Обнаружение вещества при помощи ультрафиолета в темноте. Что такое Ультрафиолетовый свет: УФ-излучение

Исследование с использованием ультрафиолетовых лучей в техническом отношении достаточно простое и доступное средство научного анализа произведений искусства. В практике изучения живописи их применение сводится к визуальному наблюдению или фотографированию вызываемой ими видимой люминесценции, то есть свечения вещества в темноте под действием фильтрованных ультрафиолетовых лучей. Различают два вида такого свечения: флуоресценцию — свечение, прекращающееся в момент, когда кончается действие источника его возбуждения, и фосфоресценцию — свечение, продолжающееся некоторое время после окончания действия источника возбуждения. В исследовании произведений живописи используют только флуоресценцию.

Под действием ультрафиолетовых лучей вещества органического и неорганического происхождения, в том числе некоторые пигменты, лаки и другие компоненты, входящие в состав произведения живописи, светятся в темноте. При этом свечение каждого вещества относительно индивидуально: оно определяется его химическим составом и характеризуется конкретным цветом и интенсивностью, что позволяет идентифицировать то или иное вещество или обнаруживать его присутствие.

Понятие люминесценции. Ультрафиолетовая область спектра непосредственно следует за сине-фиолетовым участком его видимой части.

В этой области различают три зоны — ближнюю, примыкающую к видимому спектру (400-315 нм), среднюю (315-280 нм) и дальнюю, еще более коротковолновую. Ультрафиолетовое излучение, естественным источником которого является солнечный свет, подобно другим видам излучения, может поглощаться веществом, отражаться им или проходить сквозь него.

Для возникновения люминесценции необходимым является поглощение света веществом: поглощенная атомами и молекулами световая энергия возвращается в виде светового же излучения, которое носит название фотолюминесценции.

Частицы вещества, способного люминесцировать, поглотив световую энергию, приходят в особое возбужденное состояние, которое длится очень короткий промежуток времени (порядка 10-8 сек.). Возвращаясь в исходное состояние, возбужденные частицы отдают избыток энергии в виде света — люминесценции. Согласно правилу Стокса, люминесцирующее вещество, поглотившее световую энергию определенной длины волны, излучает свет обычно большей длины волны. Поэтому, когда возбуждение производится невидимыми ближними ультрафиолетовыми лучами, люминесценция приходится на видимую область спектра и может быть любого цвета — от фиолетового до красного.

Спектральный состав излучения люминесценции не зависит от длины волны возбуждающего света: цвет свечения вещества определяется только составом вещества. Что же касается интенсивности свечения, она может зависеть от длины волны возбуждающего излучения. Это объясняется тем, что возбуждающий свет различных длин волн поглощается веществом неодинаково, а следовательно, вызывает и разный уровень люминесценции. Поэтому когда речь идет об обнаружении малых количеств вещества, приходится иметь дело с набором компонентов, состав которых не известен, желательно использовать источник возбуждения, излучающий ультрафиолетовые лучи в возможно более широком диапазоне длин волн; другое условие — применение источника, обладающего возможно более мощным излучением. Поскольку свечение вещества возникает за счет поглощения энергии возбуждаемого света, то, чем большее количество энергии поглощает единица объема люминесцирующего вещества, тем интенсивнее будет свечение. Как показывает практика люминесцентного анализа, среди люминесцирующих веществ наиболее часто встречаются такие, люминесценция которых хорошо возбуждается ближними ультрафиолетовыми лучами с длиной волны больше 300-320 нм

Источники ультрафиолетовых лучей и светофильтры. Для возбуждения фотолюминесценции желательно использовать такие источники света, в которых полезное излучение составляет большую долю. Наиболее полно этому условию отвечают газоразрядные лампы, среди которых широкое применение получили ртутные лампы, изготовленные в виде трубки или сферы из специального стекла или кварца.

В качестве источника длинноволнового ультрафиолетового излучения обычно применяют лампы высокого давления, рассчитанные на работу от сети переменного тока. Эксплуатация ламп производится с приборами включения и в арматуре заводского изготовления Такие лампы удобны, когда надо возбудить люминесценцию больших поверхностей. Основная часть энергии этих ламп сосредоточена в видимой и ближней ультрафиолетовых областях.

Лампы высокого давления дают линейчатый спектр, то есть излучают в нескольких спектральных областях при отсутствии излучения в промежутках. Первой интенсивной линией в ультрафиолетовой области является линия 366 нм, затем идут более слабая линия 334 нм, интенсивная, но узкая линия 313 нм и серия слабых линий в границах от 303 до 248 нм.

