Основы спинтроники. Жесткие диски и спинтроника

Ученые из IBM Research и ведущего европейского образовательного и научно-исследовательского центра ETH Zurich впервые в истории получили изображения формирования стабильной спиновой спирали в полупроводнике.

­
­
­
­

«Обычно подобные спины электронов быстро меняют и теряют свою ориентацию. Но нам впервые удалось найти способ выравнивания их свойств в регулярный цикл смены спинов»
­
­
­
­
­
­

Немного о спинтронике
Спинтроника (или спиновая электроника) - достаточно молодая область современной физики, привлекающая многих исследователей многообещающими практическими применениями.
Ее отличие от традиционной электроники заключается в том, что если в обычном электрическом токе перемещаются заряды, то в электронике нового поколения перемещаются спины электронов.
Спин электрона (собственный момент импульса) − это внутренняя характеристика электрона, имеющая квантовую природу и не зависящая от движения электрона. Спин электрона может находиться в одном из двух состояний − либо «спин-вверх» (направление спина совпадает с направлением намагниченности магнитного материала), либо «спин-вниз» (спин и намагниченность разно-направлены).


«Вращение» электрона и его верхней и нижней ориентации кодирует логические биты в системе. При кодировании битов ученые предлагают ориентироваться на физическое пространство, в котором находится электрон. Электрон, ось которого направлена условно вверх, принимают за логическую единицу, а электрон, ось которого направлена условно вниз - за логический ноль.

В чем состоит миссия спинтроники?
В ближайшие десять-пятнадцать лет кремниевые процессоры достигнут предела своих возможностей. Поэтому уже сейчас ученые ищут новые физические принципы, на которых будут построены быстродействующие устройства с низким энергопотреблением и тепловыделением.
В спинтронных устройствах переворот спина практически не требует затрат энергии, а в промежутках между операциями устройство отключается от источника питания. Если изменить направление спина, то кинетическая энергия электрона не изменится. Это означает, что тепла почти не выделяется.
Специалисты выделяют три главных направления развития спинтроники: квантовый компьютер, спиновый полевой транзистор и спиновая память.
По словам ученых из IBM, электроны очень быстро меняют спины – на переключение тратится около 100 пикосекунд (1 пикосекунда – одна триллионная доля секунды). И в этом заключается основная проблема – 100 пикосекунд недостаточно, чтобы микросхемы успели зафиксировать изменение состояния в системе.

Несмотря ни на что

­
­

Исследователи из IBM разработали метод синхронизации электронов, увеличив время спина в 30 раз - до 1 наносекунды (что равняется циклу микропроцессора с частотой 1 Гигагерц).
­

­
­
­
­
­

Внимание ученых привлек ранее не описанный физиками факт – при вращении электронов в полупроводниках их спины перемещаются на десятки микрометров, при этом синхронно вращаясь, подобно вальсирующим парам.
­
­
­

«Если в начале круга в вальсе лица всех женщин обращены в одну сторону, то уже через некоторое время вращающиеся пары окажутся смотрящими в разных направлениях.
Теперь же мы получили возможность зафиксировать скорость вращения танцоров и привязать ее к направлению их перемещения. Получается идеальная хореография – лица всех танцующих женщин в определенной области площадки направлены в одну сторону».

В лабораториях IBM Research ученые использовали ультракороткие лазерные импульсы для наблюдения за перемещениями тысяч спинов электронов, которые были запущены во вращение одновременно в пределах сверхмалой области.
Исследователи IBM применили методику сканирующего микроскопа с временным разрешением и получили изображения синхронного «вальса» спинов электронов. Синхронизация вращения спинов электронов позволила наблюдать их перемещение на расстояния более 10 микрон (одной сотой миллиметра), что увеличило возможность использования спина для обработки логических операций – быстрой и экономной с точки зрения потребления энергии.
­

Причиной синхронного движения спинов является так называемое спин-орбитальное взаимодействие, физический механизм, который связывает спин с движением электрона. Экспериментальный полупроводниковый образец был изготовлен на основе арсенида галлия (GaAs) учеными из ETH Zurich. Арсенид галлия, полупроводник группы III/V, широко используется в производстве таких устройств, как интегральные микросхемы, инфракрасные светодиоды и высокоэффективные солнечные элементы.

