Найти значение матричного многочлена 2.1.30. Действия над матрицами

ЗЕМНОЙ МАГНЕТИЗМ , отдел геофизики, изучающий магнитное поле земли. Пусть напряженность магнитного поля в данной точке изображается вектором F (фиг. 1). Вертикальная плоскость, содержащая этот вектор, называется плоскостью магнитного меридиана. Угол D, заключенный между плоскостями географического и магнитного меридианов, носит название склонения. Различают склонения восточное и западное. Принято отмечать восточные склонения знаком плюс, западные - знаком минус. Угол I, образованный вектором F с плоскостью горизонта, называется наклонением. Проекция Н вектора F на горизонтальную плоскость называется горизонтальной составляющей, а проекция Z на вертикальную прямую обозначается термином вертикальная составляющая.

Основными приборами для измерения элементов земного магнетизма являются в настоящее время магнитный теодолит и различные системы инклинаторов. Назначение магнитного теодолита - измерение горизонтальной составляющей магнитного поля и склонения. Горизонтально расположенный магнит, могущий вращаться около вертикальной оси, устанавливается под действием магнитного поля земли своей осью в плоскости магнитного меридиана. Если его вывести из этого положения равновесия и предоставить затем самому себе, то он начнет совершать колебания около плоскости магнитного меридиана с периодом Т, определяемым формулой:

где К - момент инерции колеблющейся системы (магнит и оправа) и М - магнитный момент магнита. Определив из специальных наблюдений величину К, можно по наблюденному периоду Т найти значение произведения МН. Затем помещают магнит, период колебания которого определен, на некотором расстоянии от другого, вспомогательного магнита, тоже имеющего возможность вращаться около вертикальной оси, и ориентируют первый магнит так, чтобы центр второго магнита оказался на продолжении магнитной оси первого. В таком случае на вспомогательный магнит будет кроме Н действовать и поле магнита М, которое м. б. найдено по формуле:

где В - расстояние между центрами обоих магнитов, а, b,... - некоторые постоянные. Магнит выйдет из плоскости магнитного меридиана и станет по направлению равнодействующей этих двух сил. Не изменяя относительного расположения частей установки, находят такое положение отклоняющего магнита, при котором названная равнодействующая будет перпендикулярна к нему (фиг. 2). Измеряя для этого случая угол отклонения v, можно из соотношения sin v = f/Hнайти значение отношения Из полученных значений МН и H/M определяют горизонтальную слагающую Н. В теории земного магнетизма имеет распространение единица, обозначаемая символом γ, равная 0,00001 гаусса. Магнитный теодолит можно применять в качестве деклинатора, прибора для измерения склонения. Совмещая визирную плоскость с направлением магнитной оси подвешенного на нити магнита, приводят ее в совпадение с плоскостью магнитного меридиана. Чтобы получить отсчет на круге, соответствующем наведению визирного приспособления на географический север, достаточно сделать наведение на какой-либо объект, истинный азимут которого известен. Разность отсчетов географического и магнитного меридианов и дает величину склонения.

Инклинатор - прибор для измерения I. Современная магнитометрия имеет два типа приборов для измерения наклонения - инклинаторы стрелочный и индукционный . Первый прибор имеет магнитную стрелку, вращающуюся около горизонтальной оси, помещенной в центре вертикального лимба. Плоскость движения стрелки совмещается с плоскостью магнитного меридиана; в таком случае в идеальных условиях магнитная ось стрелки в положении равновесия совпадет с направлением магнитного напряжения в данном пункте, и угол между направлением магнитной оси стрелки и горизонтальной линией даст величину I. В основу конструкции индукционного инклинатора (земного индуктора ) положено явление индукции в проводнике, движущемся в магнитном поле. Существенной особенностью прибора является катушка, вращаемая около одного из своих диаметров. При вращении такой катушки в магнитном поле земли в ней не появляется ЭДС лишь в том случае, когда ее ось вращения совпадает с направлением поля. Это положение оси, отмечаемое отсутствием тока в гальванометре, на который замкнута катушка, отсчитывается на вертикальном круге. Угол между направлением оси вращения катушки и горизонтом будет углом наклонения.