Лампы сверхвысокого давления, у которых около 45% энергии приходится на ультрафиолетовую область, в отличие от предыдущих дают сплошной спектр (фон), над которым поднимаются отдельные пики максимумов, соответствующие примерно линиям излучения ламп высокого давления.

Коротковолновое излучение можно получить и при помощи ламп низкого давления, свечение которых возникает за счет возбуждения люминофора, покрывающего внутреннюю поверхность лампы. Такие лампы излучают в области 315-390 нм (максимум излучения 350 нм). Достоинством лампы является компактность, позволяющая использовать ее в разного рода переносных установках, работающих на постоянном токе или с небольшим дросселем от сети переменного тока. Интенсивность излучения лампы очень невелика, что позволяет вести с ее помощью только визуальное наблюдение.

В практике работы зарубежных музейных лабораторий популярностью пользуются лампы мощностью в 500 Вт, изготовленные из «черного» стекла. Благодаря стандартному цоколю эти лампы не требуют специальных монтировочных устройств. Получили широкое распространение и люминесцентные лампы-трубки. Изготовленные из того же стекла, они пропускают только ультрафиолетовую часть спектра. Будучи установленными по сторонам исследуемого произведения, эти лампы дают более равномерное освещение большой поверхности. Лампы-трубки имеют еще одно немаловажное преимущество: они работают без предварительного разогрева, и их можно включать сразу же после выключения, не делая перерыва для охлаждения, что значительно экономит время на операторскую работу.

Поскольку интенсивность свечения, вызываемого ультрафиолетовыми лучами, очень невелика и обнаружить его можно только в темноте, необходимо в процессе исследования исключить видимый свет рассмотренных источников ультрафиолетового излучения. Это легко осуществить с помощью специальных светофильтров, изготовленных из стекла, содержащего никель, кобальт и некоторые другие элементы. В ходе исследования светофильтр помещают между источниками света и объектом изучения. Наиболее удобны стандартные светофильтры марки УФС, предназначенные для выделения определенных зон ультрафиолетового спектра.

Наиболее широкое применение получило стекло марки УФС-3 (стекло, или фильтр Вуда). Лучший фильтр для зоны 390-320 нм, оно пропускает до 90 % излучения 366 нм и поглощает всю видимую область. Отечественная промышленность выпускает также фильтр УФС-6. Имея максимум пропускания в области 360 нм и выделяя ту же область 390-320 нм, он имеет лучшие оптические характеристики и технологические свойства. Стекло УФС-4 отличается от рассмотренных фильтров несколько большим поглощением в указанной области, но является более термостойким.

Так как в целом ряде случаев видимая люминесценция какой-либо наиболее интересной детали, например подписи, бывает очень слабой, даже незначительное количество пропускаемого стеклами УФС видимого фиолетового и красного света может оказать мешающее действие. Для улучшения условий наблюдения и фотофиксации в этих случаях используют дополнительные светофильтры, хорошо пропускающие лучи, соответствующие свечению интересующей детали и поглощающие фиолетовые и красные лучи, которые могут отражаться от объекта, забивая люминесценцию. Необходимо помнить, что такие фильтры сами не должны люминесцировать. Чтобы убедиться в этом, достаточно поместить выбранное стекло в зону действия источника ультрафиолетовых лучей.

Исследование живописи с помощью фильтрованных ультрафиолетовых лучей следует начинать через 5-10 минут после того, как в темном помещении включена лампа. Это время необходимо, чтобы лампа перешла в режим рабочего горения и чтобы глаза адаптировались в темноте. Если лампа сразу не включается, делают еще одно или несколько повторных включений. После того как лампу выключили, нельзя ее включать вновь, если она не остыла, на что требуется 10-15 минут. Включение неостывшей лампы может привести к ее порче.

Нужно помнить, что ультрафиолетовые лучи вредны для глаз. Достаточно несколько секунд посмотреть на открытую лампу (или закрытую светофильтром), чтобы получить воспаление, наступающее через несколько часов. Слабее действуют, но также вредны для глаз ультрафиолетовые лучи, отраженные от исследуемого предмета. Поэтому при работе с ультрафиолетовыми лучами желательно надевать очки с простыми или оптическими стеклами, значительно снижающими количество ультрафиолетовых лучей, попадающих в глаза.

Ультрафиолетовые лучи значительно повышают ионизацию воздуха, усиливая при этом выделение озона и окислов азота. Поэтому в помещении, где проводится работа с ультрафиолетовыми лучами, должен быть обеспечен усиленный обмен воздуха приточно-вытяжной вентиляцией. После окончания работы желательно активное проветривание рабочего помещения.

