Найти производную функции в точке принадлежащей параболе. Связь с градиентом

Цель: Ознакомить студентов с основами алгоритмизации.

Учебные вопросы:

1. Алгоритм и его свойства. Способы записи алгоритмов.

2. Основные типы алгоритмов. Блок-схемы типовых алгоритмов.

Изучив данную тему, студент должен:

Знать:

· свойства алгоритма;

· блоки для построения схем;

· основные типы алгоритмов;

Уметь :

· строить алгоритмы по условию задачи;

Понятие алгоритма

Понятие алгоритма – одно из фундаментальных понятий информатики, которое исторически оформилось в самостоятельную дисциплину «теория алгоритмов», близкую к другой дисциплине «математическая логика». С другой стороны, дисциплину «теория алгоритмов» можно рассматривать промежуточной между двумя дисциплинами: математикой и информатикой, связанной с разделом программирования.

Алгоритмизация относится к общим методам информатики, имеет большое значение при решении сложных задач. Прежде, чем написать программу решения задачи на ЭВМ, необходимо просмотреть последовательность действий, которые должны быть выполнены для правильного решения рассматриваемой задачи.

Алгоритм это последовательность арифметических, логических и прочих операций, необходимых для выполнения на ЭВМ.

Для получения правильного результата алгоритм должен быть составлен так, чтобы при его исполнении все команды трактовались однозначно. Поэтому появились обязательные требования, которые должны учитываться при составлении алгоритмов. Требования формулируются в виде свойств.

Алгоритм должен быть всегда результативным, иметь свойство повторяемости и должен быть рассчитан на конкретного исполнителя. В технике таким исполнителем является ЭВМ. Для обеспечения возможности реализации на ЭВМ алгоритм должен быть описан на языке понятном ЭВМ, то есть на машинном языке. Однако прежде, чем представить алгоритм на языке понятном для ЭВМ (машинном языке), необходимо написать программу с помощью алгоритмического языка программирования.

Алгоритм может быть представлен различными способами, в частности:

1) словесно (вербальное описание);

2) таблично;

3) в виде блок-схемы;

4) на алгоритмическом языке.

Достаточно распространенным способом представления алгоритма является его запись на алгоритмическом языке, представляющем в общем случае систему обозначений и правил для единообразной и точной записи алгоритмов и их исполнения. Этот способ представления алгоритма предусматривает запись его в виде программы.

Программа – это запись алгоритма на языке программирования, приводящая к конечному результату за конечное число шагов.

Предпочтительнее до записи на алгоритмическом языке представить алгоритм в виде блок-схемы. Для построения алгоритма в виде блок-схемы необходимо знать назначении каждого из блоков. В таблице 13. приводятся типы блоков и их назначение.

Таблица 13

Назначение блока

Комментарий

{блоку соответствует оператор}

Начало или конец

блок-схемы

Ввод или вывод данных

ввода / вывода

Процесс (в частности вычислительный)

присваивания

Модификатор цикла

5.2. Основные типы алгоритмов

Алгоритмизация выступает как набор определенных практических приёмов, особых специфических навыков рационального мышления в рамках заданных языковых средств. Алгоритмизация вычислений предполагает решение задачи в виде последовательности действий, т. е. решение, представленное в виде блок-схемы. Можно выделить типичные алгоритмы. К ним относятся: линейные алгоритмы, разветвляющиеся алгоритмы, циклические алгоритмы.

Линейные алгоритмы

Линейный алгоритм является наиболее простым. В нём предполагается последовательное выполнение операций. В этом алгоритме не предусмотрены проверки условий или повторений.

Пример: Вычислить функцию z= (х-у)/x +y2 .

Составить блок-схему вычисления функции по линейному алгоритму. Значения переменных х , у могут быть любые, кроме нуля, вводить их с клавиатуры.

Решение: Линейный алгоритм вычисления функции задан в виде блок-схемы на рис.8. При выполнении линейного алгоритма значения переменных вводятся с клавиатуры, подставляются в заданную функцию, вычисляется результат, а затем выводится результат.

Рис.8. Линейный алгоритм

Назначение блоков в схеме на рис.8:

· Блок 1 в схеме служит в качестве логического начала.

· Блок 3 представляет арифметическое действие.

· Блок 4 выводит результат.

· Блок 5 в схеме служит в качестве логического завершения схемы.

Алгоритмы ветвлений

Разветвляющийся алгоритм предполагает проверку условий для выбора решения. Соответственно в алгоритме появятся две ветви для каждого условия.