Выход спиновой электроники из лабораторий на рынок по-прежнему остается чрезвычайно сложной задачей. Сегодняшние исследования осуществляются при очень низких температурах, при которых спины электронов минимально взаимодействуют с окружающей средой. В частности, описываемая здесь исследовательская работа проводилась учеными IBM при температуре 40 градусов Кельвина (-233 по Цельсию или -387 по Фаренгейту).
Но, в любом случае, новое открытие дает контроль над движением магнитных «зарядов» в полупроводниковых устройствах и открывает новые возможности и перспективы для создания малогабаритной и энергосберегающей электроники.

Теги: Добавить метки

В течение одного лишь февраля 2013 года в инфотехнологических СМИ набрался целый букет весьма примечательных новостных сообщений о достижениях в области спинтроники. То есть о новой, принципиально иной разновидности электронных устройств, опирающихся в работе не на электрический заряд частиц-переносчиков, а на их спин — внутренне присущее частицам квантовое свойство, освоение которого сулит подлинную революцию в компьютерных технологиях.

Вот как, навскидку, выглядят лишь некоторые из последних известий спинтроники.

Два германских университета, Майнца и Кайзерлаутерна, успешно завершившие исследования по созданию чипа спинтронной памяти на основе так называемых компаундов Гейслера, получили от государства солидный грант в размере 3,8 миллиона евро — для скорейшего доведения наработанных технологий до стадии массового промышленного производства .

Ученые британского университета Кембридж сумели объединить в своей разработке два наиболее передовых направления исследований в области электроники — 3D-чипы и спинтронику . Благодаря этому им удалось создать и продемонстрировать прототип «первого в мире спинтронного 3D-процессора» (кавычки тут необходимы, так как на самом деле это далеко еще не полноценный процессор, однако творческие успехи исследователей сомнению не подлежат).

Специалистам Геттингенского университета — опять-таки в Германии — удалось придумать и синтезировать такую молекулу искусственного органического вещества, которая способна играть роль стабильной ячейки спинтронной памяти . При данном уровне миниатюризации спинтронное запоминающее устройство на основе недорогих органических материалов позволит хранить примерно петабайт данных (тысячу терабайт, или миллион гигабайт) на чипе размером около дюйма.

Если в этот же пакет новостей добавить еще несколько совсем недавних и очень впечатляющих — об успехах других исследовательских центров США, Японии и прочих стран, уже вплотную приблизивших спинтронные технологии к фазе промышленного производства, то становится очевидно: и вправду грядут большие перемены.

Ну а чтобы более отчетливо представлять, какого рода инфотехнологии приходят на смену обычной полупроводниковой электронике, имеет смысл чуть подробнее рассмотреть особенности спинтроники. Почему эта технология столь привлекательна, каковы труднейшие проблемы в ее освоении и как, наконец, удается эти проблемы обходить-преодолевать…

⇡ Естественная альтернатива

Среди специалистов нередко можно услышать мнение, согласно которому очевидные задержки с приходом давно ожидаемой спинтроники в нашу жизнь вызваны в первую очередь на редкость стабильным и успешным прогрессом в области традиционных полупроводниковых технологий. То есть время новой техники не настало лишь потому, что и старая еще хоть куда.

Эмпирическим законом Мура, как известно, установлено никак не доказуемое, но исправно работающее вот уже свыше полувека правило. Число элементов типовой микросхемы — проще говоря, производительность чипов — стараниями ученых и инженеров исправно продолжает удваиваться примерно каждые полтора года.