Как показали специальные исследования и почти вековая музейная практика работы с этим излучением, при этом не происходят ни ухудшения сохранности картин, ни изменения колорита.

Фотофиксация проводимых исследований. При анализе данных люминесцентного исследования нельзя полагаться лишь на субъективные оценки: наблюдения должны быть зафиксированы и выражены какими-либо объективными показателями. Только в этом случае можно сравнивать и сопоставлять между собой факты, отмеченные при изучении разных произведений. Характерным признаком видимой люминесценции является ее цвет. Однако визуальное определение цвета, как уже говорилось, крайне субъективно. Поэтому было бы целесообразным проведение спектрофотометрирования отдельных участков живописи, что позволило бы однозначно характеризовать окраску свечения. Из-за сложности снятия спектрофотометрических характеристик с большого количества разнородных участков, разбросанных на большой площади произведения, получил распространение менее точный, но более доступный способ фиксации люминесценции — ее фотографирование.

Видимая люминесценция фиксируется фотографически с помощью тех же фотокамер и на тех же фотоматериалах, которые используются при обычной черно-белой репродукционной съемке, поскольку люминесценция является видимым излучением. Однако при фотографировании необходимо соблюдать следующие условия. Из-за слабости свечения съемку нужно вести в темном помещении, а источник ультрафиолетового излучения должен быть экранирован одним из названных выше светофильтров, поглощающих всю видимую часть спектра. Так как не все попавшие на поверхность живописи ультрафиолетовые лучи ею поглощаются, часть их может, отразившись, попасть в объектив фотоаппарата и в силу значительно большей активности, чем свет люминесценции, отрицательно повлиять на качество негатива. Чтобы этого не случилось, перед объективом помещают фильтр, задерживающий ультрафиолетовые лучи, но беспрепятственно пропускающий свет люминесценции.

Для обычной съемки, без специального выделения люминесценции определенного цвета, рекомендуется использовать фильтры ЖС-4 толщиной 1,5-2 мм в комбинации с фильтром ЖС-11 или ЖС-12 толщиной 2-3 мм. Так как стекло ЖС-11 люминесцирует, его надо помещать после стекла ЖС-4 (то есть ближе к объективу). Правильный подбор заграждающих светофильтров имеет очень большое значение для выявления слабо различимых цветовых отличий люминесценции. При этом следует руководствоваться теми же правилами, что и при обычной фотографии. Как и во всех прочих случаях, при работе со светофильтрами желательно пользоваться каталогом цветного стекла, руководствуясь графиками, характеризующими их свойства.

Наводка на резкость и кадрирование изображения при съемке люминесценции ведутся по матовому стеклу в условиях естественного или искусственного освещения. После того как все подготовлено к съемке, исключают весь видимый свет и, если источники ультрафиолетового света находятся в рабочем состоянии, производят съемку.

Проявление негатива ведется в стандартном проявителе. При изготовлении фотоотпечатков нужно следить за тем, чтобы они правильно передавали характер свечения (рис. 61).



61. Б.Пассароти (?). Мадонна с младенцем и Иоанном Крестителем. Вторая пол. XVI в. Мягко отпечатанная фотография видимой люминесценции правильно передает характер свечения; более контрастный отпечаток делает очевиднее характер разрушения и тонировок

Если фотографируют целиком произведение или крупный фрагмент, его необходимо осветить двумя источниками света, расположенными на небольшом расстоянии от него (около 1 м) по обеим сторонам от фотоаппарата. При одностороннем освещении действие ультрафиолетовых лучей окажется слишком неравномерным и исказит характер свечения. Кроме того, осветители должны быть установлены таким образом, чтобы весь световой поток был направлен на фотографируемый объект и не попадал в объектив.

Экспозиция при съемке зависит от интенсивности люминесценции, чувствительности пленок, мощности источников ультрафиолетовых лучей, удаленности их от объекта съемки, фильтров на объективе. Обычно при фотографировании произведения среднего размера (1x0,7 м) с двумя ртутными лампами по 1000 Вт, находящимися на расстоянии 1-1,2 м от ближнего края картины, и фильтром УФС-6, на пленке чувствительностью 65 ед. ГОСТ, светофильтре на объективе ЖС-4 и диафрагме 22 экспозиция составляет 20-25 минут.

Нужно, однако, заметить, что съемка общего вида произведения не всегда бывает целесообразна. Как и в обычных условиях освещения, при съемке люминесценции гораздо эффективнее и богаче по информации оказываются макрофотографии или фотографии отдельных деталей.

