессии У по Х

для регрессии X по У

Важнейшей областью применения корреляционного анализа к задачам надежности является обработка и обобщение результатов эксплуатационных наблюдений. Результаты наблюдения случайных величин У и X представляют парными значениями у i , x i i -го наблюдения, где i=1, 2 . . . п; п – число наблюдений.

Оценку r коэффициента корреляции ρ определяют по формуле

где , – оценки математических ожиданий т х и т у соответствен­но, т. е. средние из п наблюдений значений

s x , s y - оценки средних квадратических отклонений S x и S y соот­ветственно:


Обозначив оценку условных математических ожиданий т y / x , т х / у соответственно через и , уравнения эмпирической регрес­сии У по X и X по Y записывают в следующем виде:

Как правило, практическую ценность имеет лишь одна из ре­грессий.

При коэффициенте корреляции r=1 уравнения регрессий тождественны.

Вопрос №63 Оценка статистических параметров с помощью доверительных интервалов

Если значение испытываемого параметра оценивается одним числом, то оно называется точечным. Но в большинстве задач нужно найти не только наиболее достоверное численное значение, но и оценить степень достоверности.

Нужно знать: какую ошибку вызывает замена истинного параметра а его точечной оценкой ; с какой степенью уверенности можно ожидать, что эти ошибки не превысят известные заранее установленные пределы.

Для этой цели в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Если для параметра а получена из опыта несмещенная оценка , и поставлена задача оценить возможную при этом ошибку, то необходимо назначить некоторую достаточно большую вероятность β (например β = 0,9; 0,95; 0,99 и т.д.), такую, что событие с вероятностью β можно было бы считать практически достоверным.

В этом случае можно найти такое значение ε, для которого P (| - a | < ε) = β.

Рис. 3.1.1 Схема доверительного интервала.

В этом случае диапазон практически возможных ошибок, возникающих при замене а на не будет превышать ± ε. Большие по абсолютной величине ошибки будут появляться только с малой вероятностью α = 1 – β. Событие противоположное и неизвестное с вероятностью β будет попадать в интервал I β = ( - ε; + ε). Вероятность β можно толковать, как вероятность того, что случайный интервал I β накроет точку а (рис. 3.1.1).

Вероятность β принято называть доверительной вероятностью, а интервал I β принято называть доверительным интервалом. На рис. 3.1.1 рассматривается симметричный доверительный интервал. В общем случае это требование не является обязательным.

Доверительный интервал значений параметра a можно рассматривать как интервал значений a , совместных с опытными данными и не противоречащих им.

Выбирая доверительную вероятность β, близкую к единице, мы хотим иметь уверенность в том, что событие с такой вероятностью произойдет при осуществлении определенного комплекса условий.

Это равносильно тому, что противоположное событие не произойдет, что мы пренебрегаем вероятностью события, равною α = 1 – β. Укажем, что назначение границы а пренебрежимо малых вероятностей не являются математической задачей. Назначение такой границы находится вне теории вероятностей и определяется в каждой области степенью ответственности и характером решаемых задач.

Но установление слишком большого запаса прочности приводит к неоправданному и большому удорожанию стоимости строительства.


65 Вопрос №65 Стационарный случайный процесс.

Стационарная случайная функция – случайная функция, все вероятностные характеристики которой не зависят от аргумента. Стационарные случайные функции описывают стационарные процессы работы машин, нестационарные функции – нестационарные процессы, частности переходные: пуск, останов, изменение режима. Аргументом является время.

Условия стационарности случайных функций:

1. постоянство математического ожидания;

2. постоянство дисперсии;

3. корреляционная функция должна зависеть только от разности аргументов, но не от их значений.

В качестве примеров стационарных случайных процессов можно привести: колебания самолета на установившемся режиме горизонтального полета; случайные шумы в радиоприемнике и др.

Каждый стационарный процесс можно рассматривать как продолжающийся во времени неопределенно долго, при исследовании в качестве начала отсчета можно выбрать любой момент времени. При исследовании стационарного случайного процесса на любом участке времени должны получаться одни и те же характеристики.

Корреляционная функция стационарных случайных процессов есть четная функция.

Для стационарных случайных процессов эффективен спектральный анализ, т.е. рассмотрение в виде спектров гармоник или рядов Фурье. Дополнительно вводят функцию спектральной плотности случайной функции, характеризующую распределение дисперсий по частотам спектра.

