Непрерывности функции v t х. Применения непрерывности

На этом уроке будем учиться устанавливать непрерывность функции. Будем делать это с помощью пределов, причем односторонних - правого и левого, которые совсем не страшны, несмотря на то что записываются как и .

Но что такое вообще непрерывность функции? Пока мы не дошли до строгого определения, проще всего представить себе линию, которую можно начертить, не отрывая карандаш от бумаги. Если такая линия начерчена, то она непрерывна. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

Если хотя бы одно из перечисленных условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f (x ) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0 , x = 1 , x = 3 ?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

Как видим, предел функции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0 .

Точка x = 1 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1 .

Точка x = 3 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3 .

Основной вывод: данная функция является непрерывной в каждой граничной точке.

Установить непрерывность функции в точке самостоятельно, а затем посмотреть решение

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m , то есть l = f (m ) , m ≥0 .

Если немного изменить массу груза, то расстояние l изменится мало: малым изменениям m соответствуют малые изменения l . Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f (m ) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f (m ) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика .

Непрерывность функции на промежутке

Пусть функция y = f (x ) определена в интервале ]a , b [ и непрерывна в каждой точке этого интервала. Тогда она называется непрерывной в интервале ]a , b [ . Аналогично определяется понятие непрерывности функции на промежутках вида ]- ∞, b [ , ]a , + ∞[ , ]- ∞, + ∞[ . Пусть теперь функция y = f (x ) определена на отрезке [a , b ] . Разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок. Здесь следует упомянуть о так называемой односторонней непрерывности: в точке a , оставаясь на отрезке [a , b ] , мы можем приближаться только справа, а к точке b - только слева. Функция называется непрерывной на отрезке [a , b ] , если она непрерывна во всех внутренних точках этого отрезка, непрерывна справа в точке a и непрерывна слева в точке b .

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [a , b ] , функция непрерывна на отрезке [0 , b ] , функция непрерывна на любом отрезке, не содержащем точку a = 2 .

Пример 4. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

.

Пример 5. Определить, при каком значении параметра a непрерывна на всей области определения функция

Решение.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax :

a = 1,5 .

Пример 6. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

Найдём левосторонний функции в точке :

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3 .

Основные свойства непрерывных функций

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t , выраженная законом s = f (t ) , даёт пример непрерывной функции f (t ) . Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f (t ) .

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f (x ) , непрерывная на интервале [a , b ] , принимает все промежуточные значения между значениями в концевых точках, то есть, между f (a ) и f (b ) . В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

Определение 4. Функция называется непрерывной на отрезке, если она непрерывна в каждой точке этого отрезка (в точке a непрерывна справа, т.е. , а в точке b непрерывна слева, т. е.).

Все основные элементарные функции непрерывны в области их определения.

Свойства функций, непрерывных на отрезке:

  • 1) Если функция непрерывна на отрезке, то она ограничена на этом отрезке (первая теорема Вейерштрасса).
  • 2) Если функция непрерывна на отрезке, то на этом отрезке она достигает своего наименьшего значения и наибольшего значения (вторая теорема Вейерштрасса) (см. рис. 2).
  • 3) Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то внутри отрезка существует хотя бы одна точка такая, что (теорема Больцано-Коши).

Точки разрыва функции и их классификация

функция непрерывность точка отрезок

Точки, в которых условие непрерывности не выполняется, называются точками разрыва этой функции. Если - точка разрыва функции, то в ней не выполняется хотя бы одно из трех условий непрерывности функции, указанных в определениях 1, 2, а именно:

1) Функция определена в окрестности точки, но не определена в самой точке. Так функция, рассмотренная в примере 2 а) имеет разрыв в точке, так как не определена в этой точке.

2) Функция определена в точке и ее окрестности, существуют односторонние пределы и, но они не равны между собой: . Например, функция из примера 2 б) определена в точке и ее окрестности, но, так как, а.

3) Функция определена в точке и ее окрестности, существуют односторонние пределы и, они равны между собой, но не равны значению функции в точке: . Например, функция. Здесь - точка разрыва: в этой точке функция определена, существуют односторонние пределы и, равные между собой, но, т. е. .