В примере рассматривается разветвляющийся алгоритм, где в зависимости от условия выбирается один из возможных вариантов решений. Алгоритм представляется в виде блок-схемы.

Пример: При выполнении условия x >0 вычисляется функция: z = ln x + y , иначе, а именно, когда х=0 или x <0 , вычисляется функция: z = x + y 2 .

Составить блок-схему вычисления функции по алгоритму ветвления. Значения переменных х, у могут быть любые, вводить их с клавиатуры.

Решение: На рис.9 представлен разветвляющийся алгоритм, где в зависимости от условия выполнится одна из веток. В блок-схеме появился новый блок 3, который проверяет условие задачи. Остальные блоки знакомы из линейного алгоритма.

https://pandia.ru/text/78/136/images/image008_57.gif" width="300" height="360 src=">

Рис.9. Алгоритм ветвления

Пример: Найти максимальное значение из трёх различных целых чисел, введенных с клавиатуры. Составить блок-схему решения задачи.

Решение: Данный алгоритм предполагает проверку условия. Для этого выбирается любая из трёх переменных и сравнивается с другими двумя. Если она больше, то поиск максимального числа окончен. Если условие не выполняется, то сравниваются две оставшиеся переменные. Одна из них будет максимальной. Блок-схема к этой задаче представлена на рис 10.

https://pandia.ru/text/78/136/images/image010_48.gif" width="492" height="456 src=">

Рис. 10. Блок-схема поиска максимума

Циклические алгоритмы

Циклический алгоритм предусматривает повторение одной операции или нескольких операций в зависимости от условия задачи.

Из циклических алгоритмов выделяют два типа:

1) с заданным количеством циклов или со счётчиком циклов;

2) количество циклов неизвестно.

Пример: В цикле вычислить значение функции z=x*y при условии, что одна из переменных x меняется в каждом цикле на единицу, а другая переменная у не меняется и может быть любым целым числом. В результате выполнения цикла при начальном значении переменной х=1 можно получить таблицу умножения. Количество циклов может быть любым. Составить блок-схему решения задачи.

Решение: В примере количество циклов задаётся. Соответственно выбирается алгоритм циклов первого типа. Алгоритм этой задачи приводится на рис. 11.

Во втором блоке вводятся количество циклов n и любые целые числа х , y .

В блок-схеме появился новый блок 3, в котором переменная i считает количество циклов, после каждого цикла увеличиваясь на единицу, пока счётчик не будет равен i=n . При i=n будет выполнен последний цикл.

В третьем блоке указывается диапазон изменения счётчика цикла (от i =1 до i=n ).

В четвёртом блоке изменяются значения переменных: z , x .

В пятом блоке выводится результат. Четвёртый и пятый блоки повторяются в каждом цикле.

Рис.11 . Циклический алгоритм со счётчиком циклов

Этот тип циклических алгоритмов предпочтителен, если дано количеством циклов.

Если количество циклов неизвестно, то блок-схемы циклических алгоритмов могут быть представлены в виде рисунков 12, 13.

Пример: Вычислить у=у- x пока y > x , если y =30 , x =4. Подсчитать количество выполненных циклов, конечное значение переменной у . В цикле вывести значение переменной у , количество выполненных циклов. Составить блок-схему решения задачи.

Решение: В примере количество циклов неизвестно. Соответственно выбирается алгоритм циклов второго типа. Алгоритм этой задачи приводится на рис. 12.

Условие проверяется на входе в цикл. В теле цикла выполняется два блока:

1) у=у-х; i = i +1 ;

2) вывод значений переменных i , y .

Цикл выполняется до тех пор, пока выполняется условие y>x . При условии равенства этих переменных у=х или y цикл заканчивается.

Алгоритм, представленный на рис.12, называется циклический алгоритм с предусловием , так как условие проверяется в начале цикла или на входе в цикл.> x на входе в цикл. Если условие выполняется, то переход к блоку 4, иначе на блок 6.

В четвёртом блоке вычисляется значение переменной у i = i +1 .

В пятом блоке выводится результат:

· значение переменной у ,

i .

Пример: Составить блок-схему примера (рисунок 12), проверяя условие выхода из цикла. В этом примере условие задачи не меняется, и результат выведется тот же, но блок-схема будет другой.

Решение: В этом случае проверяется условие на выход из цикла: y<=x . При этом условии цикл не выполняется. Условие в блок-схеме следует перенести в конец цикла, после вывода на печать. Цикл выполняется до тех пор, пока выполняется условие y>x .

Алгоритм, если условие перенести в конец цикла, называется алгоритмом цикла с постусловием . Алгоритм этой задачи приводится на рис. 13.

