Нитроцеллюлозные пороха. Мирное применение пороха в Китае

Вокруг бездымного пороха

Человек живет поисками.
Роберт Вальзер

Речь пойдет не о тех людях, судьба которых оказалась связанной с применением огнестрельного оружия, а о тех, кто создавал порох и искал новые области его применения.

Древнейшее изобретение

Вначале воздадим должное предшественнику бездымного пороха – его дымному «собрату». Дымный порох (его также называют черным) представляет собой тщательно перемешанную смесь калийной селитры KNO 3 , древесного угля и серы. Главное достоинство пороха состоит в том, что он может гореть без доступа воздуха. Горючие вещества – уголь и сера, а кислород, необходимый для горения, поставляет селитра. Другое важное свойство пороха – он образует при горении большое количество газов. Химическое уравнение горения пороха:

2KNO 3 + S + 3C = K 2 S + 3CO 2 + N 2 .

Первое упоминание о рецепте приготовления горючей смеси из селитры, серы и угля (полученного из бамбуковых опилок) встречается в древнем китайском трактате I в. н. э., в то время порох применяли для изготовления фейерверков. Широкое использование черного пороха как боевого взрывчатого вещества началось в Европе в конце XIII в. Горючие компоненты пороха уголь и сера были вполне доступны. Однако селитра являлась дефицитным продуктом, поскольку единственным источником нитрата калия KNO 3 служила так называемая калиевая или индийская селитра. В Европе природных источников калиевой селитры не было, ее привозили из Индии и использовали только для производства пороха. Поскольку пороха с каждым столетием требовалось все больше, а привозной селитры, к тому же очень дорогой, не хватало, был найден другой ее источник – гуано (от исп. guano ). Это разложившиеся естественным образом остатки помета птиц и летучих мышей, представляющие собой смесь кальциевых, натриевых и аммонийных солей фосфорной, азотной и некоторых органических кислот. Основная сложность в производстве пороха из такого сырья состояла в том, что гуано содержит не калиевую, а преимущественно натриевую селитру NaNO 3 . Ее нельзя использовать для изготовления пороха, поскольку она притягивает влагу, и такой порох быстро отсыревает. Для того чтобы превратить натриевую селитру в калиевую, использовали простую реакцию:

NaNO 3 + KCl = NaCl + KNO 3 .

Каждое из этих соединений растворимо в воде и не выпадает из реакционной смеси в осадок, поэтому полученный водный раствор содержит все четыре соединения. Тем не менее провести разделение возможно, если использовать различную растворимость соединений при повышении температуры. Растворимость NaCl в воде невелика и к тому же очень мало меняется с температурой, а растворимость KNO 3 в кипящей воде почти в 20 раз выше, чем в холодной. Поэтому смешивают насыщенные горячие водные растворы NaNO 3 и KCl, а затем смесь охлаждают, выпавший кристаллический осадок содержит достаточно чистый KNO 3 .

Однако не все проблемы были решены. Большинство составных частей гуано растворимы в воде и легко размываются дождями. Поэтому в Европе скопления гуано можно было найти только в пещерах, где ранее гнездились колонии птиц или летучих мышей. Пещеры, содержавшие скопления гуано, были найдены, например, в предгорьях Крыма, что позволило организовать небольшой пороховой завод на «пещерном сырье» в Севастополе во время англо-франко-русской войны 1854–1855 гг.

Естественно, все европейские запасы были невелики, и их быстро выработали. На выручку пришли громадные запасы гуано вдоль тихоокеанского побережья Южной Америки. Миллионные колонии птиц, питающихся рыбой, – чайки, бакланы, крачки, альбатросы – гнездились на скалистых берегах вдоль побережья Перу, Чили и на прибрежных островах (рис. 1). Поскольку в этом районе почти не бывает дождей, гуано накапливалось на побережье в течение многих веков, образовав в некоторых местах залежи толщиной в десятки метров и протяженностью свыше 100 км. Гуано представляло собой не только источник селитры, но и ценное удобрение, спрос на него постоянно возрастал. В результате в 1856 г. в США был даже принят специальный «Закон об островах гуано» (иногда его называют «Законом о гуано»). Согласно этому закону гуановые острова считались владением США, что содействовало ускоренному захвату таких островов и созданию контроля над источниками ценного ресурса.

Потребность в гуано достигла такого размаха, что в начале XX в. его экспорт составлял миллионы тонн, все разведанные запасы стали быстро истощаться. Возникла проблема, подобные которой химия всегда умела решать, был создан принципиально иной порох, для его изготовления селитра вообще не требовалась.

Все начиналось с полимеров

Человечество очень давно научилось использовать природные полимеры (хлопок, шерсть, шелк, шкуры животных). Формы получаемых изделий – волокна для изготовления тканей или пласты кожи – зависят от исходного материала. Чтобы изменить форму принципиально, необходимо было каким-либо способом химически модифицировать исходный материал. Именно целлюлоза открыла путь к подобным превращениям, что в конечном итоге привело к созданию химии полимеров. Из целлюлозы состоит хлопковая вата, древесина, льняные нити, пеньковые волокна и, естественно, бумага, которую изготавливают из древесины.

Полимерная цепь целлюлозы собрана из циклов, соединенных кислородными перемычками, внешне это напоминает бусы (рис. 2).

Поскольку в составе целлюлозы находится много гидроксильных НО-групп, именно их стали подвергать различным превращениям. Одна из первых удачных реакций – нитрование, т.е. введение нитрогрупп NO 2 действием на целлюлозу азотной кислоты HNO 3 (рис. 3).

Чтобы связать выделяющуюся воду и тем самым ускорить процесс, в реакционную смесь добавляют концентрированную серную кислоту. Если хлопковую вату обработать указанной смесью, а затем отмыть от следов кислот и высушить, то внешне она будет выглядеть точно так же, как исходная, но в отличие от натурального хлопка такая вата легко растворяется в органических растворителях, например в эфире. Это свойство было сразу же использовано, из нитроцеллюлозы стали изготавливать лаки – они образуют великолепную блестящую поверхность, легко поддающуюся полировке (нитролаки). Долгое время нитролаки применяли для покрытия кузовов автомобилей, сейчас их сменили акриловые лаки. Кстати, лак для ногтей тоже делают из нитроцеллюлозы.

Не менее интересно, что из нитроцеллюлозы была изготовлена первая в истории полимерной химии пластмасса. В 1870-е гг. на основе нитроцеллюлозы, смешанной с пластификатором камфорой, был впервые создан термопластик. Такому пластику придавали определенную форму при повышенной температуре и под давлением, а когда вещество остывало, заданная форма сохранялась. Пластик получил название целлулоид , из него стали делать первые фото- и кинопленки, бильярдные шары (заменив тем самым дорогую слоновую кость), а также различные бытовые предметы (расчески, игрушки, оправы для зеркал, очков и др.). Недостатком целлулоида было то, что он легко воспламенялся и очень быстро сгорал, причем остановить горение было почти невозможно. Поэтому целлулоид был постепенно вытеснен другими, менее пожароопасными полимерами. По этой же причине довольно быстро отказались от искусственного шелка из нитроцеллюлозы.

Популярный некогда целлулоид не забыт и сегодня. Известная рок-группа Tequilajazz выпустила альбом с названием «Целлулоид». В альбом вошли некоторые мелодии, написанные для фильмов, а слово «целлулоид» указывает на материал, из которого ранее делали кинопленку. Если бы авторы хотели дать более современное название альбому, то его следовало назвать «Ацетат целлюлозы», поскольку он менее пожароопасен и потому вытеснил целлулоид, а ультрасовременным названием было бы «Полиэфир», который начинает успешно конкурировать с ацетатом целлюлозы при изготовлении кинопленки.

Существуют изделия, где целлулоид применяют до сих пор, он оказался незаменим при изготовлении шариков для настольного тенниса; по мнению гитаристов, наилучший звук дают медиаторы (плектры) из целлулоида. Иллюзионисты используют небольшие палочки из этого материала, чтобы продемонстрировать яркое, быстро исчезающее пламя.

Горючесть нитроцеллюлозы, прервавшая ее «карьеру» в полимерных материалах, открыла широкую дорогу совсем в ином направлении.