Упомянутые выше приборы являются в настоящее время наиболее распространенными. Следует упомянуть особо о магнитном теодолите Оглоблинского, определяющем значение H/M методом компенсации Н полем магнита, для которого определяется период колебания.

В последнее время начинают применяться т.н. электрические методы измерения Н, при которых отклонения производятся не с помощью отклоняющего магнита, а с помощью магнитного поля катушек. Для достижения той точности, которая требуется от магнитных измерений (0,2-0,02 % полного напряжения), рабочий ток сравнивается с током от нормальных элементов (компенсирование по методу потенциометра).

Измерения, сделанные в различных пунктах земной поверхности, показывают, что магнитное поле меняется от пункта к пункту. В этих изменениях можно заметить некоторые закономерности, характер которых лучше всего уясняется из рассмотрения т. н. магнитных карт (фиг. 3 и 4).

Если нанести на топографической основе линии, соединяющие точки равных значений какого-либо элемента земного магнетизма, то такая карта представит наглядную картину распределения этого элемента на местности. Соответственно различным элементам земного магнетизма имеются карты с различными системами изолиний. Эти изолинии носят специальные названия, смотря по тому, какой элемент они изображают. Так, линии, соединяющие точки равных склонений, носят название изогон (линия нулевых склонений получила название агонической линии), линии равных наклонений - изоклин и линии равных напряжений - изодинам . Различают изодинамы горизонтальной, вертикальной составляющей и т. д. Если построить такие карты для всей поверхности земного шара, то на них можно заметить следующие особенности. В экваториальных областях наблюдаются наибольшие значения горизонтальной силы (до 0,39 гаусса); по направлению к полюсам горизонтальная составляющая убывает. Противоположный характер изменений имеет место для вертикальной составляющей. Линия нулевых значений вертикальной составляющей называется магнитным экватором . Точки с нулевыми значениями горизонтальной силы называются магнитными полюсами земли. Они не совпадают с географическими и имеют координаты: северный магнитный полюс - 70,5° с. ш. и 96,0° з. д. (1922 г.), южный магнитный полюс - 71,2° ю. ш. и 151,0° в. д. (1912 г.). В магнитных полюсах земли пересекаются все изогоны.