Большую документальную ценность представляет цветная фотография люминесценции. Не говоря о том, что всю цветовую гамму свечения черно-белая фотография сводит к ахроматической шкале яркостей, некоторые участки, представляющие при визуальном наблюдении люминесценции достаточный контраст благодаря различию в цвете, на черно-белой фотографии могут оказаться практически трудно различимыми или вовсе неразличимыми. Источники света для возбуждения видимой люминесценции, их расположение по отношению к картине и увеолевые фильтры остаются теми же, что и при черно-белой съемке. Перед объективом фотокамеры целесообразнее поместить, чтобы не нарушать цветопередачу, бесцветное стекло БС-10 в комбинации со стеклом ЖС-3 или только стекло ЖС-3. Время экспозиции при съемке подбирается опытным путем. Как и при других видах фотосъемки, большое значение имеет цветное макрофотографирование деталей. На таких фотографиях цветные нюансы люминесценции воспринимаются значительно полнее.

Исследование в отраженных ультрафиолетовых лучах. Не все испускаемое источником ультрафиолетовое излучение поглощается исследуемой поверхностью и преобразуется в видимое свечение. Часть его отражается от объекта и может быть зафиксирована фотографически. Фотографирование живописи в отраженных ультрафиолетовых лучах является самостоятельным видом ее исследования, во многом дополняющим исследование в свете видимой люминесценции (рис. 62).



62. Фотография фрагмента росписи ц.Чуда архангела Михаила в Московском Кремле в свете видимой люминесценции, показывающая многочисленные разрушения живописи, и в отраженных ультрафиолетовых лучах, демонстрирующая технику исполнения пробелов (см. рис.14)

Для этой цели используют ту же пленку, что и для регистрации видимой люминесценции. Процесс фотографирования отличается от съемки видимой люминесценции лишь тем, что перед объективом фотокамеры помещают светофильтр, поглощающий весь видимый свет и пропускающий только ультрафиолетовые лучи. Источник света лучше не экранировать светофильтром, так как при этом неизбежно происходит ослабление ультрафиолетового излучения.

Наводка на резкость проводится при обычном освещении. Если фотографирование в ультрафиолетовых лучах осуществляется после фотографирования видимой люминесценции, никаких дополнительных манипуляций, кроме замены фильтра перед объективом и удаления фильтра с источника света, не требуется. Так как ультрафиолетовые лучи являются очень активными, экспозиция по сравнению с фотографированием в свете видимой люминесценции намного короче и составляет при описанных выше условиях съемки от 15 секунд до 1 минуты.

Разница в преломлении видимого света и ультрафиолетовых лучей не сказывается на резкости изображения даже при макросъемке. При достаточном диафрагмировании объектива (до 22) фотографии отличаются высокой степенью резкости изображаемых деталей. Использование обычных фотообъективов позволяет проводить подобные исследования только в зоне ближних ультрафиолетовых лучей. Поэтому целесообразнее всего при съемке пользоваться теми источниками света и светофильтрами, максимум излучения и пропускания которых лежит в этой области спектра. Более коротковолновые ультрафиолетовые лучи, отраженные от картины, не могут быть зафиксированы фотографически, так как они полностью поглощаются стеклянными линзами фотообъектива. Для работы в коротковолновой зоне требуются специальные объективы, изготовленные из кварца, однако такие объективы довольно дороги и труднодоступны для рядовой лаборатории.

Для того чтобы быть уверенным в чистоте исследования, осуществляемого с помощью ультрафиолетовых лучей, желательно все виды фотофиксации проводить с применением специальных индикаторов, представляющих собой небольшую алюминиевую пластинку с нанесенным на нее люминофором, закрепляемую на поверхности фотографируемого объекта в неответственном месте. Приемником отраженных ультрафиолетовых лучей кроме светочувствительных эмульсий могут служить электроннооптические преобразователи, имеющие сурьмяно- или кислородно-цезиевые катоды. Такие преобразователи обладают значительной чувствительностью в области 340-360 нм. При работе с этими приборами перед объективом помещают один из фильтров серии УФС, а поскольку фотокатод преобразователя обладает высокой чувствительностью к инфракрасной области спектра, целесообразно дополнительно поместить перед объективом фильтр СС-8, поглощающий часть этого излучения. Источник света используется тот же, что и при фотографировании в отраженных ультрафиолетовых лучах.

Обеззараживание с помощью УФ-ламп я помню с детства – в садике, санатории и даже в летнем лагере стояли несколько пугающие конструкции, которые светились красивым фиолетовым светом в темноте и от которых нас отгоняли воспитатели. Так что же такое на самом деле ультрафиолетовое излучение и зачем оно нужно человеку?