Огонь без дыма

Еще в 1840-х гг. исследователи заметили, что при обработке древесины, картона и бумаги азотной кислотой образуются быстро сгорающие материалы, однако наиболее удачный способ получения нитроцеллюлозы был открыт случайно. В 1846 г. швейцарский химик К.Шонбейн во время работы пролил на стол концентрированную азотную кислоту и для ее удаления воспользовался хлопковой тряпкой, которую затем повесил сушиться. После высыхания ткань от поднесенного пламени мгновенно сгорела. Шонбейн более подробно изучил химию этого процесса. Именно он впервые решил добавлять при нитровании хлопка концентрированную серную кислоту. Нитроцеллюлоза горит очень эффектно. Если положить на ладонь клочок «нитрованной» ваты и поджечь, то вата сгорит столь быстро, что рука не ощутит никакого ожога (рис. 4).

Изготовить порох на основе этого горючего материала удалось в 1884 г. французскому инженеру П.Вьелю. Необходимо было создать композицию, легко перерабатываемую, кроме того, требовалось, чтобы она была устойчива при хранении и безопасна в обращении. Растворив нитроцеллюлозу в смеси спирта и эфира, Вьель получил вязкую массу, которая после измельчения и последующего высушивания дала прекрасный порох. По мощности он намного превосходил черный порох, а при горении не давал дыма, поэтому его назвали бездымным. Последнее свойство оказалось очень важным для ведения боевых действий. При использовании бездымного пороха поля сражений не окутывались клубами дыма, что позволяло артиллерии вести прицельный огонь. Отсутствовало также предательское облачко дыма после выстрела, которое прежде выдавало противнику местоположение стрелка. В конце XIX в. все развитые страны начали производить бездымный порох.

Легенды и реальность

Каждый химический продукт проходит сложный путь от лабораторных опытов до промышленного производства. Требовалось создавать различные сорта пороха, одни – пригодные для артиллерии, другие – для винтовочной стрельбы, порох должен быть стабильным по качеству, устойчивым при хранении, а его производство безопасным. Поэтому появилось сразу несколько способов производства пороха.

В организации порохового производства в России заметную роль сыграл Д.И.Менделеев. В 1890 г. он совершил поездку по Германии и Англии, где знакомился с производством пороха. Существует даже легенда, что до этой поездки Менделеев определил состав бездымного пороха, воспользовавшись сведениями о количестве того сырья, которое еженедельно завозили на завод по производству пороха. Можно полагать, что для химика столь высокого класса не составляло никакого труда на основе полученных сведений понять общую схему процесса.

Вернувшись из поездки в Петербург, он начал детально изучать нитрование целлюлозы. До Менделеева многие полагали, что чем сильнее нитрована целлюлоза, тем выше ее взрывчатая сила. Менделеев доказал, что это не так. Оказалось, существует оптимальная степень нитрования, при которой часть углерода, содержащегося в порохе, окисляется не в углекислый СО 2 , а в угарный газ СО. В результате на единицу массы пороха образуется наибольший объем газа, т.е. порох обладает максимальным газообразованием.

В процессе производства нитроцеллюлозы ее тщательно отмывают водой от следов серной и азотной кислот, после чего высушивают от следов влаги. Ранее это делали с помощью потока теплого воздуха. Такой процесс высушивания был малоэффективен и к тому же взрывоопасен. Менделеев предложил высушивать влажную массу, промывая ее спиртом, в котором нитроцеллюлоза нерастворима. Вода при этом надежно удалялась. Этот метод впоследствии был принят во всем мире и стал классическим технологическим приемом при изготовлении бездымного пороха.

В итоге Менделееву удалось создать химически однородный и совершенно безопасный в обращении бездымный порох. Свой порох он назвал пироколлодием – огненным клеем. В 1893 г. были проведены испытания нового пороха при стрельбе из дальнобойных морских орудий, и Менделеев получил поздравительную телеграмму от известного океанографа и замечательного флотоводца вице-адмирала С.О.Макарова.

К сожалению, производство пироколлодийного пороха, несмотря на его явные преимущества, не наладилось в России. Причиной этого было преклонение руководящих чиновников Артиллерийского управления перед всем иностранным и соответственно недоверие к российским разработкам. В результате на Охтинском заводе все производство пороха шло под контролем приглашенного французского специалиста Мессена. Он не считался даже с мнением Менделеева, заметившего недостатки производства, и вел дело строго по своим инструкциям. Зато пироколлодийный порох Менделеева был принят на вооружение в американской армии и производился в огромных количествах на заводах США в период первой мировой войны. Причем американцы умудрились даже взять патент на производство пироколлодийного пороха спустя пять лет после того, как он был создан Менделеевым, но этот факт никак не взволновал российское военное ведомство, свято верившее в преимущества французского пороха.

К началу ХХ в. во всем мире было налажено производство нескольких видов бездымного пороха. Самыми распространенными среди них были пироколлодийный порох Менделеева, кроме того, близкий к нему по составу, но имеющий иную технологию и более короткие сроки хранения пироксилиновый порох Вьеля (о нем было рассказано ранее), а также пороховая смесь, названная кордитом .С производством кордита связана одна необычная история, о которой речь пойдет далее.

Химик-президент

Х.Вейцман
(1874–1952)

С начала ХХ в. военная отрасль промышленности Англии была ориентирована на кордитный порох. В его состав входили нитроцеллюлоза и нитроглицерин. На стадии формования использовался ацетон, который придавал повышенную пластичность смеси. После формования ацетон испарялся. Сложность состояла в том, что к началу первой мировой войны основную массу ацетона Англия импортировала из США морским путем, но в это время на море уже полностью «хозяйничали» немецкие подводные лодки. В Англии возникла острая необходимость производить ацетон самостоятельно. На помощь пришел мало кому известный химик Хаим Вейцман, который незадолго до этого эмигрировал в Англию из села Мотол (под г. Пинском в Белоруссии).

Работая на химическом факультете Манчестерского университета, он опубликовал статью, где описал ферментативное расщепление углеводов. При этом получалась смесь ацетона, этанола и бутанола. Британское военное ведомство пригласило к себе Вейцмана, чтобы выяснить, можно ли с помощью открытого им процесса организовать производство ацетона в количестве, необходимом для военной отрасли промышленности. По мнению Вейцмана, такое производство можно было создать, если решить небольшие технические проблемы. Для отделения ацетона вполне применима простая перегонка благодаря заметной разнице в температурах кипения присутствующих соединений. Однако при организации производства возникла совсем иная сложность. Источником углеводов в процессе Вейцмана было зерно, но собственное производство зерна в Англии полностью потреблялось пищевой отраслью промышленности. Дополнительное зерно приходилось ввозить из США морским путем, в итоге немецкие подводные лодки, угрожавшие импорту ацетона, точно так же угрожали импорту зерна. Казалось, что круг замкнулся, но все же выход из этой ситуации был найден. Хорошим источником углеводов оказались конские каштаны, не имевшие, кстати, никакой пищевой ценности. В результате в Англии была организована массовая кампания по сбору конских каштанов, в ней участвовали все школьники страны.

Ллойд Джордж, бывший премьер-министром Великобритании во времена первой мировой войны, выражая свою признательность Вейцману за его усилия по укреплению военной мощи страны, представил его министру иностранных дел Дэвиду Балфору. Балфор спросил Вейцмана, какую награду он хотел бы получить. Желание Вейцмана оказалось совершенно неожиданным, он предложил создать еврейское государство на территории Палестины – исторической родине евреев, находившейся к тому моменту в течение уже многих лет под контролем Англии. В результате в 1917 г. появилась вошедшая в историю декларация Балфора, в которой Англия выступила с предложением выделить территорию для будущего еврейского государства.

Эта декларация сыграла свою роль, но не сразу, а лишь спустя 31 год. Когда весь мир узнал о зверствах фашистов во время второй мировой войны, необходимость создания такого государства стала очевидной. В итоге в 1948 г. было создано государство Израиль. Хаим Вейцман стал его первым президентом, как человек, впервые предложивший мировому сообществу эту идею. Научно-исследовательский институт в израильском г. Реховоте носит теперь его имя. А начиналось все с производства бездымного пороха.