Детальное исследование магнитного поля земли обнаруживает, что изолинии идут далеко не так плавно, как это дается общей картиной. На каждой такой кривой имеют место искривления, нарушающие плавный ход ее. В некоторых областях эти искривления достигают настолько крупных значений, что приходится данный участок выделить в магнитном отношении из общей картины. Такие районы носят название аномальных, и в них можно наблюдать значения магнитных элементов, во много раз превышающие нормальное поле. Исследование магнитных аномалий выяснило их тесную связь с геологической структурой верхних частей земной коры, гл. обр. в отношении содержания в них магнитных минералов, и вызвало к жизни особую отрасль магнитометрии, имеющую прикладное значение и ставящую своей задачей применение магнитометрии, измерений к горной разведке. Такие аномальные районы, имеющие уже в настоящее время большое промышленное значение, находятся на Урале, в Курском округе, в Кривом Роге, в Швеции, в Финляндии и в др. местах. Для исследования магнитного поля таких областей разработана специальная аппаратура (магнитометр Тиберга-Талена, локальвариометры и т. д.), позволяющая быстро получить нужные результаты измерений. Изучение магнитного поля земли в каком-либо одном пункте обнаруживает факт изменений этого поля с течением времени. Детальное исследование этих временных вариаций элементов земного магнетизма привело к установлению их связи с жизнью земного шара в целом. В вариациях находят свое отражение вращение земли около оси, движение земли по отношению к солнцу и еще целый ряд явлений космического порядка. Изучение вариаций ведется специальными магнитными обсерваториями, снабженными, кроме точных приборов для измерений элементов магнитного поля земли, еще специальными установками для непрерывной записи временных изменений магнитных элементов. Такие приборы носят название вариометров , или магнитографов , и служат обычно для записи вариаций D, Н и Z. Прибор для записи вариаций склонения (вариометр D , или унифиляр ) имеет магнит с прикрепленным к нему зеркальцем, свободно висящий на тонкой нити. Вариации склонения, заключающиеся в поворотах плоскости магнитного меридиана, заставляют подвешенный таким способом магнит поворачиваться. Брошенный из специального осветителя луч, отразившись от зеркальца магнита, дает перемещающееся световое пятно, которое оставляет след в виде кривой на светочувствительной бумаге, навернутой на вращающийся барабан или опускающейся вертикально. Линия, прочерченная лучом, отраженным от неподвижного зеркальца, и отметки времени позволяют по полученной магнитограмме найти изменение D для любого момента времени. Если закручивать нить, вращая верхнюю точку ее прикрепления, то магнит выйдет из плоскости магнитного меридиана; надлежащим закручиванием можно поставить его в положение, перпендикулярное первоначальному. В новом положении равновесия на магнит, с одной стороны, будет действовать Н, с другой - момент закрученной нити. Всякое изменение горизонтальной слагающей вызовет изменение положения равновесия магнита, и такой прибор будет отмечать вариации горизонтальной составляющей (вариометр Н , или бифиляр , если магнит подвешен на двух параллельных нитях). Запись этих вариаций ведется таким же образом, как и запись изменений склонения. Наконец, третий прибор, служащий для записи вариаций вертикальной составляющей (весы Ллойда , вариометр Z ), имеет магнит, колеблющийся, подобно коромыслу весов, около горизонтальной оси. Надлежащим перемещением центра тяжести с помощью передвижного грузика магнит этого прибора приводят в положение, близкое к горизонтальному, и устанавливают обычно так, чтобы плоскость движений магнита была направлена перпендикулярно плоскости магнитного меридиана. В таком случае положение равновесия магнита определяется действием Z и веса системы. Изменение первой величины вызовет некоторый наклон магнита, пропорциональный изменению вертикальной составляющей. Эти изменения наклона регистрируются, подобно предыдущему, фотографическим путем и дают материал для суждений о вариациях вертикальной составляющей.

Если подвергнуть кривые, записанные магнитографами (магнитограммы ), анализу, можно найти на них целый ряд особенностей, из которых прежде всего бросится в глаза отчетливо выраженный суточный ход. Положение максимумов и минимумов суточного хода, а равно и их значения изо дня в день меняются в небольших пределах, и поэтому для характеристики суточного хода составляются некоторые средние кривые за какой-либо интервал времени. На фиг. 5 даны кривые изменения D, H и Z для обсерватории в Слуцке за сентябрь 1927 г., на которых хорошо заметен суточный ход элементов.

Наиболее наглядным способом изображения вариаций является т. н. векторная диаграмма , представляющая движение конца вектора F с течением времени. Две проекции векторной диаграммы на плоскости yz и ху даны на фиг. 6. Из этой фиг. видно, как отражается на характере суточного хода время года: в зимние месяцы колебания магнитных элементов значительно меньше, чем в летние.

Кроме вариаций, обусловленных суточным ходом, на магнитограммах иногда замечаются резкие изменения, достигающие нередко весьма больших значений. Такие резкие изменения магнитных элементов сопровождаются рядом других явлений, как то: полярных сияний в арктических областях, появлением индуцированных токов в телеграфных и телефонных линиях, и т. д., и называются магнитными бурями . Между вариациями, обусловленными нормальным ходом, и вариациями, вызванными бурями, существует коренное различие. В то время как нормальные изменения протекают для каждого пункта наблюдений по местному времени, вариации, причиной которых являются бури, протекают одновременно для всего земного шара. Это обстоятельство указывает на различную природу вариаций обоих типов.