Пожалуй, первый вопрос, на который нужно ответить – что такое вообще ультрафиолетовые лучи и как они работают. Обычно так называют электромагнитное излучение, которое находится в диапазоне между видимым и рентгеновским излучением. Ультрафиолет характеризуется длиной волны от 10 до 400 нанометров.
Открыли его еще в 19 веке, и произошло это благодаря открытию инфракрасного излучения. Обнаружив ИК-спектр, в 1801 г. И.В. Риттер обратил внимание на противоположный конец светового диапазона в процессе опытов с хлоридом серебра. А затем сразу несколько ученых пришли к выводу о неоднородности ультрафиолета.

Сегодня его разделяют на три группы:

  • УФ-А излучение – ближний ультрафиолет;
  • УФ-Б – средний;
  • УФ-С – дальний.

Такое разделение во многом обусловлено именно воздействием лучей на человека. Естественным и основным источником ультрафиолета на Земле является Солнце. По сути, именно от этого излучения мы спасаемся солнцезащитными кремами. При этом дальний ультрафиолет полностью поглощается атмосферой Земли, а УФ-А как раз доходит до поверхности, вызывая приятный загар. А в среднем 10% УФ-Б провоцируют те самые солнечные ожоги, а также могут приводить к образованию мутаций и кожных заболеваний.

Искусственные источники ультрафиолета создаются и используются в медицине, сельском хозяйстве, косметологии и различных санитарных учреждениях. Генерирование ультрафиолетового излучения возможно несколькими способами: температурой (лампы накаливания), движением газов (газовые лампы) или металлических паров (ртутные лампы). При этом мощность таких источников варьируется от нескольких ватт, обычно это небольшие мобильные излучатели, до киловатта. Последние монтируются в объемные стационарные установки. Сферы применения УФ-лучей обусловлены их свойствами: способностью ускорять химические и биологические процессы, бактерицидным эффектом и люминесценцией некоторых веществ.

Ультрафиолет широко применяется для решения самых различных задач. В косметологии использование искусственного УФ-излучения используется прежде всего для загара. Солярии создают довольно мягкий ультрафиолет-А согласно введенным нормам, а доля УФ-В в лампах для загара составляет не более 5%. Современные психологи рекомендуют солярии для лечения «зимней депрессии», которая в основном вызвана дефицитом витамина D, так как он образуется под влиянием УФ-лучей. Также УФ-лампы используют в маникюре, так как именно в этом спектре высыхают особо стойкие гель-лаки, шеллак и подобные им.

Ультрафиолетовые лампы используют для создания фотоснимков в нестандартных ситуациях, например, для запечатления космических объектов, которые невидимы в обычный телескоп.

Широко применяется ультрафиолет в экспертной деятельности. С его помощью проверяют подлинность картин, так как более свежие краски и лаки в таких лучах выглядят темнее, а значит можно установить реальный возраст произведения. Криминалисты также используют УФ-лучи для обнаружения следов крови на предметах. Кроме того, ультрафиолет широко используется для проявления скрытых печатей, защитных элементов и нитей, подтверждающих подлинность документов, а также в световом оформлении шоу, вывесок заведений или декораций.

В медицинских учреждениях ультрафиолетовые лампы используются для стерилизации хирургических инструментов. Помимо этого, все еще широко распространено обеззараживание воздуха с помощью УФ-лучей. Существует несколько видов такого оборудования.

Так называют ртутные лампы высокого и низкого давления, а также ксеноновые импульсные лампы. Колба такой лампы изготавливается из кварцевого стекла. Основной плюс бактерицидных ламп – долгий срок службы и мгновенная способность к работе. Примерно 60% их лучей находятся в бактерицидном спектре. Ртутные лампы достаточно опасны в эксплуатации, при случайном повреждении корпуса необходима тщательная очистка и демеркуризация помещения. Ксеноновые лампы менее опасны при повреждении и отличаются более высокой бактерицидной активностью. Также бактерицидные лампы разделяют на озоновые и безозоновые. Первые характеризуются наличием в своем спектре волны длиной 185 нанометров, которая взаимодействует с находящимся в воздухе кислородом и превращает его в озон. Высокие концентрации озона опасны для человека, и использование таких ламп строго ограничено во времени и рекомендуется только в проветриваемом помещении. Все это привело к созданию безозоновых ламп, на колбу которых нанесено специальное покрытие, не пропускающее волну в 185 нм наружу.

Вне зависимости от вида бактерицидные лампы имеют общие недостатки: они работают в сложной и дорогостоящей аппаратуре, средний ресурс работы излучателя – 1,5 года, а сами лампы после перегорания должны храниться упакованными в отдельном помещении и утилизироваться специальным образом согласно действующим нормативам.