Дисперсия:

Корреляционная функция:

K x (τ) =

Спектральная плотность:

S x () =

Стационарные процессы могут быть эргодическими и неэргодическими. Эргодические – если среднее значение стационарной случайной функции на достаточно длительном участке приближенно равно среднему значению для отдельных реализаций. Для них характеристики определяют как среднее по времени.

Вопрос №66 Показатели надежности технических объектов: единичный, комплексный, расчетный, экспериментальный, эксплуатационный, экстраполированный.

Показатель надежности – количественная характеристика одного или нескольких свойств, составляющих надежность объекта.

Единичный показатель надежности – показатель надежности, характеризующий одно из свойств, составляющих надежность объекта.

Комплексный показатель надежности – показатель надежности, характеризующий несколько свойств, составляющих надежность объекта.

Расчетный показатель надежности – показатель надежности, значения которого определяются расчетным методом.

Экспериментальный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется по данным испытаний.

Эксплуатационный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется по данным эксплуатации.

Экстраполированный показатель надежности – показатель надежности, точечная или интервальная оценка которого определяется на основании результатов расчетов, испытаний и (или) эксплуатационных данных путем экстраполирования на другую продолжительность эксплуатации и другие условия эксплуатации.



Вопрос №68 Показатели долговечности технических объектов и автомобилей.

Гамма-процентный ресурс – суммарная наработка, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах.

Средний ресурс – математическое ожидание ресурса.

Гамма-процентный срок службы – календарная продолжительность эксплуатации, в течение которой объект не достигнет предельного состояния с вероятностью g, выраженной в процентах

Средний срок службы – математическое ожидание срока службы.

Примечание. При использовании показателей долговечности следует указывать начало отсчета и вид действий после наступления предельного состояния (например гамма-процентный ресурс от второго капитального ремонта до списания). Показатели долговечности, отсчитываемые от ввода объекта в эксплуатацию до окончательного снятия с эксплуатации, называются гамма-процентный полный ресурс (срок службы), средний полный ресурс (срок службы)


71 71 Задачи и методы прогнозирования надёжности автомобилей

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные задачи прогнозирования надежности автомобилей могут быть сформулированы следующим образом:

а) Предсказание закономерности изменения надежности автомобилей в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

б) Оценка надежности проектируемой автомобилей до того, как они будут изготовлены. Эта задача возникает на стадии проектирования.

в) Прогнозирование надежности конкретного автомобиля (либо его узла, агрегата) на основании результатов изменения его параметров.

г) Прогнозирование надежности некоторой совокупности автомобилей по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства.

д) Прогнозирование надежности автомобилей в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой, сложных дорожных условиях и так далее).

Методы прогнозирования надежности автомобилей выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:а) методы экспертных оценок;б) методы моделирования, включающие физические, физико- математические и информационные модели;в) статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б того же автомобиля либо его узла, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполяции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены закономерности изменения параметров надежности автомобилей во времени

Вопрос №74 Математические методы прогнозирования. Построение математических моделей надежности.

При прогнозировании надежности трансмиссии возможно использование следующих моделей: 1) «слабейшего» звена; 2) зависимых ресурсов элементов деталей; 3) независимых ресурсов элементов деталей. Ресурс i-го элемента определяется из соотношения:

x i = R i /r i ,

где R i – количественное значение критерия i-го элемента, при котором происходит его отказ;

r i – средняя величина приращения количественной оценки критерия i-го элемента за единицу ресурса.

Величины R i и r i могут быть случайными с определенными законами распределения или постоянными.

Для варианта, когда R i постоянны, а r i переменны и имеют функциональную связь с одной и той же случайной величиной, рассмотрим ситуацию, когда между величинами r i соблюдается линейная функциональная связь, что приводит к модели «слабейшего» звена. В этом случае надежность системы соответствует надежности «слабейшего» звена.

Модель зависимых ресурсов реализуется при нагружении по схеме, когда имеется наличие разброса условий эксплуатации для массовых машин или неопределенности условий эксплуатации уникальных машин. Модель независимых ресурсов имеет место при нагружении по схеме с конкретными условиями эксплуатации.

Выражение для расчета надежности системы с независимыми ресурсами элементами.

Вопрос №79 Схематизация нагружения системы, деталей и элементов (на примере трансмиссии).