Возвращение старинной «профессии»

Долгое время использование пороха в военном деле ограничивалось двумя задачами: первая – привести в движение пулю или снаряд, находящийся в стволе орудия, вторая – боевой заряд, расположенный в головке снаряда, должен был взрываться при попадании в цель и производить разрушительное действие. Бездымный порох позволил возродить на новом уровне еще одну, забытую возможность пороха, для которой, собственно говоря, он и был создан в Древнем Китае – запуск фейерверков. Постепенно военная промышленность пришла к мысли использовать бездымный порох как топливо, позволяющее двигать ракету за счет реактивной тяги, образующейся при выбросе газов из сопла ракеты. Первые такие опыты проводились еще в первой половине XIX в., а появление бездымного пороха вывело эти работы на новый уровень – возникла ракетная техника. Вначале создавали твердотопливные ракеты на основе пороховых зарядов, вскоре появились ракеты на жидком топливе – смеси углеводородов с окислителями.

Состав пороха к этому моменту был несколько изменен: в России взамен легколетучих растворителей стали использовать добавку тротила. Новый пироксилино-тротиловый порох (ПТП) горел абсолютно без дыма, с огромным газообразованием и вполне стабильно. Его стали применять в виде прессованных шашек, несколько напоминающих хоккейную шайбу. Интересно, что первые такие шашки были изготовлены на тех самых прессах, которыми пользовался Менделеев во времена своего увлечения пороховым делом.

Одно из первых необычных применений твердотопливных ракет на основе ПТП было предложено в 1930-е гг. – использовать их в качестве ускорителей самолетов. На земле это позволяло резко сократить длину стартового пробега самолетов, а в воздухе обеспечивало кратковременное резкое приращение скорости полета, когда было необходимо догнать противника или уклониться от встречи с ним. Можно себе представить ощущения первых испытателей, когда сбоку от кабины пилота извергался факел бешеного огня.

Отечественное ракетостроение в 1930-е гг. возглавили выдающиеся деятели в области ракетной техники – И.Т.Клейменов, В.П.Глушко, Г.Э.Лангемак и С.П.Королев (будущий создатель космических ракет), работавшие в специально созданном Реактивном научно-исследовательском институте (РНИИ).

Именно в этом институте по идеям Глушко и Лангемака впервые был создан проект многозарядной установки для залповой стрельбы реактивными снарядами, позже эта установка стала известна под легендарным именем «Катюша».

В эти годы уже набирал обороты маховик сталинских репрессий. В 1937 г. по ложному доносу были арестованы и вскоре расстреляны начальник института Клейменов и его заместитель Лангемак, а в 1938 г. арестованы и осуждены Глушко (на 8 лет) и Королев (на 10 лет). Все они позже были реабилитированы, Клейменов и Лангемак посмертно.

В этих драматических событиях неприглядную роль сыграл А.Г.Костиков, работавший в институте рядовым инженером. Он возглавлял экспертную комиссию, которая вынесла решение о вредительской деятельности основного руководящего состава института. Выдающиеся специалисты были арестованы и осуждены как враги народа. В итоге Костиков занял должность главного инженера, затем стал руководителем института и заодно «автором» нового типа вооружения. За это он был щедро награжден в начале войны, несмотря на то, что к созданию «Катюши» не имел никакого отношения.

Признание властью заслуг Костикова в создании нового оружия, а также его старания по выявлению в институте «врагов народа» не спасли его самого от репрессий. В июле 1942 г. руководимый им институт получает от Комитета обороны задание: разработать в течение восьми месяцев истребитель-перехватчик с реактивным двигателем. Задание было исключительно сложным, выполнить его вовремя не удалось (самолет был создан лишь через полгода после истечения указанного срока). В феврале 1943 г. Костиков был арестован, обвинен в шпионаже и вредительстве. Впрочем, дальнейшая его судьба была не столь трагична, как у тех, кого он сам обвинил во вредительстве, спустя год он был освобожден.

Возвращаясь к рассказу о «Катюшах» (рис. 5), напомним, что эффективность нового ракетного оружия удалось показать в самом начале войны. 14 июля 1941 г. первый залп пяти «Катюш» накрыл скопление немецких войск в районе железнодорожной станции Орша. Затем «Катюши» появились на Ленинградском фронте. К концу Великой Отечественной войны на ее фронтах действовало более десяти тысяч «Катюш», выпустивших около 12 миллионов ракетных снарядов разных калибров.

Мирные профессии пороха

Интересно, что порох может спасти жизнь не только в результате использования в огнестрельном оружии для защиты от агрессивного нападения, но и при вполне мирном его применении.

Интенсивное развитие автомобилестроения поставило ряд проблем, в первую очередь безопасность водителя и пассажиров. Наибольшее распространение получили ремни безопасности, которые предохраняют от травм при резких торможениях автомобиля. Однако такие ремни не могут предотвратить удар головой о руль, приборную доску или ветровое стекло и затылком при резком движении тела назад. Наиболее современный способ защиты – надувная подушка безопасности, она представляет собой нейлоновый мешок определенной формы, который в нужный момент заполняется сжатым воздухом из специального баллончика (рис. 6).

Рис. 6.
Испытание подушек безопасности
на манекенах

Подушка имеет небольшие вентиляционные отверстия, через которые газ медленно стравливается после того, как она «сожмет» пассажира. Заполнение подушки газом происходит за 0,05 с, однако этого времени все же недостаточно в тех случаях, когда автомобиль движется со скоростью свыше
120 км/ч. На помощь пришел бездымный порох. Мгновенно сгорающий небольшой пороховой заряд позволяет надуть подушку продуктами сгорания в десять раз быстрее, чем сжатый воздух. Поскольку после надувания подушки происходит медленное стравливание газов, был разработан специальный состав пороха, который при горении не образует таких вредных продуктов, как оксид азота и угарный газ.

Другое мирное применение бездымный порох нашел там, где этого можно было менее всего ожидать, – для борьбы с огнем. Небольшой пороховой заряд, помещенный в огнетушитель, позволяет почти мгновенно «выстрелить» огнегасительной смесью в направлении распространяющегося пламени.

Не забудем также и о том, что до сих пор старинная «профессия» пороха – запуск фейерверков (рис. 7) – создает нам радостное настроение в праздничные дни.

Пироксилиновые пороха позволяли успешно решать задачи стрельбы из всех артиллерийских систем, вплоть до окончания первой мировой войны. Дальнейшее раз­витие отечественной артиллерии настоятельно требовало разработки и применения баллиетитных порохов.

Основными компонентами баллиститных порохов яв­ляются низкоазотные нитраты целлюлозы (коллоксили­ны), труднолетучий растворитель - пластификатор, ста­билизатор химической стойкости и различные добавки. В США в баллиститных порохах применяют пирокспли-ны с содержанием 13,15% и 13,25% азота.

В качестве труднолетучего растворителя в производ­стве баллиститных порохов наиболее широкое примене­ние получили нитроглицерин и нитродигликоль.

Нитроглицерин является продуктом обработки глице­рина смесью азотной и серной кислот и представляет собой мощное взрывчатое вещество, обладающее высо­кой чувствительностью к внешним воздействиям. Нитро­глицерин при нормальных условиях является жидко­стью и служит хорошим пластификатором низкоазотных нитратов целлюлозы. В процессе изготовления порохов нитроглицерин не удаляется из пороховой массы и яв­ляется одним из основных компонентов готового пороха, во многом определяющим его физико-химические и бал­листические свойства.

Нитродигликоль - продукт обработки диэтиленгликоля смесью азотной и серной кислот. Диэтиленгликоль по­лучается синтетическим путем из этилена. Как и нитрогли­церин, нитродигликоль - жидкость, обладающая хоро­шими пластифицирующими свойствами.

Во время второй мировой войны в Германии стали применять пороха, полученные на основе нитродиглико-ля, в состав которых вводилось до 30% нитрогуанидина, представляющего собой белое кристаллическое вещество со взрывчатыми свойствами. Такие пороха получили на­звание гуанидиновых или гудолевых.