Состоят из лампы, отражателей и других вспомогательных элементов. Такие устройства бывают двух видов – открытые и закрытые, в зависимости от того, проходят УФ-лучи наружу или нет. Открытые выпускают ультрафиолет, усиленный отражателями, в пространство вокруг, захватывая сразу практически всю комнату, если установлены на потолке или стене. Проводить обработку помещения таким облучателем в присутствии людей строго запрещено.
Закрытые облучатели работают по принципу рециркулятора, внутри которого установлена лампа, а вентилятор втягивает в прибор воздух и выпускает уже облученный наружу. Их размещают на стенах на высоте не менее 2 м от пола. Их возможно использовать в присутствии людей, однако длительное воздействие не рекомендуется производителем, так как часть УФ-лучей может проходить наружу.
Из недостатков таких приборов можно отметить невосприимчивость к спорам плесени, а также все сложности утилизации ламп и строгий регламент использования в зависимости от типа излучателя.

Бактерицидные установки

Группа облучателей, объединенная в один прибор, использующийся в одном помещении, называется бактерицидной установкой. Обычно они достаточно крупногабаритные и отличаются высоким энергопотреблением. Обработка воздуха бактерицидными установками производится строго в отсутствие людей в комнате и отслеживается по Акту ввода в эксплуатацию и Журналу регистрации и контроля. Используется только в медицинских и гигиенических учреждениях для обеззараживания как воздуха, так и воды.

Недостатки ультрафиолетового обеззараживания воздуха

Помимо уже перечисленного, использование УФ-излучателей имеет и другие минусы. Прежде всего, сам ультрафиолет опасен для человеческого организма, он может не только вызывать ожоги кожи, но и сказываться на работе сердечно-сосудистой системы, опасен для сетчатки глаза. Кроме того, он может вызывать появление озона, а с ним и присущие этому газу неприятные симптомы: раздражение дыхательных путей, стимуляция атеросклероза, обострение аллергии.

Эффективность работы УФ-ламп достаточно спорная: инактивация болезнетворных микроорганизмов в воздухе разрешенными дозами ультрафиолета происходит только при статичности этих вредителей. Если микроорганизмы двигаются, взаимодействуют с пылью и воздухом, то необходимая доза облучения возрастает в 4 раза, чего не может создать обычная УФ-лампа. Поэтому эффективность работы облучателя рассчитывается отдельно с учетом всех параметров, и крайне сложно подобрать подходящие для воздействия на все типы микроорганизмов сразу.

Проникновение УФ-лучей относительно неглубокое, и если даже неподвижные вирусы находятся под слоем пыли, верхние слои защищают нижние, отражая от себя ультрафиолет. А значит, после уборки обеззараживание нужно проводить еще раз.
УФ-облучатели не могут фильтровать воздух, они борются только с микроорганизмами, сохраняя все механические загрязнители и аллергены в первозданном виде.

Глаз наряду с кожей и системой иммунитета - основные критические органы при действии ультрафиолетового излучения (УФ-излучения) на человека. Следует всегда помнить, что для глаза человека ультрафиолетовое излучение - только повреждающий фактор.

Прямые солнечные лучи практически не попадают на роговицу при нахождении Солнца в зените. Но в связи с многократными отражениями существенная доля ультрафиолетового излучения все же достигает глаза (10-30%, в зависимости от внешних условий).

Ультрафиолетовое излучение в зависимости от длины волны лучей подразделяется на три диапазона: УФ-А, УФ-В и УФ-С. Установлено: чем короче длина волны, тем опаснее ультрафиолетовое излучение.

Самый коротковолновый диапазон ультрафиолетового излучения - УФ-С. К счастью, лучи УФ-С диапазона не достигают поверхности Земли, так как полностью поглощаются озоновым слоем атмосферы.

Интенсивность ультрафиолетового излучения УФ-В диапазона (280-315 нм) сравнительно невелика (лучи этого диапазона частично задерживаются атмосферой), однако оно обладает сильным повреждающим действием. В малых дозах ультрафиолетовое излучение УФ-В диапазона вызывает потемнение кожи, называемое загаром; в больших – солнечный ожог, что приводит к увеличению риска рака кожи.

Слишком интенсивное воздействие данных ультрафиолетовых лучей на глаза вызывает фотокератит (солнечный ожог роговицы и конъюнктивы, сопровождающийся сильной болью и воспалением), который может привести к временной потере зрения (сильную степень фотокератита часто называют «снежной слепотой »), а также другие осложнения, связанные с нарушением нормального состояния роговицы и века. Риск фотокератита возрастает в высокогорье, а также на снегу, если не защищать глаза от ультрафиолетового излучения. Отметим, что воздействие ультрафиолетового излучения УФ-В диапазона ограничивается поверхностью глаза, внутрь глаза эти ультрафиолетовые лучи практически не проникают.