Во втором блоке вводятся y =30 , x =4 .

В третьем блоке вычисляется значение переменной у , подсчитывается количество выполненных циклов i = i +1 .

В четвёртом блоке выводится результат:

· значение переменной у ,

· количество выполненных циклов i .

В пятом блоке проверяется условие y <= x на выход из цикла. Если условие выполняется, то переход к блоку 6, иначе на блок 3 и цикл повторяется.

Рис.13 . Алгоритм цикла с постусловием

Контрольные вопросы

1. Понятие алгоритма.

2. Виды алгоритмов.

3. Основные алгоритмические структуры.

4. Основные блоки графического алгоритма.

5. Линейная алгоритмическая структура. Пример.

6. Ветвление. Пример.

7. Циклические алгоритмические структуры. Пример.

При изучении информатики немало внимания уделяется изучению алгоритмов и их видам. Не зная основных сведений о них, нельзя написать программу или проанализировать ее работу. Изучение алгоритмов начинается еще в школьном курсе информатики. Сегодня мы рассмотрим понятие алгоритма, свойства алгоритма, виды.

Понятие

Алгоритм - это определенная последовательность действий, которая приводит к достижению того или иного результата. Составляя алгоритм, детально прописывают каждое действие исполнителя, которое в дальнейшем приведет его к решению поставленной задачи.

Довольно часто алгоритмы используют в математике для решения тех или иных задач. Так, многим известен алгоритм решения квадратных уравнений с поиском дискриминанта.

Свойства

Прежде чем рассматривать в информатике, необходимо выяснить их основные свойства.

Среди основных свойств алгоритмов необходимо выделить следующие:

  • Детерминированность, то есть определенность. Заключается в том, что любой алгоритм предполагает получение определенного результата при заданных исходных.
  • Результативность. Означает, что при наличии ряда исходных данных после выполнения ряда шагов будет достигнут определенный, ожидаемый результат.
  • Массовость. Написанный единожды алгоритм может использоваться для решения всех задач заданного типа.
  • Дискретность. Она подразумевает, что любой алгоритм можно разбить на несколько этапов, каждый из которых имеет свое назначение.

Способы записи

Вне зависимости от того, какие виды алгоритмов в информатике вы рассматриваете, существует несколько способов их записи.

  1. Словестный.
  2. Формульно-словестный.
  3. Графический.
  4. Язык алгоритма.

Наиболее часто изображают алгоритм в виде блок-схемы, используя специальные обозначения, зафиксированные ГОСТами.

Основные виды

Выделяют три основных схемы:

  1. Линейный алгоритм.
  2. Ветвящийся алгоритм, или разветвленный.
  3. Циклический.

Линейный

Наиболее простым в информатике считается Он предполагает последовательность выполнения действий. Приведем наиболее простой пример алгоритма такого вида. Назовем его «Сбор в школу».

1. Встаем, когда звенит будильник.

2. Умываемся.

3. Чистим зубы.

4. Делаем зарядку.

5. Одеваемся.

6. Кушаем.

7. Обуваемся и идем в школу.

8. Конец алгоритма.

Разветвляющийся алгоритм

Рассматривая виды алгоритмов в информатике, нельзя не вспомнить о разветвляющейся структуре. Данный вид предполагает наличие условия, при котором в случае его выполнения действия выполняются в одном порядке, а в случае невыполнения - в другом.

Например, возьмем следующую ситуацию - переход дороги пешеходом.

1. Подходим к светофору.

2. Смотрим на сигнал светофора.

3. Он должен быть зеленым (это условие).

4. Если условие выполняется, мы переходим дорогу.

4.1 Если нет - ждем, пока загорится зеленый.

4.2 Переходим дорогу.

5. Конец алгоритма.

Циклический алгоритм

Изучая виды алгоритмов в информатике, детально следует остановиться на Данный алгоритм предполагает участок вычислений или действий, который выполняется до выполнения определенного условия.

Возьмем простой пример. Если ряд чисел от 1 до 100. Нам необходимо найти все то есть те, которые делятся на единицу и себя. Назовем алгоритм «Простые числа».

1. Берем число 1.

2. Проверяем, меньше ли оно 100.

3. Если да, проверяем простое ли это число.

4. Если условие выполняется, записываем его.

5. Берем число 2.

6. Проверяем, меньше ли оно 100.

7. Проверяем, простое ли оно.

…. Берем число 8.

Проверяем, меньше ли оно 100.

Проверяем, простое ли число.

Нет, пропускаем его.

Берем число 9.