Точки разрыва функции классифицируются следующим образом.

Определение 5. Точка называется точкой разрыва первого рода функции, если в этой точке существуют конечные пределы и, но они не равны между собой: . Величина называется при этом скачком функции в точке.

Определение 6 . Точка называется точкой устранимого разрыва функции, если в этой точке существуют конечные пределы и, они равны между собой: , но сама функция не определена в точке, или определена, но.

Определение 7. Точка называется точкой разрыва второго рода функции, если в этой точке хотя бы один из односторонних пределов (или) не существует или равен бесконечности.

Пример 3. Найти точки разрыва следующих функций и определить их тип: а) б)

Решение. а) Функция определена и непрерывна на интервалах, и, так как на каждом из этих интервалов она задана непрерывными элементарными функциями. Следовательно, точками разрыва данной функции могут быть только те точки, в которых функция меняет свое аналитическое задание, т.е. точки и. Найдем односторонние пределы функции в точке:

Так как односторонние пределы существуют и конечны, но не равны между собой, то точка является точкой разрыва первого рода. Скачок функции:

Для точки находим.

Функция называется непрерывной в точке х0, если f(x) стремится к f(x0) при стремлении x к x0. При этом f(x) - A = f(x) - f(x0) = ∆f. Если функция f непрерывна в каждой точке некоторого промежутка А, то эта функция будет являться непрерывной на всем промежутке А. А сам промежуток А, называют в таком случае промежутком непрерывности функции f.

График непрерывных функций, изучаемых в школьном курсе математики, можно нарисовать «не отрывая карандаш от бумаги», так как он представляет собой сплошную линию. Если на некотором интервале (a;b) функция f непрерывна и не обращается в нуль, то на этом интервале она будет сохранять постоянный знак.

Это свойство очень легко для понимания. Функция, расположенная выше оси Ох, имеет знак «плюс», функция, расположенная ниже оси Ох, имеет знак «минус». Если линия функции не пересечет ось Ох (на оси Ох функция равна нулю), то она явно не изменит свой знак.

Метод интервалов

Одним из ярких применений свойств непрерывности функций является метод интервалов, который используется для решения неравенств с одной переменной. Пусть некоторая функции непрерывна на интервале А и обращается в нуль в конечном числе точек принадлежащих этому интервалу.

Используя свойство, приведенное выше, эти точки будут разбивать весь интервал А на промежутки, в которых функция будет сохранять свой знак. Чтобы определить знаки всех промежутков, достаточно знать знак одного любого из этих интервалов.

Пример функции, которая не является непрерывной

До сих пор мы сталкивались только с непрерывными функциями. Но существуют функции, которые не являются непрерывными в каждой точке, в которой они определены. Например, функция f(x) = {x}, где {x} - есть дробная часть числа х. Её график изображен на следующем рисунке.

Легко заметить, что основное свойство непрерывности функции в точке х0 равное любому целому числу, не будет выполняться. Но в тоже время функция f(x) = {x} непрерывна во всех других точках, на которых она определена, кроме точек, где x равно целому числу. На графике такие точки отмечены выколотыми кружками.

Функции непрерывные, но не дифференцируемые в данной точке

Есть функции которые являются непрерывными в каждой точке своей области определения. Но при этом не будут иметь производные в некоторых точках. Например, функция y=|x| непрерывна на все числовой оси, но при этом не дифференцируема в точке х = 0. Ниже представлен график этой функции.

Непрерывность функции. Точки разрыва.

Идет бычок, качается, вздыхает на ходу:
– Ох, доска кончается, сейчас я упаду!

На данном уроке мы разберём понятие непрерывности функции, классификацию точек разрыва и распространённую практическую задачу исследования функции на непрерывность . Из самого названия темы многие интуитивно догадываются, о чём пойдёт речь, и думают, что материал довольно простой. Это правда. Но именно несложные задачи чаще всего наказывают за пренебрежение и поверхностный подход к их решению. Поэтому рекомендую очень внимательно изучить статью и уловить все тонкости и технические приёмы.