Пороха, содержащие нитрогуанидин, применяются в США и называются трехосновными порохами в отличие от пироксилиновых порохов, называемых одноосновны­ми, и нитроглицериновых, называемых двухосновными. В качестве стабилизатора химической стойкости бал­листитных порохов наибольшее применение получили централиты - кристаллические вещества белого цвета. В готовом порохе содержится от 1 до 5% централита. Содержание влаги в баллиститных порохах обычно не более 1 %.

В зависимости от назначения порохов в их состав вводятся различные добавки. Для снижения температу­ры горения в целях уменьшения разгарного действия пороха в его состав вводят так называемые охлаждающие добавки, в качестве которых используют динитротолуол, дибутилфталат и некоторые другие вещества. Динитро­толуол и дибутилфталат являются к тому же дополни­тельными пластификаторами коллоксилина. Их содер­жание в готовом порохе может быть от 4 до 11%.

В состав порохов может вводиться так называемая технологическая добавка, облегчающая процесс изготов­ления пороховой массы. Широкое применение в качестве технологической добавки получил вазелин, содержание его в порохе до 2%.

Для исключения явлений прерывистого и нестабиль­ного горения в реактивных двигателях в состав порохов вводят каталитические и стабилизирующие добавки. Их содержание в порохе невелико: от 0,2 до 2-3%. В ка­честве катализаторов горения применяют соединения свинца, а в качестве стабилизирующих добавок исполь­зуют мел, окись магния и другие тугоплавкие вещества.

Составы некоторых отечественных и иностранных баллиститных порохов приведены в табл. 10.

Таблица 10

Наименование компонентов порохов

орудийные пороха

минометные пороха

реактивные пороха

нитрогли­церино­вые

нитро-диглнко-левые

Коллоксилин

Нитроглицерин

Нитродигликоль

Централит

Динитротолуол

Дибутилфталат

Вазелин

Вода,(свыше 100 % )

Графит

Окись магния

Прочие вещества

Пороха баллиститного типа применяются для стрель­бы из орудий, минометов и реактивных установок.

Орудийные пороха изготавливаются преимуществен­но в виде трубок 1 (рис. 12) различной длины и с раз­личной толщиной горящего свода.

Минометные пороха готовятся в форме пластинок, лент 2, спиралей и колец 3.

Рис. 12. Форма баллиститиых порохов:

1-трубка (трубчатый порох); г-лента (ленточный по-

рох); 3- кольцо; 4 - шашка

Реактивные пороха изготавливаются в виде толсто­сводных одноканальных шашек 4 цилиндрических и бо­лее сложных геометрических форм.

Современная технология позволяет изготавливать по­роховые шашки с толщиной горящего свода до 300 мм и более.

Процесс изготовления баллиститных порохов осу­ществляется следующим образом.

Компоненты порохов смешивают в теплой воде. При таком смешении происходит набухание коллоксилина в растворителях.

После предварительного удаления влаги массу мно­гократно пропускают через горячие вальцы. На вальцах происходит дальнейшее удаление влаги, уплотнение и пластификация пороховой массы. Из пороховой массы получают пороховые элементы необходимой формы и размеров.

Для получения трубок пороховое полотно после валь­цов скатывают в рулоны и прессуют через соответствую­щие матрицы. Трубки разрезают на пороховые элементы определенной длины. Для получения пороха пластинча­той, ленточной и кольцевой формы пороховую массу пропускают через вальцы с точно регулируемым зазо­ром. Полученное полотно разрезают на пластинки или ленты заданных размеров или вырубают из него кольца.

Технологический процесс изготовления баллиститных порохов менее продолжителен и более экономичен, чем пироксилиновых, позволяет широко использовать авто­матизацию, однако более взрывоопасен.

В зависимости от назначения, химического состава, формы и размеров пороховых элементов различают мар­ки порохов баллистиггного типа. Условные обозначения марок порохов самые разнообразные. Пороха для реак­тивных двигателей имеют обозначения, указывающие только назначение пороха и его ориентировочный состав. Указания о форме и размерах элементов в обозначе­нии реактивных порохов не содержится. Например, H, HM 2 означают реактивный порох, в котором в качест­ве пластификатора используется нитроглицерин, во вто­ром порохе содержится добавка окиси магния (2%).

Орудийные баллиститные пороха обозначают следую­щим образом: за буквами, указывающими ориентировоч­ный состав пороха, через тире проставляется цифра, обо­значающая группу калорийности пороха, а затем дробью обозначается размер трубки аналогично пироксилино­вым порохам. В отличие от пироксилиновых порохов при обозначении трубчатых баллиститных порохов буквы TP не проставляются, так как баллиститные пороха не из­готавливаются в виде зерен цилиндрической формы. На­пример, марка НДТ-3 18/1 означает, что порох нитро­глицериновый, содержащий в качестве охлаждающей до­бавки динитротолуол, относящийся по калорийности к третьей группе, имеет форму одноканалыюй трубки с толщиной горящего свода 1,8 мм. Пластинчатые пороха обозначаются буквами и цифрами: НБПл 12-10 - нит­роглицериновый баллиститный минометный пластинча­тый порох с толщиной свода 0,12 мм и шириной пластин­ки 1 мм.

Ленточные пороха обозначаются буквой Л и числом, соответствующим толщине горящего свода в сотых до­лях миллиметра, например НБЛ-33. Кольцевые пороха обозначаются буквой К, за которой следует дробное чис­ло: числитель обозначает внутренний диаметр кольца в миллиметрах, знаменатель - наружный диаметр. За дробью через тире проставляется число, обозначающее толщину горящего свода в сотых долях миллиметра, например НБК 32/64-14.

Баллиститные пороха отличаются разнообразием хи­мического состава и геометрических форм, в связи с чем они различны по своим физико-химическим и баллисти­ческим свойствам.

Баллиститные пороха по сравнению с пироксилино­выми обладают меньшей гигроскопичностью.

Положительным свойством баллиститных порохов, широко используемым в практике, является возмож­ность в значительных пределах изменять их энергетиче­ские характеристики путем изменения в довольно широ­ком диапазоне содержания труднолетучего взрывчатого растворителя и введения в их состав различных добавок. Это позволяет значительно расширить область практи­ческого применения данной группы нитроцеллюлозных порохов. Теплота сгорания баллиститных порохов в за­висимости от их состава может изменяться в пределах от 650 до 1500 ккал/кг. По теплоте сгорания баллистит-ные пороха делят на высококалорийные (1000- 1500 ккал/кг), среднекалорийные (800-1000 ккал/кг) и низкокалорийные (650-800 ккал/кг). Низкокалорийные пороха часто называют холодными или малоэрозион­ными.

У баллиститных порохов в широком диапазоне могут меняться скорость горения, сила пороха и другие ха­рактеристики.

Пороха являются метательными взрывчатыми веществами. Основной вид взрывчатого превращения – горение, не переходящее в детонацию. Пороха легко воспламеняются и горят параллельными слоями, что позволяет в широких приделах регулировать образование пороховых газов и управлять явлением выстрела.

Нитроцеллюлозные пороха - официально принятое во внутренней баллистике название, они же бездымные, они же коллоидные. Пороха это пластифицированные нитраты целлюлозы разного происхождения от хлопковой ваты, первичной целлюлозы из древесины, измельченного пергамента и вискозной нити до резаной макулатуры. Это основная причина различного качества пороха от разных производителей.

Нитраты целлюлозы получают обработкой целлюлозы азотной кислотой и характеризуются средним содержанием азота. Нитраты целлюлозы со средним содержание азота выше 12% называются пироксилинами, именно они являются основой порохов для стрелкового оружия.Появились технологии переработки армейских порохов на охотничьи пороха.

Пироксилины очень хрупкие, и из них нельзя получить одинаковые по форме и размеру, относительно стойкие к механически воздействиям зерна. Поэтому из них в начале получают пластичные и термопластичные массы путем добавления растворителей (пластификаторов). По типу растворителя делятся на одноосновные (Single base powders) и двухосновные (Double base powders).

Одноосновные пороха - это пороха на летучих растворителях, эфирноспиртовых смесях.
Излишки, которых после формирования зерна, удаляются сушкой.
Двухосновные пороха это пороха на труднолетучих и не летучих расточителях, это либо нитраты многоатомных спиртов (нитроглицерин, ниродигликоль и др.), либо ароматические соединения (ди- и тринитротолуол и др.).