Таким образом перебираем все числа, до 100.

Как видите, шаги 1 - 4 будут повторяться некоторое число раз.

Среди циклических выделяют алгоритмы с предусловием, когда условие проверяется в начале цикла, или с постусловием, когда проверка идет в конце цикла.

Другие варианты

Алгоритм может быть и смешанным. Так, он может быть циклическим и разветвленным одновременно. При этом используются разные условия на разных отрезках алгоритма. Такие сложные структуры приеняются при написании сложных программ и игр.

Обозначения в блок-схеме

Мы с вами рассмотрели, какие виды алгоритмов есть в информатике. Но мы не рассказали о том, какие обозначения используются при их графической записи.

  1. Начало и конец алгоритма записываются в овальной рамке.
  2. Каждая команда фиксируется в прямоугольнике.
  3. Условие прописывается в ромбе.
  4. Все части алгоритма соединяются при помощи стрелок.

Выводы

Мы с вами рассмотрели тему "Алгоритмы, виды, свойства". Информатика уделяет немало времени изучению алгоритмов. Их используют при написании различных программ как для решения математических задач, так и для создания игр и различного рода приложений.

Производная по направлению

В математическом анализе , производная по направлению - это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает, насколько быстро функция изменяется при движении вдоль заданного направления.

Производная функции одной переменной показывает, как изменяется её значение при малом изменении аргумента . Если мы попытаемся по аналогии определить производную функции многих переменных, то столкнёмся с трудностью: в этом случае изменение аргумента (то есть точки в пространстве) может происходить в разных направлениях, и при этом будут получаться разные значения производной. Именно это соображение и приводит к определению производной по направлению .

Рассмотрим функцию от аргументов в окрестности точки . Для любого единичного вектора определим производную функции в точке по направлению следующим образом:

Значение этого выражения показывает, как быстро меняется значение функции при сдвиге аргумента в направлении вектора .

Если направление сонаправленно с координатной осью, то производная по направлению совпадает с частной производной по этой координате.

Связь с градиентом

Производную по направлению дифференцируемой по совокупности переменных функции можно рассматривать как проекцию градиента функции на это направление, или иначе, как скалярное произведение градиента на орт направления:

,

где - орт направления. Отсюда следует, что максимальное значение в точке производная по направлению принимает, если направление совпадает с направлением градиента функции в данной точке. Также видно, что значение производной по направлению не зависит от длины вектора .

См. также

Ссылки


Wikimedia Foundation . 2010 .

  • Плита Наска
  • Коробков, Дмитрий Сергеевич

Смотреть что такое "Производная по направлению" в других словарях:

    производная по направлению - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN directional derivative … Справочник технического переводчика

    Производная (обобщения) - У этого термина существуют и другие значения, см. Производная. В математике существует много различных обобщений понятия производной, так как она является базовой конструкцией дифференциального исчисления. Содержание 1 Односторонние производные … Википедия

    Производная (обобщение)

    Производная направления - В математическом анализе, производная по направлению это обобщение понятия производной на случай функции нескольких переменных. Производная по направлению показывает на сколько быстро функция изменяется при движении вдоль заданного направления.… … Википедия

    Производная функции - У этого термина существуют и другие значения, см. Производная. Иллюстрация понятия производной Производная … Википедия

    Производная функция - Производная основное понятие дифференциального исчисления, характеризующее скорость изменения функции. Определяется как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к нулю, если таковой предел… … Википедия

    Производная - (ый, ое) произведённая, образованная от другой, простейшей или основной величины, формы, категории. Содержание 1 Математика 2 Нематематические понятия … Википедия

    Производная Ли - тензорного поля по направлению векторного поля главная линейная часть приращения тензорного поля при его преобразовании, которое индуцировано локальной однопараметрической группой диффеоморфизмов многообразия, порождённой полем. Названа в … Википедия

    Производная Гато - расширяет концепцию производной на локально выпуклые топологические векторные пространства. Название дано в честь французского математика Рене Гато (фр. René Gâteaux). Определение Пусть есть отображение, действующее из в. Дифференциалом… … Википедия

    Односторонняя производная - В математике существует много различных обобщений понятия производной, так как она является базовой конструкцией дифференциального исчисления. Содержание 1 Односторонние производные 2 Анализ функций нескольких переменных … Википедия