Почему так происходит, неизвестно. Но всем понятно, что бесконечно это продолжаться не может. Ибо нынешняя конструкция микросхем быстро движется к своим физическим пределам. Или иначе, все известные проблемы технологии — с литографией, материалами, охлаждением — дружно приближаются к такому состоянию, когда их преодоление не то чтобы абсолютно невозможно, но оказывается слишком уж дорогим и неэффективным.

Короче говоря, с одной стороны, явно требуется нечто иное. А с другой — давно уже есть понимание, как именно это иное почти наверняка будет выглядеть.

Наличие у частиц материи особого свойства под названием спин — обычно иллюстрируемого аналогиями с осью вращения волчка или двумя полюсами магнитной стрелки — было установлено еще на заре рождения квантовой механики. А поскольку квантовый спин электрона принимает лишь два возможных значения, условно именуемых «спин-вверх» и «спин-вниз», в этой конструкции довольно давно был замечен и весьма многообещающий инфотехнологический потенциал. По сути, в природе имеется уже готовый переносчик двоичной информации, кодирующий в направлении спина либо 1, либо 0.

И самое замечательное, что речь идет о том же самом электроне, который изначально фигурирует в основах и сердцевине микроэлектронной революции. Практически все полупроводниковые микросхемы построены на транзисторах, главную роль в работе которых играют перемещения электронов. Точнее, перемещения электрических зарядов, присущих электронам. В то время как спин электрона — открытый почти 90 лет назад — игнорируется в полупроводниковой индустрии, по сути дела, полностью...

Однако раз уж все согласны, что закон Мура должен действовать и дальше, то в качестве самой естественной и при этом более прогрессивной альтернативы обычной микроэлектронике ныне выступает технология под общим названием spintronics. Имя это чаще всего расшифровывают как SPIN TRansport electrONICS, то есть «электроника на основе переноса спина».

Масса достоинств и преимуществ новой технологии возрастает день ото дня. Среди важнейших — быстрота и экономичность. Ведь спин электрона можно переключать из одного состояния в другое за много меньшее время, чем требуется на перемещение заряда по схеме, а делается это с куда меньшими затратами энергии. Плюс к этому при перебросах спина не меняется кинетическая энергия носителя, значит, почти не выделяется тепло.

В совокупности все эти особенности технологии позволяют создавать на базе спина и спиновых токов (потоков электронных спинов единой полярности) существенно новые транзисторы, ячейки логики и памяти, которые заменят собой обычные транзисторы в интегральных микросхемах. А это, в свою очередь, позволит и далее придерживаться тенденции к миниатюризации электроники.

Попутно с развитием этой технологии выясняется, что спинтроника также открывает пути и к созданию совершенно новых типов устройств. Таких, к примеру, как светоизлучающие диоды (LED), порождающие свет с левой или правой круговой поляризацией, что очень полезно для приложений в области защиты, кодирования и уплотнения оптоэлектронных коммуникаций. Если заглянуть в будущее чуть-чуть подальше, выяснится, что уже наметилось появление таких спинтронных устройств, которые можно использовать как кубиты, то есть базовые элементы конструкции в квантовых компьютерах.

Но для того, чтобы спинтронная революция в полупроводниковой индустрии произошла, надо найти оптимальные компоненты технологии, поисками которых исследователи заняты вот уже второй десяток лет. Обычно тут принято выделять три главные задачи:

  1. способы для инжекции (то есть «впрыска») спиновых состояний в схему;
  2. манипуляции со спином внутри схемы;
  3. детектирование спиновых состояний электронов после обработки.

Все эти задачи крайне желательно решить в условиях полупроводниковой среды, поскольку данные материалы, скорее всего, в обозримом будущем и далее будут оставаться главной физической базой для электроники.