Есть еще пороха эмульсионного приготовления, на эмульсии смешанных растворителей в воде.
Во время работы над этой статьей появилась перепроверенная на баллистическом комплексе информация.

Патроны, снаряженные одноосновным порохом G3000/32A в прошлом году и хранившиеся в помещении при влажности порядка 30% показали максимальное давление более чем на 200 бар выше по сравнению со свежими (786-862 против 596-628 бар). Что уже не допустимо для ружей с патронниками 70 и 65 мм т.к. это выше среднего максимального эксплуатационного давления. О получении качественной дробовой осыпи при таком максимально давлении и речи быть не может.

По мнению специалистов это объясняется требованиями ТУ по хранению патронов и порохов именно одноосновных. Влажность в помещении хранения должна быть не ниже 62%, нижняя граница мне не известна и требует уточнения. Рекомендуют перед использованием выдержать такие патроны 2 недели в помещении с влажностью порядка 60%.

Патроны, снаряженные двухосновным порохом M92S, никакой разницы при отстреле не показали. Свойства этих порохов меньше зависят от условий хранения.

http://forum.guns.ru/forummessage/11/1070113-58.html (От редакции: на момент публикации статьи ссылки не работали, это связано с техническими проблемами на guns.ru, длящиеся порядка недели)

Свойства порохов.

Плотность (удельный вес) для стрелкового оружия находится в пределах 1,3 -1,64 г/см3, в расчетах практически не применяется и производителями не сообщается.

Форма и размеры зерна. Это главный показатель определяющий скорость горения и газообразования. Определяющим размером является наименьшая толщина горящего слоя.
Зерна прямоугольной формы горят быстрей, чем сферические.

Прогрессивность - свойство пороха увеличивать скорость горения и газообразования с увеличением заснарядного пространства. В порохах для стрелкового оружия прогрессивность регулируется размерами зерна, глубиной пропитки и составом флегматизаторов. В артиллерийских порохах - за счет конструкции зерна, наличия трех и более каналов, покрытия поверхности негорючими веществами - зерно горит со средины и поверхность горения постоянно увеличивается.

Горение сопровождается значительным выделением газообразных продуктов и тепла.
При нормальном режиме горения в продуктах горения содержится в основном углекислый газ, угарный газ, водород, азот и пары воды.

Если в продуктах горения появляются окислы азота в большом количестве, то это признак аномального горения. При этом мощность пороха уменьшается в два раза.

Порох переходит в такой режим горения при давлении ниже 40-50 бар по одним источникам и 150 бар по другим. При этом порох может даже прекратить горение в стволе. Это могут часто наблюдать владельцы полуавтоматических ружей при чистке ударно спускового механизма.

Полагаю, что величина 150 бар относится к порохам для стрелкового оружия. Этим объясняется требование поддержания максимального давления на максимально допустимом уровне и рекомендации использовать пороха с номинальными для них весами снарядов. Так считается, что 35 граммовый порох Сокол следует применять со снарядами не легче 28 г, далее срыв в аномальный режим горения и потеря постоянства боя.

Энергетические характеристики порохов.

Объем газообразный продуктов горения 1 кг пороха. Зависит от природы, состава пороха и условий горения. Для ниторопорохов, предназначенных для стрелкового оружия, объем продуктов горения приведенный к нормальным условиям (0 градусов Цельсия, 760 мм рт. ст. при парообразной воде) составляет 910-920 л/кг. Для дымного пороха эта величина в 3 раза меньше.

Тепловой эффект, или количество тепла выделяемого при сгорании 1 кг пороха.
Для порохов, предназначенных для стрелкового оружия, - 8000-9000 ккал/кг.
Температура горения 2800-2900 градусов Кельвина.

Сила пороха.

Это работа, которую могли бы совершить газообразные продукты горения 1 кг пороха расширившись про атмосферным давление (760 мм рт.ст.) при нагревании их от ноля до температуры горения в градусах Кельвина. Для порохов, предназначенных для стрелкового оружия 1 000 000 Дж.

Коволюм . Это величина, характерная для определенного типа пороха, пропорциональная объему газовых молекул, и оказывающая влияния на величину давления. При относительно низких давлениях, как в гладкоствольном ружье, им можно пренебречь.

Скорость горения пороха при Р=1 бар. Зависит от химического состава пороха.
Эта скорость горения зависит от содержания летучих веществ.
Сила пороха при сгорании в постоянном объеме влияет на величину давления и скорость его нарастания, скорости горения при Р=1 бар - только на скорости нарастания давления.
Они являются баллистическими характеристиками пороха.

Кроме баллистических характеристик на величину и характер нарастания давления влияет плотность заряжания, которая является характеристикой условий заряжания. Плотность заряжания представляет собой отношение веса заряда к объему, в котором горит порох.

Гравиметрическая плотность. Она характеризует степень компактности заряда при данной плотности пороха, она больше у пороха, зерна которого имеют скругленные края и меньше у пороха с прямоугольными краями и выступающими ребрами. Наибольшую гравиметрическую плотность имеет порох с шаровой и прутковой формой зерна.

Гравиметрическая плотность (объемный, насыпной вес) принято измерять в г/дм3 (г/л), в порохах для гладкоствольного оружия находится в пределах 450-650. В линейке порохов одного производителя, чем больше гравиметрическая плотность, тем меньше скорость горения и выше прогрессивность.

В патроне для гладкоствольного ружья, при плотных способах снаряжения и поджатием пороха гравиметрическая плотность остается неизменной и не зависит о величины первичного сжатия и поджатия усилием завальцовки, что на конечные параметры выстрела не влияет.

Таким образом, имеются три баллистические характеристики:

Сила пороха.
Скорость горения при Р= 1 бар
Размеры и форма зерна.

И характеристику условий заряжания - плотность заряжания.

Основные фазы процесса горения. Скорость горения.

В процессе горения различают три фазы: зажжение, воспламенение и горение.

Зажжение - процесс начала горения под действием внешнего импульса, взрыва КВ. После того как порох загорится хотя бы в одной точке, реакция горения идет сама собой за счет выделенного при этом тепла. Началу горения предшествует нагрев и появление горючих газов. При зажжении порох должен нагреваться быстро, так как при медленном нагревании горючие газы разлагаются, и порох быстро теряет свои баллистические свойства.

Для этого создаваемое капсюлем давление в каморе должно быть не ниже некоторого предела, который зависит от состава ВВ капсюля, природы пороха, плотности заряжания, калибра ружья. Капсюля для воспламенения спортивных и охотничьих нитропорохов делятся на три класса: мощные, средние и слабые. Универсальными считаются мощные капсюли.

Вопрос применения различных по мощности капсюлей в зависимости от типа пороха, калибра и условий заряжания требует отдельного рассмотрения.

Если мощность воспламеняющего импульса не достаточна, и давление его мало, то воспламенение может не произойти, или получится затяжной выстрел. Этим обосновываются рекомендации подсыпки дымного пороха при снаряжении с нитропорохом и маломощным капсюлем ЦБО, который предназначен для дымного пороха.

Бездымный порох загорается при температуре 200 градусов Цельсия, дымный при 300.
После зажжения одновременно идут два процесса - воспламенение и собственно горение.

Воспламенение - процесс распространения горения по поверхности пороховых зерен. Скорость воспламенения главным образом зависит от давления, состояния поверхности зерна пороха (гладкая, шероховатая, пористая), от его природы, формы, от состава газов и продуктов горения КВ.

Горение пороха - процесс распространения реакции горения вглубь порохового зерна перпендикулярно к поверхности пороха. Скорость горения также зависит от давления окружающих порох газов, его природы и температуры горения.

На открытом воздухе скорость воспламенения бездымных порохов в 2-3 раза выше, чем скорость горения.
Дымный порох воспламеняется в сотни раз быстрее, чем бездымный 1-3 м/с и 10 мм/с, соответственно.

Анализируя формулу Закона горения, с достаточной точностью можно принять, что скорость горения порохов для стрелкового оружия прямо пропорционально давлению.

Понятие о теории горения пороха.