Стремление объяснить наблюдаемое наземной поверхности распределение элементов земного магнетизма привело Гаусса к построению математической теории геомагнетизма. Изучение элементов земного магнетизма со времени первых геомагнитных измерений обнаружило существование т. н. векового хода элементов, и дальнейшее развитие теории Гаусса заключало среди прочих задач и учет этих вековых вариаций. В результате работ Петерсона, Неймайера и других исследователей имеется теперь формула для потенциала, учитывающая и этот вековой ход.

Среди гипотез, предложенных для объяснений суточного и годового хода геомагнитных элементов, надо отметить гипотезу, предложенную Бальфур-Стюартом и развитую Шустером. По мысли этих исследователей, в высоких электропроводящих слоях атмосферы под термическим действием солнечных лучей возникают перемещения газовых масс. Магнитным полем земли в этих движущихся проводящих массах индуцируются электрические токи, магнитное поле которых и проявляется в виде суточных вариаций. Эта теория хорошо объясняет уменьшение амплитуды вариаций в зимние месяцы и выясняет превалирующую роль местного времени. Что касается магнитных бурь, то ближайшее исследование показало их тесную связь с деятельностью солнца. Выяснение этой связи привело к следующей общепризнанной в настоящее время теории магнитных возмущений. Солнце в моменты наиболее интенсивной своей деятельности выбрасывает потоки электрически заряженных частиц (например, электронов). Такой поток, попадая в верхние слои атмосферы, ионизирует ее и создает возможность протекания интенсивных электрических токов, магнитное поле которых и является теми пертурбациями, которые мы называем магнитными бурями. Такое объяснение природы магнитных бурь хорошо согласуется с результатами теории полярных сияний, развитой Штермером.

Так как магнитные и географические полюсы Земли не совпадают, то магнитная стрелка указывает направление север-юг только приблизительно. Плоскость, в которой устанавливается магнитная стрелка, называют плоскостью магнитного меридиана данного места, а прямую, по которой эта плоскость пересекается с горизонтальной плоскостью, называют магнитным меридианом. Угол между направлениями магнитного и географического меридианов называют магнитным склонением; его принято обозначать греческой буквой . Магнитное склонение изменяется от места к месту на земном шаре.

Магнитное склонение называют западным или восточным в зависимости от того, к западу () или к востоку () от плоскости географического меридиана отклоняется северный полюс магнитной стрелки (рис. 229). Шкала измерения склонения – от 0 до 180°. Часто восточное склонение отмечают знаком «+», а западное знаком «-».

Рис. 229. Положение магнитной стрелки относительно стран света: а) в местах с восточным магнитным склонением; б) в местах с западным магнитным склонением

Из рис. 228 видно, что линии земного магнитного поля, вообще говоря, не параллельны поверхности Земли. Это означает, что магнитная индукция поля Земли не лежит в плоскости горизонта данного места, а образует с этой плоскостью некоторый угол. Этот угол называется магнитным наклонением. Магнитное наклонение часто обозначают буквой . В разных местах Земли магнитное наклонение различно.

Очень ясное представление о направлении магнитной индукции земного магнитного поля в данной точке можно получить, укрепив магнитную стрелку так, чтобы она могла свободно вращаться и вокруг вертикальной и вокруг горизонтальной оси. Это можно осуществить, например, с помощью подвеса (так называемого карданова подвеса), показанного на рис. 230. Стрелка устанавливается при этом по направлению магнитной индукции поля.