Под трансмиссией будем подразумевать привод машины в целом или отдельную, достаточно сложную его часть, которую по тем или иным причинам необходимо выделить. Нагруженность трансмиссии определяется силовой и скоростной составляющими. Силовую составляющую характеризует крутящий момент, а скоростную – угловая скорость вращения, которая определяет количество циклов нагружения деталей трансмиссии или скорость скольжения контактных поверхностей.

В зависимости от типа детали схематизация крутящего момента с целью получения нагруженности детали может быть различной. Например, нагруженность зубчатых колес и подшипников определяется текущим значением моментов, а валов на кручение – величиной его амплитуды.

Исходя из условий эксплуатации, нагруженность трансмиссии может быт представлена в виде следующих схем.

1. Каждому режиму соответствует одномерная кривая распределения.

2. Для каждого режима имеем n одномерных кривых распределения (n - количество условий эксплуатации машины). Вероятность эксплуатации в каждом из условий конкретна.

3. Для каждого режима имеем одно двухмерное распределение текущего и среднего значений крутящего момента.

Схема 1 может быть использована для машин массового производства при совершенно одинаковых условиях эксплуатации или для уникальной машины при конкретных условиях ее эксплуатации.

Схема 2 качественно не отличается от схемы 1, однако в ряде случаев для расчета целесообразно, чтобы каждому условию эксплуатации соответствовала нагрузочная кривая.

Схема 3 может характеризовать нагруженность трансмиссии уникальной машины, конкретные условия эксплуатации которой неизвестны, но известен диапазон условий.

82 Вопрос №82 Системный подход к прогнозированию ресурса деталей

Автомобиль должен рассматриваться как сложная система, образующаяся с точки зрения надежности последовательно соединяющихся его агрегатов, деталей, элементов.

Ресурс элемента:

T i = R i /r i ,

где R i - количественное значение критерия предельного состояния i-го элемента, при котором происходит его отказ;

г i - средняя величина приращения количественной оценки критерия

предельного состояния i -го элемента за единицу ресурса.

R i и r­ i могут быть случайными или постоянными и возможны

следующие варианты:

1. R i - случайные, r­ i - случайные;

2. R i - случайные, r­ i - постоянные;

3. R i - постоянные, r­ i - случайные;

4. R i - постоянные, r­ i - постоянные.

Для первых трех вариантов, считаем R i независимыми между собой случайными величинами.

1.а) r­ i - независимые

Надежность системы считается перемножением ВБР

б) r­ i - случайные и связаны вероятностью

f (r i / r j) = f (r i , r j)/ f (r j);

f (r j / r i) = f (r i , r j)/ f (r i).

Если r i и r j зависят друг от друга, то и ресурсы также будут зависеть друг от

друга и для расчета применяется модель зависимости ресурсов элементов. Т.к. связь вероятностная, то применяется метод условных функций.

в) r i - случайные и связаны функционально.

В данном случае свободные величины зависят друг от друга, также зависят между собой и ресурсы. Только в силу функциональной зависимости связь будет сильнее, чем в других случаях.

2. модель независимых ресурсов элементов.

ВБР системы равна сумме ВБР всех элементов.

3. возможны такие же случаи как в 1, только в случаях б) и в) будет усиление зависимых ресурсов из-за постоянства R i . В случае в) r i - функциональная связь,

возможна ситуация, когда применяется модель "слабейшего" звена.

R 1 ,R 2 –постоянные;

r 1 ,r 2 – случайные;

r 1 = 1,5 ∙ r 2 ;

R 1 = T ∙ r 1 ;

R 2 = T ∙ r 2 ;

Если при других двух конкретных значениях r 1 , r 2 будет соблюдено

такое же соотношение по ресурсу Т 1 >Т 2 , то элемент 2 будет "слабейшим"

звеном, т.е. он определяет надежность этой системы.

Применение модели "слабейшего" звена:

Если в системе есть элемент, у которого критерий R значительно меньше, чем этот критерий у всех других элементов, а нагружены все элементы примерно одинаково;

Если критерий R у всех элементов примерно одинаков, а нагруженность одного элемента значительно выше, чем всех других элементов.

Вопрос №83Определение ресурса деталей (валов, или зубчатых колес, или подшипников опор агрегатов трансмиссии) по экспериментальным нагрузочным режимам.

Определение ресурса подшипников качения.

Для определения долговечности подшипников качения агрегатов трансмиссии и ходовой части необходимо выполнить несколько видов расчета: на статическую прочность, на контактную усталость, на износ.

Модель отказа:

где f(R) – плотность распределения ресурса;

, – плотность и функция распределения ресурса для i-го вида разрушительного процесса;

n – число видов расчета.