Ультрафиолетовое излучение диапазона УФ-А (315-390 нм), находящегося рядом с видимым спектром, само по себе менее опасно, чем излучение УФ-В диапазона. Однако эти ультрафиолетовые лучи, в отличие от УФ-В лучей, проникают глубоко внутрь глаза и оказывают повреждающее действие на такие важные структуры глаза, как хрусталик и сетчатка.

Воздействие ультрафиолетового излучения УФ-А диапазона на глаза в течение длительного времени приводит к увеличению риска ряда опасных заболеваний глаз, включая катаракту и дегенерацию макулы, которая считается основной причиной слепоты в старческом возрасте.

В последние годы специалисты большое внимание уделяют синим лучам видимого спектра (около 400 нм), которые непосредственно примыкают к длинноволновой части УФ-диапазона, полагая, что длительное воздействие этих высокоэнергетичных лучей видимого спектра на глаза также небезопасно, поскольку они глубоко проникают внутрь глаза и воздействуют на сетчатку.

Поэтому так важно защищать глаза от ультрафиолетового излучения. Солнцезащитные очки рекомендуется носить для уменьшения суммарной дозы ультрафиолетового излучения практически всем , кто длительное время проводит на открытом воздухе . Это связано с тем, что любое воздействие ультрафиолетовых лучей на глаза небезопасно, поскольку полученные в течение всей жизни дозы ультрафиолетового облучения накапливаются и увеличивают риск заболеваний глаза. Особенно опасно воздействие ультрафиолетового излучения на афакичный глаз (глаз с удаленным хрусталиком). У лиц с афакией вероятность повреждения сетчатки резко возрастает. Учитывая большую распространенность хирургических операций по поводу удаления катаракты, сетчатка может быть названа критической структурой при действии ультрафиолетового излучения на глаз.

Повреждающее действие ультрафиолетовых лучей на глаза зависит от ряда факторов :

Длительность пребывания на открытом воздухе.

Географическая широта места нахождения. Наиболее опасна экваториальная зона.

Высота над уровнем моря. Чем выше, тем опаснее.

Время дня. Самое опасное время с 10-11 часов утра до 14-16 часов.

Большие поверхности воды и снега очень сильно отражают солнечные ультрафиолетовые лучи.

Некоторые медикаменты (тетрациклин, диуретики, транквилизаторы и некоторые др.) увеличивают восприимчивость к воздействию ультрафиолетового излучения (за советом обратитесь к врачу).

Облачность не влияет существенно на интенсивность ультрафиолетового излучения, поскольку ультрафиолетовые лучи могут проникать через облака.

Таким образом, постоянное действие ультрафиолетового излучения на глаза оказывает вредное воздействие на поверхность глаза и его внутренние структуры. Более того, негативные эффекты обладают способностью к накоплению: чем дольше глаза подвергаются повреждающему воздействию ультрафиолетового излучения, тем выше риск развития патологий структур глаза и возникновения возрастных заболеваний органа зрения.

15 февраля 2012 в 01:30

Пациент с искусственным хрусталиком начал видеть ультрафиолет. Как?

  • Биотехнологии

Сегодня на slashdot появился пост некоего автора, который после имплантирования искусственного хрусталика начал видеть в ультрафиолетовом диапазоне, точнее примерно 365 нм - это при средней верхней границе для обычного человека в 400нм. Меня заинтересовала эта тема, и я решил выяснить, что там происходит, и не маячит ли тут призрак Криса Картера .


Итак, небольшой экскурс в офтальмохирургию. Во время второй мировой войны некий английский офтальмолог, оперировавший пилотов, сбитых в воздушном бою, выяснил, что плексиглас фонаря самолета, попавший в глаз, не отторгается тканями. Мало того, он травматически меняет форму роговицы - а поскольку она отвечает за ~70% рефракции в глазном яблоке (остальное приходится на хрусталик), то изменение ее формы приводит к значительным изменениям рефракции глаза. Естественно, тут же пришла идея лечить близорукость уменьшением оптической силы роговицы путем ее надрезания и уменьшения кривизны. По сегодняшним меркам это напоминает трепанацию черепа каменным ножом (и без точнейших замеров и расчетов по точности это примерно то же самое) - но это было лучше чем ничего.

Потом догадались, что если плексиглас не отторгается, то его можно ставить туда намеренно… предварительно обточив до формы линзы. Зачем? Потому что годам к 45-50 естественный хрусталик а) становится жестким и теряет возможность аккомодации (что приводит к невозможности перефокусировать зрение), и б) некоторое время спустя мутнеет, в результате чего зрение медленно падает почти до нуля. Так вот, его можно заменить.