Что нужно знать и уметь? Не очень-то и много. Для качественного усвоения урока необходимо понимать, что такое предел функции . Читателям с низким уровнем подготовки достаточно осмыслить статью Пределы функций. Примеры решений и посмотреть геометрический смысл предела в методичке Графики и свойства элементарных функций . Также желательно ознакомиться с геометрическими преобразованиями графиков , поскольку практика в большинстве случаев предполагает построение чертежа. Перспективы оптимистичны для всех, и даже полный чайник сумеет самостоятельно справиться с задачей в ближайший час-другой!

Непрерывность функции. Точки разрыва и их классификация

Понятие непрерывности функции

Рассмотрим некоторую функцию , непрерывную на всей числовой прямой:

Или, говоря лаконичнее, наша функция непрерывна на (множестве действительных чисел).

Каков «обывательский» критерий непрерывности? Очевидно, что график непрерывной функции можно начертить, не отрывая карандаша от бумаги.

При этом следует чётко отличать два простых понятия: область определения функции и непрерывность функции . В общем случае это не одно и то же . Например:

Данная функция определена на всей числовой прямой, то есть для каждого значения «икс» существует своё значение «игрека» . В частности, если , то . Заметьте, что другая точка выколота, ведь по определению функции, значению аргумента должно соответствовать единственное значение функции. Таким образом, область определения нашей функции: .

Однако эта функция не является непрерывной на ! Совершенно очевидно, что в точке она терпит разрыв . Термин тоже вполне вразумителен и нагляден, действительно, карандаш здесь по любому придётся оторвать от бумаги. Немного позже мы рассмотрим классификацию точек разрыва.

Непрерывность функции в точке и на интервале

В той или иной математической задаче речь может идти о непрерывности функции в точке, непрерывности функции на интервале, полуинтервале или непрерывности функции на отрезке. То есть, не существует «просто непрерывности» – функция может быть непрерывной ГДЕ-ТО. И основополагающим «кирпичиком» всего остального является непрерывность функции в точке .

Теория математического анализа даёт определение непрерывности функции в точке с помощью «дельта» и «эпсилон» окрестностей, но на практике в ходу другое определение, которому мы и уделим самое пристальное внимание.

Сначала вспомним односторонние пределы , ворвавшиеся в нашу жизнь на первом уроке о графиках функций . Рассмотрим будничную ситуацию:

Если приближаться по оси к точке слева (красная стрелка), то соответствующие значения «игреков» будут идти по оси к точке (малиновая стрелка). Математически данный факт фиксируется с помощью левостороннего предела :

Обратите внимание на запись (читается «икс стремится к ка слева»). «Добавка» «минус ноль» символизирует , по сути это и обозначает, что мы подходим к числу с левой стороны.

Аналогично, если приближаться к точке «ка» справа (синяя стрелка), то «игреки» придут к тому же значению , но уже по зелёной стрелке, и правосторонний предел оформится следующим образом:

«Добавка» символизирует , и запись читается так: «икс стремится к ка справа».

Если односторонние пределы конечны и равны (как в нашем случае): , то будем говорить, что существует ОБЩИЙ предел . Всё просто, общий предел – это наш «обычный» предел функции , равный конечному числу.

Заметьте, что если функция не определена при (выколите чёрную точку на ветке графика), то перечисленные выкладки остаются справедливыми. Как уже неоднократно отмечалось, в частности, в статье о бесконечно малых функциях , выражения означают, что «икс» бесконечно близко приближается к точке , при этом НЕ ИМЕЕТ ЗНАЧЕНИЯ , определена ли сама функция в данной точке или нет. Хороший пример встретится в следующем параграфе, когда анализу подвергнется функция .

Определение : функция непрерывна в точке , если предел функции в данной точке равен значению функции в этой точке: .

Определение детализируется в следующих условиях:

1) Функция должна быть определена в точке , то есть должно существовать значение .

2) Должен существовать общий предел функции . Как отмечалось выше, это подразумевает существование и равенство односторонних пределов: .

3) Предел функции в данной точке должен быть равен значению функции в этой точке: .