С тридцатых годов прошлого столетия во внутренней баллистике принята теория горения Беляева - Зельдовича. Считается, что сначала происходит разложение твердого пороха и образование газов, которые вступают в горение при сильном повышении температуры в газовой фазе. На поверхности пороха температура относительно не высока и соответствует первичному разложению клетчатки.
Относительно поверхности зерна пороха с каждой из двух его сторон есть три зоны.

В зоне непосредственно на поверхности зерна происходит реакция разложения и газообразования. Толщина этой зоны зависит от толщины зерна, чем оно толще, тем меньше эта зона, и меньше скорость горения. Над ним газообразный слой и только в последнем третьем слое происходит реакция горения. Между твердой поверхностью зерна и горящим слоем всегда есть не горящий газовый слой.

Т.к. все зерна заряда воспламенились одновременно, то время горения всего заряда будет определяться времени горения самого толстого зерна, в идеале все зерна должны быть одинаковые и горение закончится одновременно.


Человеком было сделано множество открытий, которые имели большое значение в той или иной сфере жизни. Однако очень небольшое количество таких открытий действительно затронули ход истории.

Порох, его изобретение – именно из этого списка открытий, которые способствовали развитию многих областей человечества.

История

Предыстория появления пороха

Ученые умы долго дискутировали о времени его создания. Кто-то утверждал, что он был изобретен в странах Азии, а другие наоборот не соглашаются, и доказывают обратное, что порох был изобретен в Европе, а оттуда попал в Азию.

Все сходятся во мнении, что родиной пороха является Китай.

Имеющиеся рукописи говорят, о шумных праздниках, которые проводились в Поднебесной с очень громкими взрывами, которые не были привычны европейцам. Конечно это был не порох, а семена бамбуков, которые при нагреве лопались с сильным шумом. Такие взрывы, заставили задуматься тибетских монахов о практическом применении подобных вещей.

История изобретения

Сейчас уже нет возможности с точностью до года определить время изобретения китайцами пороха, однако по дошедшим до нынешних времен рукописям, есть мнение, что в середине VI века жители Поднебесной знали и компоновке веществ, с помощью которых можно получить огонь с ярким пламенем. Дальше всех в направлении изобретения пороха продвинулись даосисткие монахи, которые и в конце концов изобрели порох.

Благодаря найденному труду монахов, который был датирован IX веком, где приведены перечни всех неких «эликсиров» и как их применять.

Большое внимание было обращено на текст, где указывалось на приготовленный состав, который неожиданно возгорался прямо после изготовления и причинял ожоги монахам.

Если сразу не потушить огонь, до дотла сгорал дом алхимика.

Благодаря вот таким сведениям были закончены дискуссии о месте и времени изобретения пороха. Ну надо сказать, что после изобретения пороха, он всего лишь горел, но не взрывался.

Первый состав пороха

Состав пороха требовал точного соотношения всех составляющих. Для определения всех долей и составляющих монахам потребовался еще не один год. В итоге была получена смесь, получившая имя «огненное зелье». В состав зелья входили молекулы угля, серы и селитры. В природе селитры очень мало, за исключением территорий Китая, где селитра может находиться прямо на поверхности земли слоем в несколько сантиметров.

Компоненты пороха:

Мирное применение пороха в Китае

В первое время изобретения пороха он в основном применялся в виде различных шумовых эффектов или для красочных «салютов» во время увеселительных мероприятий. Однако местные мудрецы понимали, что возможно и боевое применение пороха.

Китай в те далекие времена постоянно находился в состоянии войны с окружавшими его кочевниками, а изобретение пороха было на руку военным начальникам.

Порох: первое применение китайцами в военных целях

Имеются рукописи китайских монахов, где утверждается о применении «огненного зелья» в военных целях. Китайские военные окружили кочевников и заманили в горную местность, где были заранее установлены пороховые заряды и подожжены после похода противника.

Сильные взрывы парализовали кочевников, те бежали с позором.

Поняв, что такое порох, и, осознав его возможности, императоры Китая поддерживали изготовление оружия с применением огненной смеси, это и катапульты, пороховые шары, различные снаряды. Благодаря применению пороха, войска китайских командиров не знали поражений и повсеместно обращали врага в бегство.


Порох покидает Китай: арабы и монголы начинают изготавливать порох

По дошедшим сведениям, примерно в XIII веке, сведения о составе и пропорциях для изготовления пороха были получены арабами, как это было сделано, нет точных сведений. По одному из преданий, арабы вырезали всех монахов монастыря и получили трактат. В том же веке арабы смогли построить пушку, позволяющую стрелять снарядами из пороха.

«Греческий огонь»: византийский порох


Далее от арабов сведения о порохе, его составе в Византию. Чуть изменив состав качественно и количественно был получен рецепт, который получил название «греческий огонь». Первые же испытания этой смеси не заставили себя ждать.

При обороне города были применены пушки, заряженные греческим огнем. В итоге все корабли были уничтожены огнем. До наших времен не дошли точные сведения о составе «греческого огня», но предположительно были применены — сера, нефть, селитра, смола и масла.

Порох в Европе: кто изобрел?

Долгое время виновником появления пороха в Европе считался Роджер Бэкон. В середине тринадцатого века он стал первым европейцем, описавшем в книге все рецепты изготовления пороха. Но книга была зашифрована, и воспользоваться ею не представлялось возможным.


Если вы хотите знать, кто изобрел порох в Европе, то ответом на ваш вопрос будет история Бертольда Шварца. Он являлся монахом и занимался алхимией на благо своего Ордена францисканцев. В начале четырнадцатого века он работал над определением пропорций вещества из угля, серы и селитры. После долгих опытов ему удалось растереть в ступке нужные компоненты в пропорции, достаточной для взрыва.

Взрывная волна чуть не отправила монаха на тот свет.

Изобретение положило начало эры огнестрельного оружия.

Первую модель «стреляющей ступки» разработал все тот же Шварц, за что и был посажен в тюрьму в целях неразглашения тайны. Но монаха выкрали и тайно перевезли в Германию, где он продолжил свои опыты по усовершенствованию огнестрельного оружия.

Чем закончил свою жизнь пытливый монах, до сих пор неизвестно. По одной из версий, он был взорван на бочке с порохом, по другой, благополучно умер в весьма преклонном возрасте. Как бы то ни было, но порох подарил европейцам большие возможности, которыми они не преминули воспользоваться.

Появление пороха на Руси

Нет точного ответа о происхождении пороха на Руси. Есть множество историй, но самой правдоподобной считается – что состав пороха был предоставлен византийцами. Впервые порох был применен в огнестрельном орудии при защите Москвы от набега войск Золотой орды. Такое ружье не выводило из строя живую силу противника, но позволяло пугать лошадей и сеять панику в рядах Золотой Орды.


Рецепт бездымного пороха: кто изобрел?


Приближаясь к более современным векам, скажем, что XIX век – это время усовершенствования пороха. Одним из интересных усовершенствований считается изобретение французом Вьелем пироксилинового пороха, обладающего твердой структурой. Его первое применение было оценено по достоинству представителями оборонного ведомства.

Суть в том, что порох горел без дыма, не оставляя следов.

Чуть позже изобретатель Альфред Нобель заявил о возможности применения нитроглицеринового пороха при производстве снарядов. После этих изобретений порох только совершенствовался и улучшались его характеристики.

Виды пороха

В классификации применяются следующие виды пороха:

  • смесевые (так называемый порох дымный (черный порох));
  • нитроцеллюлозные (соответственно, бездымный).

Для многих может быть будет открытием, но твердое ракетное топливо, применяемое в космических аппаратах и ракетных двигателях, есть ни что иное, как самый мощный порох. Нитроцеллюлозные пороха состоят из нитроцеллюлозы и пластификатора. Помимо этих частей, в смесь размешивают разные добавки.

Большое значение имеют условия хранения пороха. В случае нахождения пороха больше возможного срока хранения или несоблюдения технологических условий хранения возможно необратимый химический распад и ухудшение его свойств. Поэтому хранение имеет большое значение в жизни пороха, в противном случае возможен взрыв.

Порох дымный (чёрный)

Дымный порох производится на территории Российской Федерации в соответствии с требованиями ГОСТ-1028-79.

В нынешнее время изготовление дымных, или чёрных пороха регламентируется и соответствует нормативным требованиям и правилам.