Рис. 230. Магнитная стрелка, укрепленная в кардановом подвесе, устанавливается по направлению магнитной индукции земного магнитного поля

Магнитное склонение и магнитное наклонение (углы и ) полностью определяют направление магнитной индукции земного магнитного поля в данном месте. Остается еще определить числовое значение этой величины. Пусть плоскость на рис. 231 представляет собой плоскость магнитного меридиана данного места. Лежащую в этой плоскости магнитную индукцию земного магнитного поля мы можем разложить на две составляющие: горизонтальную и вертикальную . Зная угол (наклонение) и одну из составляющих, мы можем легко вычислить другую составляющую или сам вектор . Если, например, нам известен модуль горизонтальной составляющей , то из прямоугольного треугольника находим

Рис. 231. Разложение магнитной индукции земного магнитного поля на горизонтальную и вертикальную составляющие

На практике оказывается наиболее удобным непосредственно измерять именно горизонтальную составляющую земного, магнитного поля. Поэтому чаще всего магнитную индукцию этого поля в том или ином месте Земли характеризуют модулем ее горизонтальной составляющей.

Таким образом, три величины: склонение, наклонение и числовое значение горизонтальной составляющей полностью характеризуют магнитное поле Земли в данном месте. Эти три величины называют элементами земного магнитного поля.

129.1. Угол наклонения магнитной стрелки равен 60°. Если к ее верхнему концу прикрепить гирьку массы 0,1 г, то стрелка установится под углом 30° к горизонту. Какую гирьку нужно прикрепить к верхнему концу этой стрелки, чтобы стрелка стала горизонтально?

129.2. На рис. 232 изображен инклинатор, или буссоль наклонений, – прибор, служащий для измерения магнитного наклонения. Он представляет собой магнитную стрелку, укрепленную на горизонтальной оси и снабженную вертикальным разделенным кругом для отсчета углов наклонения. Стрелка всегда вращается в плоскости этого круга, но сама эта плоскость может поворачиваться вокруг вертикальной оси. При измерении наклонения круг устанавливается в плоскости магнитного меридиана.

Рис. 232. К упражнению 129.2

Покажите, что, если круг инклинатора установлен в плоскости магнитного меридиана, то стрелка установится под углом к плоскости горизонта, равным наклонению земного магнитного поля в данном месте. Как будет изменяться этот угол, если мы будем поворачивать круг инклинатора вокруг вертикальной оси? Как установится стрелка, когда плоскость круга инклинатора будет перпендикулярна к плоскости магнитного меридиана? 129.3. Как будет вести себя компасная стрелка, помещенная над одним из земных магнитных полюсов? Как будет вести себя там стрелка наклонения?

Точное знание величин, характеризующих земное магнитное поле, для возможно большего числа пунктов на Земле имеет чрезвычайно важное значение. Ясно, например, что, для того чтобы штурман корабля или самолета мог пользоваться магнитным компасом, он должен в каждой точке своего пути знать магнитное склонение. Ведь компас указывает ему направление магнитного меридиана, а для определения курса корабля он должен знать направление географического меридиана.

Склонение дает ему ту поправку к показаниям компаса, которую необходимо внести, чтобы найти истинное направление север-юг. Поэтому с середины прошлого века во многих странах ведется систематическое изучение земного магнитного поля. Свыше 50 специальных магнитных обсерваторий, распределенных по всему земному шару, систематически, изо дня в день, ведут магнитные наблюдения.

В настоящее время мы имеем обширные данные о распределении элементов земного магнетизма по земному шару. Данные эти показывают, что элементы земного магнетизма изменяются от точки к точке закономерно и в общем определяются широтой и долготой данного пункта.

Земной магнетизм - это свойство Земли (как космического тела), обусловливающее существование вокруг нее магнитного поля. Из других планет доказательства существования магнитного поля имеются для Юпитера. Измерения на американском космическом аппарате «Маринер-4» показали, что дипольный магнитный момент Марса меньше 3 1O -4 магнитного момента Земли. На Венере и Луне магнитные поля отсутствуют. В 1912 г. было обнаружено магнитное поле Солнца, а в 1947 г. и других звезд.