Если нарушено хотя бы одно из трёх условий, то функция теряет свойство непрерывности в точке .

Непрерывность функции на интервале формулируется остроумно и очень просто: функция непрерывна на интервале , если она непрерывна в каждой точке данного интервала.

В частности, многие функции непрерывны на бесконечном интервале , то есть на множестве действительных чисел . Это линейная функция, многочлены, экспонента, синус, косинус и др. И вообще, любая элементарная функция непрерывна на своей области определения , так, например, логарифмическая функция непрерывна на интервале . Надеюсь, к данному моменту вы достаточно хорошо представляете, как выглядят графики основных функций. Более подробную информацию об их непрерывности можно почерпнуть у доброго человека по фамилии Фихтенгольц.

С непрерывностью функции на отрезке и полуинтервалах тоже всё несложно, но об этом уместнее рассказать на уроке о нахождении минимального и максимального значений функции на отрезке , а пока голову забивать не будем.

Классификация точек разрыва

Увлекательная жизнь функций богата всякими особенными точками, и точки разрыва лишь одна из страничек их биографии.

Примечание : на всякий случай остановлюсь на элементарном моменте: точка разрыва – это всегда отдельно взятая точка – не бывает «несколько точек разрыва подряд», то есть, нет такого понятия, как «интервал разрывов».

Данные точки в свою очередь подразделяются на две большие группы: разрывы первого рода и разрывы второго рода . У каждого типа разрыва есть свои характерные особенности, которые мы рассмотрим прямо сейчас:

Точка разрыва первого рода

Если в точке нарушено условие непрерывности и односторонние пределы конечны , то она называется точкой разрыва первого рода .

Начнём с самого оптимистичного случая. По первоначальной задумке урока я хотел рассказать теорию «в общем виде», но чтобы продемонстрировать реальность материала, остановился на варианте с конкретными действующими лицами.

Уныло, как фото молодожёнов на фоне Вечного огня, но нижеследующий кадр общепринят. Изобразим на чертеже график функции :


Данная функция непрерывна на всей числовой прямой, кроме точки . И в самом деле, знаменатель же не может быть равен нулю. Однако в соответствии со смыслом предела – мы можем бесконечно близко приближаться к «нулю» и слева и справа, то есть, односторонние пределы существуют и, очевидно, совпадают:
(Условие №2 непрерывности выполнено).

Но функция не определена в точке , следовательно, нарушено Условие №1 непрерывности, и функция терпит разрыв в данной точке.

Разрыв такого вида (с существующим общим пределом ) называют устранимым разрывом . Почему устранимым? Потому что функцию можно доопределить в точке разрыва:

Странно выглядит? Возможно. Но такая запись функции ничему не противоречит! Теперь разрыв устранён и все счастливы:


Выполним формальную проверку:

2) – общий предел существует;
3)

Таким образом, все три условия выполнены, и функция непрерывна в точке по определению непрерывности функции в точке.

Впрочем, ненавистники матана могут доопределить функцию нехорошим способом, например :


Любопытно, что здесь выполнены первые два условия непрерывности:
1) – функция определена в данной точке;
2) – общий предел существует.

Но третий рубеж не пройден: , то есть предел функции в точке не равен значению данной функции в данной точке.

Таким образом, в точке функция терпит разрыв.

Второй, более грустный случай носит название разрыва первого рода со скачком . А грусть навевают односторонние пределы, которые конечны и различны . Пример изображён на втором чертеже урока. Такой разрыв возникает, как правило, в кусочно-заданных функциях , о которых уже упоминалось в статье о преобразованиях графиков .

Рассмотрим кусочную функцию и выполним её чертёж. Как построить график? Очень просто. На полуинтервале чертим фрагмент параболы (зеленый цвет), на интервале – отрезок прямой (красный цвет) и на полуинтервале – прямую (синий цвет).

При этом в силу неравенства значение определено для квадратичной функции (зелёная точка), и в силу неравенства , значение определено для линейной функции (синяя точка):

В самом-самом тяжёлом случае следует прибегнуть к поточечному построению каждого куска графика (см. первый урок о графиках функций ).