Поначалу вместо естественного хрусталика ставились жесткие линзы, которые, вполне естественно, вызывали массу неприятных ощущений, повреждали внутренние ткани, итп. Сейчас в общих чертах процедура выглядит так. Я буду использовать англоязычную терминологию в транслите.

1. Пациент лежит под микроскопом. Веки фиксируются в открытом положении, в глазной нерв ставится анестезия.

2. Сбоку глаза, примерно на границе радужной оболочки, с использованием сверх-острого скальпеля делается небольшой надрез, порядка 2мм в длину.

3. Хрусталик находится внутри капсулярной сумки. Внутрь глаза через этот разрез проникает инструмент, которым эта сумка надрезается.

4. Внутрь сумки через эти два разреза проникает щуп факоэмульсификатора. Этот девайс а) ультразвуком размельчает затвердевший естественный хрусталик, и б) одновременно высасывает размельченные куски. Тут важно не порвать капсулярную сумку - это чревато массой проблем и осложнений, а также не задеть радужную оболочку. Она по консистенции напоминает промокашку, и ее повреждение ведет к проблемам со зрением - к примеру, пациент может начать видеть ореолы вокруг точечных источников света.

5. После факоэмульсификации через микрошприц в капсулярную сумку закачивается вискоэластичный гель - чтобы эта сумка не сдулась, т.к. хрусталика там больше нет.

6. Фанфары и барабаны - имплантируем линзу. Сама линза сделана из материалов вроде силикона, и ее можно сложить. Именно поэтому достаточно разреза всего в 2мм, хоть линза и заметно больше. Она поставляется в картридже, который вставляется в шприц, который аккуратно вставляется через разрез в глаз, далее в капсулярную сумку, и попросту выдавливается туда. Там она разворачивается и принимает свой первоначальный вид, в чем ей помогает хирург. Через пол-минуты она готова.

7. Если линза асферическая, то она может заодно помочь и с астигматизмом. В таком случае ее надо довернуть на нужный угол. Впоследствии ткани глаза срастутся через определенные выступы на внешней, оптически нефункциональной части линзы, и зафиксируют ее от поворота. Нередки случаи, когда линза все же проворачивается бесконтрольно - это исправляется повторной операцией.

8. Глаз увлажняется, закрывается повязкой. Надрез заживет сам. Пациент отправляется домой.

Такая операция может стоить от 3 до 20 тысяч долларов в зависимости от разных причин. Период восстановления до снятия повязки занимает сутки-двое. Да, в это иногда трудно поверить, но в нашей практике были случаи, когда 70-летние бабушки получали зрение в 80% на следующий день после операции… никогда сам не видел, но, как говорят, люди начинают плакать от счастья.

А теперь по теме. Почему тот пациент начал видеть УФ? Потому, что хрусталик обычно поглощает УФ лучи, не допуская их до сетчатки. Старые линзы изготавливались из материалов, которые зачастую спокойно пропускали УФ, и пациенты начинали видеть в УФ диапазоне. Вот только длилось это недолго, т.к. сетчатка повреждается ультрафиолетом. Поэтому в новых линзах присутствуют добавки, которые отфильтровывают УФ лучи. Тому пациенту была установлена линза Crystalens, которая по всей видимости содержит меньшее количество таких присадок (или вообще их не содержит), отсюда имеем результат. Шеф как-то оперировал одного пациента, которому по разным причинам на одном глазу была показана одна линза, а на другом - другая, и коэффициент поглощения УФ у них был разный. Пациент потом был весьма удивлен, что одним глазом он может видеть УФ, а другим нет. Его это не беспокоило, и все остались весьма довольны.

P.S. Материал был написан после консультации с моим шефом, офтальмохирургом с более чем 10-летним стажем. Если в тексте присутствуют ошибки - я полностью принимаю всю ответственность за кривой перевод, и прошу указать на оные.

P.P.S. Чем я таким занимаюсь, будучи программистом, чтобы писать такие тексты? Хороший вопрос. Наша компания консультирует других по поводу расчетов правильных линз для каждого конкретного глаза… а я занимаюсь реализацией расчетного софта. Невероятно интересная тема, и весьма вознаграждающая, особенно когда нам пишут про бабушек и дедушек, получивших орлиное зрение.

Здоровья вам, берегите глаза:)

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

Подтипы

Деградация полимеров и красителей

Сфера применения

Чёрный свет

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

Ультрафиолет в реставрации

Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
  6. А. Г. Молчанов


Понравилась статья? Поделитесь с друзьями!