По данным космических измерений на больших расстояниях магнитное поле Земли (магнитосфера) простирается за пределы планеты на несколько земных радиусов, причем на освещенной Солнцем стороне Земли оно значительно сжато.

На расстоянии 10 земных радиусов близ линии, соединяющей Солнце и Землю, регулярное магнитное поле Земли переходит в нерегулярное, или хаотическое, поле. Граница между регулярным и хаотическим полем называется магнитопаузой. Она, по-видимому, стабильна относительно потока солнечного ветра. Хаотическое поле представляет собой переходную область между магнитопаузой и невозмущенным межпланетным полем, расположенным на расстоянии около 14 земных радиусов (также близ линии Солнце - Земля). Напряженность магнитного поля Земли изменяется обратно пропорционально кубу расстояния.

С захватом магнитным полем Земли заряженных частиц (электронов и протонов) связано наличие двух радиационных поясов, обнаруженных с помощью счетчика Гейгера во время многочисленных зондирований, выполненных на космических кораблях и спутниках.

В связи с дипольным характером геомагнитного ноля радиационные пояса имеют вид рогов полумесяца (точнее, тороидальную форму вследствие дрейфа частиц по долготе, обусловленного неоднородностью магнитного поля). Внутренний радиационный пояс, по-видимому, стабилен во времени, внешний подвержен сильным изменениям, в частности во время магнитных бурь.

Нагляднее всего магнитное поле Земли проявляется своим действием на магнитную стрелку, которая в любой точке земной поверхности устанавливается в определенном направлении (на этом основано устройство компаса) при различных склонениях и наклонениях.

Склонение - угол отклонения магнитной стрелки от географического меридиана данного места. Склонение может быть восточным и западным, причем величина его меняется в разных районах. Линии, соединяющие на картах точки с одинаковым склонением, называются изогонами. Наклонение - угол наклона магнитной стрелки к горизонту. В северном полушарии вниз опущен северный конец стрелки, в южном - южный. Линии, соединяющие точки одинакового наклонения, называются изоклинами. Изоклина, на которой наклонение равно нулю, называется магнитным экватором. Магнитный экватор пересекает географический экватор на 169° в. д. и на 23° з. д. и отступает от него к югу в западном полушарии и к северу - в восточном. По направлению к северу и к югу наклонение увеличивается и достигает 90° в точках, называемых магнитными полюсами. В магнитных полюсах сходятся и все изогоны.

Магнитные полюса меняют свое положение из года в год. В их положении отмечаются также небольшие периодические суточные колебания. В 1970 г. положение Северного полюса определялось 78° 31" с. ш. и 70в01" з. д., а Южного - 78°31" ю. ш. и 109°59" в. д. Точно так же вековые, годичные и суточные колебания отмечаются и в магнитном склонении, причем вековые колебания достигают 30°. Кроме склонения и наклонения магнитное поле Земли характеризуется напряженностью, различной в разных участках и меняющейся во времени. Линии, соединяющие точки равной напряженности, называются изодинамами.

Напряженность магнитного поля увеличивается от магнитного экватора (0,4 э) (Э рстед (э) - единица измерения напряженности магнитного поля. Это - напряженность магнитного поля на расстоянии 2 см от бесконечно длинного прямолинейного проводника, по которому протекает ток силой в одну абсолютную электромагнитную единицу тока) к магнитным полюсам (0,7 э). Горизонтальная составляющая магнитного поля Земли H достигает наибольшей величины на магнитном экваторе (0,4 э) и убывает до нуля на магнитных полюсах. Вертикальная составляющая Z меняется от 0,7 э на магнитных полюсах до нуля на магнитном экваторе. Такое распределение элементов магнитного поля сближает его с полем однородно намагниченного шара, точнее, с полем магнитного диполя, расположенного в центре Земли, ось которого отклонена от оси вращения Земли на 11,5°.