Сейчас нас будет интересовать только точка . Исследуем её на непрерывность:

2) Вычислим односторонние пределы.

Слева у нас красный отрезок прямой, поэтому левосторонний предел:

Справа – синяя прямая, и правосторонний предел:

В результате получены конечные числа , причем они не равны . Поскольку односторонние пределы конечны и различны : , то наша функция терпит разрыв первого рода со скачком .

Логично, что разрыв не устраним – функцию действительно не доопределить и «не склеить», как в предыдущем примере.

Точки разрыва второго рода

Обычно к данной категории хитро относят все остальные случаи разрыва. Всё перечислять не буду, поскольку на практике в 99%-ти процентах задач вам встретится бесконечный разрыв – когда левосторонний или правосторонний, а чаще, оба предела бесконечны.

И, конечно же, самая напрашивающаяся картинка – гипербола в точке ноль. Здесь оба односторонних предела бесконечны: , следовательно, функция терпит разрыв второго рода в точке .

Я стараюсь наполнять свои статьи максимально разнообразным содержанием, поэтому давайте посмотрим на график функции , который ещё не встречался:

по стандартной схеме:

1) Функция не определена в данной точке, поскольку знаменатель обращается в ноль.

Конечно, можно сразу сделать вывод о том, что функция терпит разрыв в точке , но хорошо бы классифицировать характер разрыва, что часто требуется по условию. Для этого:



Напоминаю, что под записью понимается бесконечно малое отрицательное число , а под записью – бесконечно малое положительное число .

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке . Ось ординат является вертикальной асимптотой для графика.

Не редка ситуация, когда оба односторонних предела существуют, но бесконечен только один из них, например:

Это график функции .

Исследуем на непрерывность точку :

1) Функция не определена в данной точке.

2) Вычислим односторонние пределы:

О методике вычисления таких односторонних пределов поговорим в двух последних примерах лекции, хотя многие читатели всё уже увидели и догадались.

Левосторонний предел конечен и равен нулю (в саму точку мы «не заходим»), но правосторонний предел бесконечен и оранжевая ветка графика бесконечно близко приближается к своей вертикальной асимптоте , заданной уравнением (чёрный пунктир).

Таким образом, функция терпит разрыв второго рода в точке .

Как и для разрыва 1-го рода, в самой точке разрыва функция может быть определена. Например, для кусочной функции смело ставим чёрную жирную точку в начале координат. Справа же – ветка гиперболы, и правосторонний предел бесконечен. Думаю, почти все представили, как выглядит этот график.

То, чего все с нетерпением ждали:

Как исследовать функцию на непрерывность?

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.

2) Вычислим односторонние пределы:

Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» – некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа – кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.

Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Ещё раз заметьте, что при нахождении пределов не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно – из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции .

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I) Исследуем на непрерывность точку

1)



Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

– односторонние пределы конечны и равны, значит, существует общий предел.

3) – предел функции в точке равен значению данной функции в данной точке.

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой – обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами – будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно – функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4 подобных примеров:

I) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Вычислим односторонние пределы:

, значит, общий предел существует.

На всякий пожарный напомню тривиальный факт: предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь – предел единицы равен самой единице.

– общий предел существует.

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция . Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование.

Цели урока:

Сформировать знания, умения и навыки эффективного применения обобщенного метода интервалов, основанного на свойстве непрерывных функций;

Сформулировать алгоритм действий, приводящий к равносильным преобразованиям;

Научить самостоятельно применять его при решении неравенств;

Осуществлять перенос знаний, умений и навыков в новые условия.

Образовательная: систематизация, закрепление, обобщение знаний, умений и навыков.

Воспитательная: воспитание потребности полноценной последовательной аргументации, аккуратности, самостоятельности.

Развивающая: развитие математической логики, формирование математического стиля мышления (четкой расчлененности хода рассуждений), познавательного интереса.

1) Введение, постановка цели и задач урока - 2 мин.

2) Проверка домашнего задания - 2 мин. (фронтальная работа, самоконтроль).