Манипуляции со спином электронов считаются делом относительно простым и бесхитростным (коль скоро спин — словно стрелка компаса — очень чутко реагирует на переключение магнитного поля). Но вот создание надежных инжекторов и детекторов для хрупких спинов в условиях практичных приложений для массового производства — это все еще целый комплекс гигантских проблем.

⇡ Полигон и взлетная площадка

Дабы общее положение дел в спинтронике стало яснее, необходимо подчеркнуть, что манипуляции спином электронов — это большой и развитый бизнес уже сегодня. Но только за пределами полупроводниковой индустрии. Фактически спинтронные устройства на металлической основе сейчас встречаются повсеместно — в жестких дисках почти любого компьютера на планете.

В конце 1988 года было обнаружено, что поток спин-поляризованных электронов в слоеной конструкции покрытия (два тонких слоя ферромагнетика, разделенные слоем немагнитного металла), можно ощутимо изменять, перебрасывая на противоположную полярность внешнего магнитного поля. Этот эффект, получивший название GMR, или гигантское магнетосопротивление, позволил создавать намного более чувствительные магнитные головки и, соответственно, уменьшать размеры магнитных доменов, кодирующих двоичные данные на пластинах. Иначе говоря, значительно увеличилась информационная емкость накопителей на жестких магнитных дисках.

Манипулирование спиновыми характеристиками — перенос электронных спинов между двумя металлами — также лежит в основе MRAM, магниторезистивной памяти произвольного доступа. То есть нового типа компьютерных запоминающих устройств, сохраняющих информацию без электропитания.

Физика работы MRAM основана на эффекте, отчасти напоминающем GMR и известном как туннельное магнетосопротивление (TMR). Здесь два слоя ферромагнитного металла разделены тонким слоем изолирующего материала, такого как оксид алюминия или оксид магния.

Если в GMR происходит медленное — за счет классической диффузии — перемещение спин-поляризованных электронов с одного ферромагнитного слоя на другой, то в конструкции TMR имеет место сугубо квантовый туннельный переход через разделяющий слой (классически запрещенный процесс, при котором частица проходит через потенциальный барьер, превышающий ее кинетическую энергию).

Такого рода устройства именуются магнитными туннельными переходами, или MTJ (magnetic tunnel junctions). Главная фишка эффекта в том, что туннелирование — а значит, и перенос спина через барьер — может происходить лишь в случае «правильной» ориентации спина частицы.

Хотя эффект спин-зависимого туннелирования впервые был продемонстрирован еще в 1975 году, как и большинство квантовых феноменов, он работал лишь при очень низких температурах. То, что это возможно и при комнатной температуре, удалось показать лишь к 1995-му.

Поначалу, правда, выравненные спины частиц в ферромагнитных слоях удавалось переключать с параллельного на антипараллельное состояние лишь для 12-18% электронов, чего для практических устройств еще далеко не достаточно. Однако уже к концу 1990-х усиленные мозговые штурмы разработчиков и надлежащие финансовые вложения привели к решению задачи: нужное соотношение удалось повысить до 70%.

Более того, к середине 2000-х годов новейшие технологии, обеспечивающие атомной толщины плоские интерфейсы между металлическими и оксидными слоями, позволили достичь значений TMR порядка 400% — благодаря особому эффекту когерентного туннелирования.

Итогом же стало то, что массивы памяти MRAM, основанные на туннельном магнетосопротивлении, уже до конца десятилетия были запущены в производство и продажу. Так что в недалеком будущем, по мере удешевления технологии, MRAM позволит делать такие бытовые компьютеры, которые способны включаться-выключаться мгновенно. Благо состояние системы будет храниться в быстрой и энергонезависимой памяти.

⇡ Инжекторы и детекторы

Подробности в предыдущем рассказе о спинтронной памяти понадобились вот по какой причине. Ключевые моменты этой истории — от особенностей технологии до общей траектории ее преображения из демообразца в продукт массового производства — очень похожи и на путь спинтроники в полупроводниковые чипы.