Однако наблюдаемое магнитное поле Земли заметно отличается от дипольного наличием наложенных на него внешнего и недипольного полей. Внешнее поле связано с движением электрических зарядов в ионосфере и меняется в результате атмосферных приливов и солнечной деятельности (солнечных пятен). Среднеалгебраическая интенсивность его очень мала, хотя во время магнитных бурь может составлять несколько процентов от общего суммарного магнитного поля. Недипольная компонента определяется

при вычитании из наблюдаемого поля дипольной и внешней компонент. Недипольное поле состоит из неравномерно распределенных участков высокой и слабой интенсивности размером от 25 до 100°. Эти участки изменяются в размерах, и современные скорости их изменения показывают, что средний период жизни каждого из них достигает 100 лет. Недипольные элементы перемещаются по поверхности Земли к западу со скоростью 0,5° географической долготы в год.

Неустойчивое положение магнитных полюсов определяется влиянием неоднородного, быстро меняющегося недипольного поля: на магнитных полюсах недипольная горизонтальная составляющая полностью уничтожает горизонтальную составляющую дипольного поля. Точки на поверхности Земли, на которые направлен диполь, называются геомагнитными полюсами. Современные координаты северного геомагнитного полюса - 78,5° с. ш. и 69° з. д. Его положение не изменилось за период, для которого имеются измерения, тогда как положение магнитного полюса менялось относительно быстро, соответственно с изменениями недипольной составляющей.

Отклонения наблюдаемого распределения элементов земного магнетизма от среднего для данной местности называются магнитными аномалиями. По размерам аномалии делятся на региональные и местные. Региональные аномалии распространяются на огромные регионы, и действительные причины их возникновения не выяснены. Местные аномалии распространяются на области от нескольких квадратных метров до нескольких десятков тысяч квадратных километров и вызываются обычно залежами магнитных пород и руд. Крупнейшая в мире местная магнитная аномалия охватывает Курскую область и прилегающие районы.

На Курской аномалии известно несколько местных магнитных полюсов - участков, в которых магнитное наклонение равно 90°, и склонение равно нулю (стрелка компаса останавливается на любом азимуте). Значения магнитного склонения меняются от 0 до 180°, а наклонения - от 40 до 90°. Курская аномалия вызвана наличием.на некоторой глубине залежей железистых кварцитов.

Таким образом, магнитные аномалии определяются различными магнитными свойствами горных пород, в различной степени намагничивающихся в магнитном поле Земли, и, следовательно, ориентировка их намагниченности должна быть параллельна этому полю. Оказалось, однако, что горные породы часто обладают остаточной намагниченностью, которая далеко не всегда параллельна современному магнитному полю Земли и бывает сильнее современной индуцированной намагниченности.

В слабом магнитном поле Земли (0,5 э) остаточная намагниченность появляется при температуре Кюри в процессе застывания магмы и охлаждения раскаленных горных пород. Такая намагниченность называется термоостаточной. Она ориентирована параллельно силовым линиям магнитного поля Земли, существовавшего во время застывания намагниченной горной породы. Главная часть естественной остаточной намагниченности изверженных горных пород является термоостаточной намагниченностью.

При выпадении осадков ранее намагниченные ферромагнитные частицы поворачиваются в направлении магнитного поля Земли и сохраняют эту ориентировку после уплотнения осадка и превращения его в осадочную породу; т. е. и в осадочных породах остаточная намагниченность параллельна магнитному полю Земли, существовавшему во время их образования. Таким образом, направление остаточной намагниченности горных пород соответствует направлению магнитного поля Земли в момент их образования, и, зная возраст намагниченных пород, можно восстановить положение магнитного меридиана и полюсов для этого времени.