3) Математическое обоснование этапов решения неравенств методом интервалов - 4 мин (подготовленные ответы учащихся).

4) Повторение свойств неравенств – 2 мин.

5) Подготовка к усвоению (изучению) нового учебного материала через повторение и актуализацию опорных знаний – 5 мин. (фронтальная работа, ответы на вопросы, проблемные ситуации).

6) Обобщенный метод интервалов для решения неравенств, первичное осмысление – 13 мин. (коллективное решение неравенств методом интервалов: на доске и в тетрадях).

7) Информация о домашнем задании, инструкция о выполнении – 1 мин.

8) Закрепление новых знаний – 15 мин. (самостоятельная работа – вариант 1).

9) Подведение итогов урока, рефлексия – 1 мин.

1) Введение, постановка цели и задач урока. (Рассказ учителя)

1) Необходимость более широкого применения метода интервалов в школе диктуется идеологией всего процесса обучения математике. Речь идет о том, что функциональная линия (одна из главных при изучении основ математики) получает мощную технологическую поддержку. Метод интервалов базируется на таких важнейших характеристиках функциональной зависимости, как нули функции, промежутки ее знакопостоянства и монотонности. Тогда становится более наглядным функциональное происхождение уравнений и неравенств, а также методов их решения. Более наглядными становятся категории непрерывности функции, поведение ее графика в окрестностях точек бесконечного разрыва, теоремы о корне, знакопостоянстве, экстремальных точках и их видах. И все это органично увязывается в одно функциональное целое.

С другой стороны, неоценимое значение имеет и геометризация используемых объектов исследования, т.е. наглядно, образно представить весь используемый математический инструментарий функциональной зависимости.

Базовые принципы, заложенные в основу метода интервалов:

  • функциональный (обобщенный) подход;
  • опора на геометризацию функциональных свойств;
  • визуализация исследования.

Это приводит к следующим преимуществам метода по сравнению с другими, использующимися в такого же рода задачах: простота и скорость достижения цели; наглядность (и возможность контроля или перепроверки); экономность в вычислительных средствах и времени; широта охвата всей ситуации, формирование и развитие навыков обобщенного мышления и анализа, а также связанные с этим умения делать логические выводы.

2) Проверка домашнего задания. (Слайд №4)

3) Рассказ о методе интервалов для решения неравенств. (Ответы учащихся).

Математическое обоснование решения неравенств методом интервалов.

1) Рассмотрим неравенства: (x-2)(x-3)>0. (слайд № 5)

Можно решать так: Произведение (частное) двух множителей положительно тогда и только тогда, когда оба множителя одного знака, т.е. неравенство равносильно совокупности двух систем: (слайд № 6)

Из первой системы получаем x >3, из второй x < 2.

Решением является объединение решений двух систем.

Ответ:

Графический метод (слайд № 7)

Другой метод – метод интервалов (слайд № 8).

Его идея состоит в следующем.

Отметим на числовой прямой нули (корни) многочлена (x-2)(x-3), стоящего

в левой части неравенства, т.е. числа 2 и 3.

Когда x >3 (правее большего корня), то (x-2)(x-3)>0, так как каждый множитель положителен.

Если двигаться по оси в отрицательном направлении, то при переходе через точку х=3 множитель (х-3) поменяет знак. В произведении (х-2)(х-3) появится один отрицательный множитель, в результате (х-2)(х-3)<0. При переходе через следующий корень появится еще один отрицательный множитель и произведение (х-2)(х-3)>0.

Теперь легко записать решение неравенства:

Вывод: произведение может изменить знак лишь при переходе через точки х=2 и х=3

и, следовательно, сохраняет знак на каждом из полученных промежутков.

На этом простом примере легко понять идею метода интервалов, но нельзя увидеть его заметных преимуществ.

Рациональность метода интервалов, его могущество рассмотрим на следующем примере (слайд № 9, 10,11, 12))

2) Решить неравенство (x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)(x-8)(x-9)(x-10)>0.