Наибольшее распространение получил расчет подшипников качения на контактную усталость:

R = а р С д mρ No 50 [β -1 ,

где С д – динамическая грузоподъемность;

No 50 – число циклов кривой усталости, соответствующее 50% вероятности неразрушения подшипника при нагрузке С д;

m ρ – показатель степени (шариковые = 3, роликовые = 3,33);

Частота нагружения подшипника при движении на k-ой передаче;

Плостность распределения приведенной нагрузки при движении на k-ой передаче в i-ых условиях эксплуатации.

Основные особенности расчета.

1. Так как для кривой усталости подшипников вместо предела выносливости вводится С д (соответствует вероятности неразрушения 90% при 10 6 циклов), то необходимо перейти к кривой усталости, соответствующей 50% неразрушения. Учитывая, что плотность распределения при нагрузке на подшипник С д подчиняется закону Вейбулла, то No 50 = 4,7 ∙ 10 6 циклов.

2. Интегрирование в формуле производится от нуля, а параметры кривой усталости - m ρ , No 50 и С д – не корректируются. Поэтому, при условии = const, перестановка операций суммирования и интегрирования не влияет на величину R. Следовательно, расчеты по обобщенному нагрузочному режиму и по отдельным нагрузочным режимам тождественны. Если величины существенно отличаются, то расчет среднего ресурса R ik производится раздельно для каждой передачи:

R ik = а р С д mρ No [β -1 ,

формула может быть записана:

R = [ -1 ,

Р = (K Fr ∙ K v ∙ F r + K Fa ∙ F a) ∙ K б ∙ K T ∙ K м;

где F r , F a – радиальная и осевая нагрузки;

K v – коэффициент вращения;

K б – коэффициент вращения;

K Т – температурный коэффициен;

K м – коэффициент материала;

K Fr , K Fa – коэффициент радиальной и осевой нагрузок.

4. Зависимость между крутящим моментом на валу М и приведенной нагрузкой на подшипник:

Р = K P M = (K Fr ∙ K v ∙ K R + K Fa ∙ K A) ∙ K б ∙ K T ∙ K м ∙ M;

где К Р – коэффициент преобразования;

K R , K A – коэффициенты преобразования момента в суммарную радиальную и осевую нагрузки на подшипник.

Частота нагружения подшипника соответствует частоте его вращения.

1000 U Σα (2πr ω)

где U Σα – общее передаточное число трансмиссии от вала до ведущих колес автомобиля при включенной k-ой передаче.

5. Расчет плотности распределения ресурса подшипника и его параметров производится методом статического моделирования.

Вопрос №12 Удельная материалоемкость автомобилей.

При определении материалоемкости автомобиля используется масса снаря­женного шасси. Целесообразность ис­пользования при оценке материалоем­кости автомобиля массы шасси объяс­няется широким развитием производ­ства специализированных автомобилей с кузовами различных типов или дру­гих надстроек разной массы, устанав­ливаемых на шасси одного и того же базового автомобиля. Именно поэтому в фирменных проспектах и каталогах для зарубежных грузовых автомоби­лей, как правило, приводятся значения массы снаряженного шасси, а не ав­томобиля. При этом в массу снаряжен­ного шасси многие зарубежные фирмы не включают массу снаряжения и до­полнительного оборудования, а степень заправки топливом в различных стан­дартах указывается разная.

Для объективной оценки материало­емкости автомобилей различных моде­лей они обязательно должны быть приведены к единой комплектации. При этом грузоподъемность шасси определяется как разность между по­лной конструктивной массой автомоби­ля и массой снаряженного шасси.

Основным показателем материало­емкости автомобиля является удельная масса шасси:

m уд = (m сн.шас – m з.сн)/[(m к.а – m сн.шас)Р];

где m сн.шас – масса снаряженного шасси,

m з.сн – масса заправки и снаряжения,

m к.а – полная конструктивная масса автомобиля,

Р – установленный ресурс до капитального ремонта.

Для автомобиля-тягача учитывается полная масса автопоезда:

m уд = (m сн.шас – m з.сн)/[(m к.а – m сн.шас)КР];

где К – коэффициент коррекции показателей для автомобилей-тягачей, предназначенных для работы в составе автопоезда

К = m a /m к.а;

где m a – полная масса автопоезда.


Похожая информация.




Понравилась статья? Поделитесь с друзьями!