Конечно, остаточная намагниченность может образоваться и иными путями, например при ударах молний возникают сильные магнитные поля, вызывающие в горных породах изотермическую остаточную намагниченность, ориентировка которой может не совпадать с ориентировкой магнитного поля Земли. Химические изменения горных пород и минералов (например, переход гематита в магнетит) в магнитном поле Земли сопровождаются появлением остаточной намагниченности, сходной с термостатической, хотя и не столь интенсивной. Эти и некоторые другие виды намагниченности могут возникнуть значительно позднее образования горных пород, и время их появления обычно не устанавливается. Однако «намагниченности, возникающие в результате различных процессов, обладают весьма различными свойствами, которые, как правило, могут быть определены в лабораторных условиях» (А. Кокс, Р. Долл. Обзор явлений палеомагнетизма. M., 1963, с. 239).

Происхождение магнитного поля. Гипотезы, связывающие магнитное поле Земли с ее остаточной намагниченностью, встречают серьезные возражения:

1) геологические процессы в земной коре и верхней мантии протекают медленно и с ними трудно увязать большую скорость изменения недиполыюго поля и его перемещения в западном направлении со скоростями до 20 км/год;

2) для обеспечения современной интенсивности магнитного поля Земли недостаточно ферромагнитного материала, температура которого ниже точки Кюри (температура земных недр на глубине более 25 км в подавляющем большинстве случаев, вероятно, выше 750° С, и, следовательно, только внешняя оболочка планеты может обладать остаточной намагниченностью).

Поэтому в настоящее время широким признанием пользуется теория происхождения земного магнетизма, предложенная Эльзассером - Френкелем (1956 г.), согласно которой жидкое ядро во вращающейся Земле действует как самовозбуждающаяся динамо-машина. Быстрое изменение недипольного поля объясняется как результат вихревых движений жидкости у границы ядра и мантии, а перемещение его в западном направлении связывают с меньшей угловой скоростью внешней зоны ядра по сравнению с мантией. Динамометрия была успешно применена для объяснения свойств магнитных полей Солнца и некоторых звезд, была предсказана также корреляция между магнитным полем Солнца и осью его вращения. В после нее время она нашла подтверждение в отсутствии магнитного поля у медленно вращающихся планет - Венеры и Луны.

Согласно этой теории ось вращения Земли и средняя ось магнитного поля Земли должны совпадать, т. е. смещение во времени геомагнитных полюсов происходит одновременно со смещением географических полюсов - вывод чрезвычайно важный для геологии. Изучение остаточного магнетизма (палеомагнетизма) показало, что положение магнитных и близких к ним географических полюсов на протяжении геологической истории Земли менялось весьма существенно, что полностью согласуется с палеогеографическими и палеоклиматическими данными (в позднем палеозое, например, полюса находились в современной экваториальной области, где имело место мощное покровное оледенение). Мало того, определение положения полюсов одних и тех же геологических эпох, произведенное в разных точках одного материка, дает обычно хорошее совпадение. Однако данные, полученные на разных материках, систематически расходятся и расхождение увеличивается от более поздних геологических периодов к более ранним. Совмещение полюсов, определенных на разных материках, приводит к объединению этих материков в единый континентальный массив. «Так, - пишет В. Е. Хаин, - гипотеза мобилизма, совсем было уже забытая, получила неожиданное и притом весьма эффективное подтверждение» (В. Е. Хаин. «Природа», № 1, 1970, с. 7-19).

Изучение магнитных аномалий имеет большое практическое значение. Магнитометрические методы в настоящее время широко применяются в практике поисков и разведки магнитных железных руд, бокситов, полиметаллических сульфидных руд, если в них присутствуют ферромагнитные минералы, и других полезных ископаемых. Магнитометрические методы с успехом применяются также при геологической съемке для выяснения некоторых структур, подземного рельефа и др. Это наиболее дешевый и быстрый из всех геофизических методов разведки и поисков.



Понравилась статья? Поделитесь с друзьями!