Чтобы решить это неравенство с помощью совокупности систем, пришлось бы рассматривать совокупность, состоящую из 512 систем по 10 неравенств в каждой системе.

Применим метод интервалов. Отметим на числовой прямой нули многочлена. На промежутке x>10 многочлен будет положительным, так как каждый множитель положителен. При переходе через каждый следующий корень многочлен будет менять знак, так как в произведении будет появляться дополнительный отрицательный множитель. Теперь легко записать решение неравенства, используя чередование знаков.

Преимущества метода интервалов.

  • простота и скорость достижения цели;
  • наглядность (и возможность контроля или перепроверки);
  • значительное сокращение объема вычислительной работы и времени;
  • широта охвата всей ситуации;
  • формирование и развитие навыков обобщенного мышления и анализа, а также связанные с этим умения делать логические выводы.

Замечание. Очень удобно решать неравенства, левая часть которых разложена на множители, так как не представляет труда найти нули (корни).

Задание: Решить неравенство методом интервалов (x+3) 3 (x-4) 2 (x-5)>0 (Слайд 13)

4) Повторение свойств неравенств.

а) Вопрос: Какие неравенства называют равносильными?

(Два неравенства называются равносильными, если любое решение первого неравенства является решением второго и, обратно, любое решение второго является решением первого).

Или: два неравенства называются равносильными, если множества их решений совпадают.

Слайд 14. Повторение свойств неравенств.

Слайд 15. Дать ответ на вопрос и объяснить.

Равносильны ли неравенства?

1) 4х-5<0 и 4х<5

2) -2х+5>0 и 2х-5<0

3) -3х 2 +5х-7>0 и 3х 2 -5х+7<0

4) (х+1)>0 и (х 2 +5х+10)(х+1)>0

5) Устная фронтальная работа по подготовке к усвоению (изучению) нового учебного материала через повторение и актуализацию опорных знаний.

Слайд 16. Определение функции непрерывной в точке.

Слайд 17. Свойство непрерывных функций.

Слайд 18. Найти промежутки непрерывности.

Слайд 19. Найди ошибку.



Слайд 20. Решить неравенство устно,
используя график.

Слайд 21, 22. Замена неравенства на равносильное условие.

Решить неравенство

Данное неравенство равносильно условию f(x)< 0, считая

Следовательно, надо найти все значения x, для которых выполнено условие f(x)< 0.

6) Обобщенный метод интервалов для решения неравенств, первичное осмысление – 10 мин. (коллективное решение неравенств методом интервалов: на доске и в тетрадях).

Слайд 23 . Алгоритм. Обобщенный метод решения неравенств.

Решение неравенств f(x)>0, f(x)> 0, f(x)<0, f(x)< 0 методом интервалов. (Схема)

Слайд 24 и 25. Решение неравенства по алгоритму. (Комментарии ко всем пунктам алгоритма).

Слайд 26 . Графическая иллюстрация решения этого неравенства.

Слайд 27. Решить неравенство на доске и в тетрадях .

Слайд 28. Графическая иллюстрация решения этого неравенства.

Слайд 29. Решить неравенство на доске и в тетрадях

Слайд 30. Графическая иллюстрация решения этого неравенства.

Слайд 31, 32. Решить неравенство устно, по рисунку

7) Информация о домашнем задании. (Решить методом интервалов вариант №2 )

8) Закрепление новых знаний (самостоятельная работа, вариант №1).

9) Подведение итогов урока, самоконтроль по готовым решениям (слайды 33, 34, 35), повторение алгоритма обобщенного метода интервалов и его применения.

10) Анализ усвоения материала и интереса учащихся к теме. Этот метод является универсальным при решении любых неравенств, в том числе, рациональных, с модулем, иррациональных, показательных, логарифмических, так как метод интервалов сводит решение неравенств к решению уравнений, нахождение области определения и значения функции в точке не вызывает затруднений. Но пришлось приводить примеры неравенств, где применение этого метода не оправдано, где рациональнее применить другие методы решения неравенств.

Презентация “Применение непрерывности при решении неравенств”. (35 слайдов)



Понравилась статья? Поделитесь с друзьями!