Марки, какой бывает порох, подразделяются на:

  • зернистый;
  • пороховая пудра.

Состоит черный порох из калия нитрата, серы и древесного угля.

  • нитрат калия окисляет, позволяет гореть с быстрой скоростью.
  • древесный уголь — это горючее (который окисляется нитратом калия).
  • сера - составляющая, которая необходима для обеспечения поджига. Требования к пропорциям марок черного пороха в разных странах разные, но отличия не большие.

Форма зернистых марок пороха после изготовления напоминает зерно. Производство составляет пять этапов:

  1. Измельчение до состояния пудры;
  2. Перемешивание;
  3. Прессуются по дискам;
  4. Происходит дробление по зернам;
  5. Полируется зерна.

Самые лучшие сорта пороха горят лучше, если все составляющие измельчены полностью и тщательно перемешаны, даже важна выходная форма гранул. Эффективность горения дымного пороха во многом связана с тонкостью измельчения компонентов, полнотой смешения и формой зёрен в готовом виде.

Сорта дымных порохов (% состав KNO 3 , S, C.):

  • шнуровой (для огнепроводных шнуров) (77 %, 12 %, 11 %);
  • ружейный (для воспламенителей к зарядам из нитроцеллюлозных порохов и смесевых твёрдых топлив, а также для вышибных зарядов в зажигательных и осветительных снарядах);
  • крупнозернистый (для воспламенителей);
  • медленногорящий (для усилителей и замедлителей в трубках и взрывателях);
  • минный (для взрывных работ) (75 %, 10 %, 15 %);
  • охотничий (76 %, 9 %, 15 %);
  • спортивный.

При обращении с черным порохом нужно соблюдать меры предосторожности и держать порох вдали от открытого источника огня, так как он легко возгорается, для этого достаточно вспышки при температуре 290-300 °C.

Предъявляются высокие требования к упаковке. Она должна быть герметичной и дымный порох должен храниться в отдельности от остальных. Очень требователен к содержанию влаги. В случае наличия влаги более 2,2 % данный порох очень трудно воспламеняется.

До начала XX века дымный порох был изобретен для использования при стрельбе из оружия и в различных метательных гранатах. Сейчас применяется в производстве фейерверков.

Разновидности пороха

Алюминиевые сорта пороха нашли свое использование в пиротехнической промышленности. В основе лежат, доведённые до состояния пудры и перемешанные между собой, нитрат калия/натрия (нужен как — окислитель), алюминиевая пудра (это горючее) и сера. Благодаря большому выделение света при горении и быстроты горения используется в разрывных элементах и флеш-составах (производящих вспышку).

Пропорции (селитра: алюминий: сера):

  • яркая вспышка - 57:28:15;
  • взрыв - 50:25:25.

Порох не боится влаги, не меняет сыпучесть, но можно сильно испачкаться.


Классификация порохов

Это бездымный порох, который был разработан уже в современности. В отличие от черного пороха, у нитроцеллюлозного высокий коэффициент полезного действия. И нет дыма, который может выдать стрелка.

В свою очередь нитроцеллюлозные пороха из-за сложности состава и широкого применения можно разделить на:

  1. пироксилиновые;
  2. баллиститные;
  3. кордитные.

Бездымный порох – это порох, который применяется в современных видах оружия, различных изделия для подрыва. Он используется как детонатор.

Пироксилиновые

В состав пироксилиновых порохов обычно входит 91-96 % пироксилина, 1,2-5 % летучих веществ (спирт, эфир и вода), 1,0-1,5 % стабилизатора (дифениламин, централит) для увеличения стойкости при хранении, 2-6 % флегматизатора для замедления горения наружных слоев пороховых зёрен и 0,2-0,3 % графита в качестве добавок.

Пироксилиновые пороха производятся в форме пластинок, лент, колец, трубок и зёрен с одним или несколькими каналами; основное использование – это пистолеты, автоматы, пушки, минометы.

Изготовление таких порохов состоит из этапов:

  • Растворение (пластификацию) пироксилина;
  • Прессование состава;
  • Вырезать из массы с различными формами элементов пороха;
  • Удаление растворителя.

Баллиститные

Баллистистные пороха – это пороха искусственного происхождения. Наибольший процент имеют такие компоненты как:

  • нитроцеллюлоза;
  • неудаляемый пластификатор.

Из-за наличия именно 2-х составляющих, этот вид пороха специалисты именуют 2-основными.

При наличии изменений процента в содержании пороха пластификатора они подразделяются на:

  1. нитроглицериновые;
  2. дигликолевые.

Структура состава баллиститных порохов такова:

  • 40-60 % коллоксилина (нитроцеллюлоза с содержанием азота менее 12,2 %);
  • 30-55 % нитроглицерина (нитроглицериновые пороха) или диэтиленгликольдинитрата (дигликолевые пороха) либо их смеси;

Также входят различные составляющие, которые имеют небольшой процент содержания, но они крайне важны:

  • динитротолуол – необходим, чтобы иметь возможность контролировать температуру горения;
  • стабилизаторы (дифениламин, централит);
  • вазелиновое масло, камфора и другие добавки;
  • также в баллиститные пороха могут вводить мелкодисперсный металл (сплав алюминия с магнием) для повышения температуры и энергии продуктов сгорания, такие пороха называют металлизированными.

Непрерывная технологическая схема изготовления пороховой массы высокоэнергетических баллистических порохов


1 – ажитатор; 2 – массонасос; 3 – объемно-импульсный дозатор;4 – дозатор сыпучих компонентов; 5 – расходная емкость; 6 – расходный бак; 7 – шестеренный насос; 8 – АПР; 9 – инжектор;
10 – контейнер; 11 – пассиватор; 12 – гидрофобизатор; 13 – растворитель; 14 – смеситель; 15 – промежуточный смеситель; 16 – смеситель общих партий

Внешний вид изготовленного пороха имеет вид трубок, шашек, пластин, колец и лент. Порох применяются в военных целях, и по своему направлению применения они делятся:

  • ракетные (для зарядов к ракетным двигателям и газогенераторам);
  • артиллерийские (для метательных зарядов к артиллерийским орудиям);
  • миномётные (для метательных зарядов к миномётам).

По сравнению с пироксилиновыми баллиститные пороха отличаются меньшей гигроскопичностью, большей быстротой изготовления, возможностью получения крупных зарядов (до 0,8 метра в диаметре), высокой механической прочностью и гибкостью за счёт использования пластификатора.

К недостаткам баллиститных порохов по сравнению с пироксилиновыми специалисты относят:

  1. Большая опасность в производстве, обусловленная наличием в их составе мощного взрывчатого вещества - нитроглицерина, очень чувствительного к внешним воздействиям, а также невозможность получить заряды диаметром больше 0,8 м, в отличие от смесевых порохов на основе синтетических полимеров;
  2. Сложность технологического процесса производства баллиститных порохов, который предусматривает смешение компонентов в тёплой воде в целях их равномерного распределения, отжимку воды и многократное вальцевание на горячих вальцах. При этом удаляется вода и происходит пластификация нитрата целлюлозы, который приобретает вид роговидного полотна. Далее порох выпрессовывают через матрицы или прокатывают в тонкие листы и режут.

Кордитные

Кордитные пороха содержат высокоазотный пироксилин, удаляемый (спирто-эфирная смесь, ацетон) и неудаляемый (нитроглицерин) пластификатор. Это приближает технологию производства данных порохов к производству пироксилиновых порохов.

Преимущество кордитов - большая мощность, однако они вызывают повышенный разгар стволов из-за более высокой температуры продуктов сгорания.


Твёрдое ракетное топливо

Смесевый порох на основе синтетических полимеров (твёрдое ракетное топливо) содержит примерно:

  • 50-60 % окислителя, как правило перхлората аммония;
  • 10-20 % пластифицированного полимерного связующего;
  • 10-20 % мелкодисперсного порошка алюминия и другие добавки.

Это направление пороходелания впервые появилось в Германии в 30-40-е годы XX века, после окончания войны активной разработкой таких топлив занялись в США, а в начале 50-х годов — и в СССР. Главными преимуществами перед баллиститным порохом, привлёкшими к ним большое внимание, явились:

  • высокая удельная тяга ракетных двигателей на таком топливе;
  • возможность создавать заряды любой формы и размеров;
  • высокие деформационные и механические свойства композиций;
  • возможность регулировать скорость горения в широких пределах.