Книги

  • Высшая математика. Стандартные задачи с основами теории: Учебное пособие. , Вдовин А.Ю.. Доп. УМО вузов РФ по образованию в области транспортных машин и транспортно-технологических комплексов в качестве уч. пос. для студентов вузов, обуч. по специальностям направлений подготовки… Купить за 425 руб
  • Методы решения некоторых задач избранных разделов высшей математики. Практикум , Клименко Константин Григорьевич, Левицкая Галина Васильевна, Козловский Евгений Александрович. В данном практикуме рассматриваются методы решения некоторых типов задач из таких разделов общепринятого курса математического анализа, как предел и экстремум функции, градиент и производная…

Пусть Z = F (M ) – функция, определенная в некоторой окрестности точки М(у; х); L ={ Cos ; Cos } – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М ; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L ; L – величина отрезка ММ1 ; Z = F (х+х, у+у)- F (X , Y ) – приращение функции F (M ) в точке М(х; у).

Определение. Предел отношения , если он существует, называется Производной функции Z = F ( M ) в точке M ( X ; Y ) по направлению вектора L .

Обозначение.

Если функция F (M ) дифференцируема в точке М(х; у) , то в точке М(х; у) существует производная по любому направлению L , исходящему из М ; вычисляется она по следующей формуле:

(8)

Где Cos И Cos - направляющие косинусы вектора L .

Пример 46. Вычислить производную функции Z = X 2 + Y 2 X в точке М(1; 2) по направлению вектора ММ1 , где М1 – точка с координатами (3; 0).

. Найдем единичный вектор L , имеющий данное направление:

Откуда Cos = ; Cos =- .

Вычислим частные производные функции в точке М(1; 2) :

По формуле (8) получим

Пример 47. Найти производную функции U = Xy 2 Z 3 в точке М(3; 2; 1) В направлении вектора MN , где N (5; 4; 2) .

. Найдем вектор и его направляющие косинусы:

Вычислим значения частных производных в точке М :

Следовательно,

Определение. Градиентом Функции Z = F (M ) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).

Обозначение.

Пример 48. Найти градиент функции Z = X 2 +2 Y 2 -5 в точке М(2; -1) .

Решение . Находим частные производные: и их значения в точке М(2; -1):

Пример 49. Найти величину и направление градиента функции в точке

Решение. Найдем частные производные и вычислим их значения в точке М:

Следовательно,

Аналогично определяется производная по направлению для функции трех переменных U = F (X , Y , Z ) , выводятся формулы

Вводится понятие градиента

Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных : в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:

1) Пусть задана функция Z = F (X , Y ) , имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F (X 0 , Y 0 ) . Рассмотрим график функции. Через точку (X 0 , Y 0 , F (X 0 , Y 0 )) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0) , рассматриваемый геометрически как вектор, приложенный в точке (X 0 , Y 0 , F (X 0 , Y 0 )) , будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.

2) Градиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0 . Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0 . Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.

Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом . Координаты этого вектора равны:

Антиградиент функции F (X , Y ) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0 . Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.

3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X , Y ) из области определения функции F (X , Y ) , таких, что F (X , Y )= Const , где запись Const означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.

Определение. Линией уровня функции U = F ( X , Y ) называется линия F (X , Y )=С на плоскости XOy , в точках которой функция сохраняет постоянное значение U = C .

Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С , которое состоит из точек трехмерного пространства с координатами (X , Y , F (X , Y )= Const ), которые, с одной стороны, принадлежат графику функции Z = F (X , Y ), с другой - лежат в плоскости, параллельной координатной плоскости ХОУ , и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z = Const и линию пересечения спроектировать на плоскость ХОУ . Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ .

Определение. Множество линий уровня называют Картой линий уровня .

Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.


Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением , или Направлением наискорейшего роста .

«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.

Пример 50. Найти линии уровня функции U = X 2 + Y 2 .

Решение. Уравнение семейства линий уровня имеет вид X 2 + Y 2 = C (C >0) . Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.

Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро - и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.

Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F (X , Y )=10х1/3у2/3 , где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:

5х + 10у = 30,

Т. е. определяют линию уровня функции:

G (X , Y ) = 5х + 10у.

С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30 . Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.

Определение. Поверхностью уровня функции U = F ( X , Y , Z ) называется поверхность F (X , Y , Z )=С, в точках которой функция сохраняет постоянное значение U = C .

Пример 52. Найти поверхности уровня функции U = X 2 + Z 2 - Y 2 .

Решение. Уравнение семейства поверхностей уровня имеет вид X 2 + Z 2 - Y 2 . Если С=0 , то получаем X 2 + Z 2 - Y 2 =0 – конус; если C <0 , то X 2 + Z 2 - Y 2 =С – Семейство двуполостных гиперболоидов.



Понравилась статья? Поделитесь с друзьями!