Эти свойства пороха позволили создавать стратегические ракеты с дальностью действия более 10 000 км. На баллиститных порохах С. П. Королёву вместе с пороходелами удалось создать ракету с предельной дальностью действия 2 000 км.

Но у смесевых твёрдых топлив есть значительные недостатки по сравнению с нитроцелюлозными порохами: очень высокая стоимость их изготовления, длительность цикла производства зарядов (до нескольких месяцев), сложность утилизации, выделение соляной кислоты в атмосферу при горении перхлората аммония.


Новый порох — твердое ракетное топливо.

Горение пороха и его регулирование

Горение параллельными слоями, не переходящее во взрыв, обусловливается передачей тепла от слоя к слою и достигается изготовлением достаточно монолитных пороховых элементов, лишённых трещин.

Скорость горения порохов зависит от давления по степенному закону, увеличиваясь с ростом давления, поэтому не стоит ориентироваться на скорость сгорания пороха при атмосферном давлении, оценивая его характеристики.

Регулирование скорости горения порохов — очень сложная задача и решается использованием в составе порохов различных катализаторов горения. Горение параллельными слоями позволяет регулировать скорость газообразования.

Газообразование пороха зависит от величины поверхности заряда и скорости его горения.


Величина поверхности пороховых элементов определяется их формой, геометрическими размерами и может в процессе горения увеличиваться или уменьшаться. Такое горение называется соответственно прогрессивным или дигрессивным.

Для получения постоянной скорости газообразования или её изменения по определённому закону отдельные участки зарядов (например, ракетных) покрывают слоем негорючих материалов (бронировкой).

Скорость горения порохов зависит от их состава, начальной температуры и давления.

Характеристики пороха

В основе характеристик пороха лежат такие параметры, как:

  • теплота горения Q - количество тепла, выделяемое при полном сгорании 1 килограмма пороха;
  • объём газообразных продуктов V , выделяемых при сгорании 1 килограмма пороха (определяется после приведения газов к нормальным условиям);
  • температура газов Т , определяемая при сгорании пороха в условиях постоянного объёма и отсутствия тепловых потерь;
  • плотность пороха ρ;
  • сила пороха f - работа, которую мог бы совершить 1 килограмм пороховых газов, расширяясь при нагревании на Т градусов при нормальном атмосферном давлении.

Характеристики нитропорохов

Невоенное применение

Конечное же основное предназначение пороха – это военные цели и применение для разрушения объектов противника. Однако состав пороха Сокол, позволяет его применение и в мирных целях, это фейерверки, в строительных инструментах (пистолеты строительные, пробойники), а в области пиротехники – пиропатроны. Характеристики пороха Барс больше подходят для применения в спортивной стрельбе.

(5 оценок, среднее: 5,00 из 5)

58 > .. >> Следующая
Основой нитроцеллюлозных порохов является нитроцеллюлоза, пластифицированная тем или другим растворителем (пластификатором). В зависимости от летучести растворителя нитро-целлюлозные пороха делят иа следующие виды.
1. Нитроцеллюлозные пороха, приготовляемые с применением летучего растворителя, который в процессе производства почти целиком удаляется из пороха. За этими порохами сохранили
название пироксилиновых; они готовятся иа нитроцеллюлозе с содержанием азота, как правило, более 12%, называемой пироксилином.
2. Нитроцеллюлозные пороха, изготовляемые на труднолетучем или нелетучем растворителе (пластификаторе), полностью остающемся в порохе; другой характерной особенностью этих порохов является то, что они изготовляются на основе нитроклетчатки с содержанием, как правило, меньше 12% азота, называемой коллоксилином. Эти пороха называют баллиститами.
До второй мировой-войны применяли в качестве пластификатора нитроглицерин. Со времени второй мировой войны в качестве пластификатора применяют также иитродигликоль. Названия баллиститов установили по техническому названию нитрата-пластификатора: нитроглицериновые, нитродигликолевые. Нитродигликолевые баллиститы сходны по составу и многим своим свойствам с нитроглицериновыми баллиститами.
3. Нитроцеллюлозные пороха, изготовляемые иа смешанном растворителе (пластификаторе), называемые кордитами.
Кордиты готовят либо иа основе пироксилина с высоким содержанием азота, либо с большим содержанием коллоксилина. В обоих случаях входящий в состав кордита нитроглицерин или иитродигликоль не обеспечивает полной пластификации нитроцеллюлозы. Для полноты пластификации применяют дополнительный летучий растворитель (пластификатор), удаляемый, но не полностью, из пороха в последних стадиях производства..В качестве летучего растворителя применяют для высокоазотного пироксилина ацетон, для коллоксилина - спиртоэфирную смесь.
§ 3. КОМПОНЕНТЫ НИТРОЦЕЛЛЮЛОЗНЫХ ПОРОХОВ
Нитроцеллюлозные пороха получили наименование от основного своего компонента - нитроцеллюлозы. Именно нитроцеллюлозой, соответствующим образом пластифицированной и уплотненной, обусловлены основные свойства, характерные для нитроцеллюлозных порохов.
Для превращения нитроцеллюлозы в порох необходим прежде всего растворитель (пластификатор).
Для сообщения пороху ряда специальных свойств применяют добавки: стабилизаторы, флегматизаторы и другие.
1. Нитроцеллюлоза. Для производства нитроцеллюлозы применяют целлюлозу, которая содержится в хлопке, древесине, льне, пеньке, соломе и т. п. в количестве от 92-93% (хлопок) до 50-60% (древесина). Для изготовления высококачественной нитроцеллюлозы применяют чистую целлюлозу, получаемую из указанного растительного сырья специальной химической обработкой.
М8
Молекула целлюлозы состоит из большого числа одинаково построенных и "связанных между собой глюкозвых остатков CeHjoOs:
Поэтому общая формула целлюлозы имеет вид (СоНю06)п, где п - число глюкозных остатков. Целлюлоза состоит ие из одинаковых молекул определенной длины, а из смеси молекул с разным числом гдюкозиых остатков, которое, по данным разных исследователей, колеблется от нескольких сот до нескольких тысяч.
В каждом глюкозном остатке имеется по три гидроксильных группы ОН. Именно эти гидроксильные группы реагируют с азотной кислотой по схеме
. „ + + re(mH20),
гдет=1; 2 или 3.
В результате реакции, называемой этерификацией, группы ОН замещаются группами ON02, называемыми нитратными. В зависимости от условий нитратными группами могут замещаться ие все гидроксильные группы, а только часть из них. По этой причине получается не одна, а несколько нитроцеллюлоз разной степени этерификации.
Нитрование- целлюлозы ведут ие чистой азотной кислотой, а ее смесью с серной кислотой. Взаимодействие целлюлозы с азотной кислотой сопровождается выделением воды. Вода разбавляет азотную кислоту, что ослабляет ее нитрующее действие. Серная же кислота связывает выделившуюся воду, которая уже не может препятствовать этерификации.
Чем крепче кислотная смесь, т. е. чем меньше в ней воды, тем больше степень этерификации целлюлозы. Соответствующим выбором состава кислотной смеси можно получить нитроцеллюлозу с заданной степенью этерификации.
Виды нитратов целлюлозы. Строение целлюлозы нельзя выразить какой-либо определенной формулой вследствие того, что она неоднородна по величине молекул. Еще в большей мере это относится к нитратам целлюлозы, которые к тому же состоят из молекул, неоднородных по степени этерификации.
149
Поэтому нитроцеллюлозу характеризуют по содержанию в ней азота, определяемому химическим анализом, или по степени этерификации (число нитратных групп, приходящихся в среднем на один глюкозиый остаток).
Практически различают следующие виды нитроцеллюлозы, применяемой в производстве порохов.
а) Коллоксилин. Содержание азота 11,5-12,0%. Полностью растворим в смесях спирта с эфиром.
б) Пироксилин № 2. Содержание азота 12,05-12,4%. Растворяется в смеси спирта и эфира не менее 90%.



Понравилась статья? Поделитесь с друзьями!