Важнейшее, пожалуй, отличие в том, что эффект TMR основан на большом количестве электронов, которые имеют нужное состояние спина и сохраняют его при переходах через интерфейсы между ферромагнитными металлами и изолирующими металлическими оксидами.

Ну а для того, чтобы стали возможными полупроводниковые спинтронные устройства, требуется достичь такого же по сути поведения электронов — но только через интерфейсы, сформированные между полупроводником и материалом, выступающим в роли спин-инжектора или спин-детектора.

Поскольку кремний и арсенид галлия — это два наиболее широко используемых в индустрии полупроводника, то главная задача разработчиков — отыскать такие спинполяризованные материалы (вещества, в которых большинство электронных спинов выравнено в заданном направлении), которые можно было бы с ними эффективно комбинировать.

История долгих и трудных поисков материалов подобного рода пока еще далеко не дописана. Конечно, здесь можно было бы рассказать о нескольких разных подходах, с тем или иным успехом применяемых во множестве лабораторий мира для решения этой труднейшей задачи. Но лучше все же, наверное, пока эту тему пропустить.

Потому что к концу первого десятилетия XXI века итог всех изысканий по внедрению спинтроники в индустрию микросхем выглядел примерно так. Несмотря на множество локальных успехов, в целом никто так и не сумел отыскать подходящих (ферромагнитных полупроводниковых) материалов, которые работали бы при комнатной температуре и подходили бы для использования в практичных устройствах полупроводниковой спинтроники...

Но, несмотря на столь унылый результат, это совершенно не означает, что прогресс забуксовал и остановился.

⇡ Компаунды Гейслера

Чрезвычайно важное для истории спинтроники событие произошло летом 2010 года, когда через журнал Nature было обнародовано открытие физиков из германского университета Майнца. Этот университет с давних пор имеет репутацию одного из главных мировых центров по исследованиям так называемых компаундов Гейслера (о специфических свойствах данных материалов рассказ впереди).

Благодаря же новому открытию ученых, обнаруживших в компаундах Гейслера совершенно особое квантовое состояние материи — именуемое «топологический изолятор», — попутно открылись и новые замечательные перспективы для развития спинтронных технологий. Причем не только в области устройств памяти, но и для полупроводниковых микросхем, и для новых батарей электропитания, и для многих других заманчивых приложений.

Что же это такое, материалы Гейслера?

Прежде всего, уместно отметить, что вообще-то немецкую фамилию Heusler следует читать как Хойслер. Однако по многовековой российской традиции иностранные имена и названия произносятся у нас на собственный манер. Поэт, известный в мире как Хайне, у нас именуется Гейне. Залив Хадсон мы называем Гудзон. По той же причине инженера-ученого Фридриха Хойслера, в начале 1900-х годов открывшего необычные свойства у сплавов обычных металлов, в России принято и сегодня именовать по старинке — Гейслером.

На протяжении вот уже многих лет материалы Гейслера находятся в фокусе исследований ученых по следующей причине. Являясь относительно простыми химическими соединениями из трех базовых элементов, компаунды Гейслера могут обладать широким спектром разнообразных физических характеристик.

Так, известнейшая специфическая особенность этих компаундов в том, что они демонстрируют характеристики иные, нежели естественно ожидать от элементов, их составляющих. Первый компаунд Гейслера, например, был сделан из немагнитных элементов — меди, марганца и алюминия. Однако их сплав вида Cu 2 MnAl ведет себя как ферромагнит даже при комнатной температуре. Аналогично, когда комбинируются три металла в иной комбинации, в результате может получаться полупроводник.

Если чуть подробнее, то компаундами Гейслера называют материалы с очень общей структурой состава, выражаемой формулой X2YZ (где X, Y это переходные металлы, а Z — элементы из III-V групп таблицы Менделеева). Поскольку каждый из элементов X, Y, Z может быть выбран примерно из 10 различных кандидатов, общее число всевозможных материалов Гейслера грубо оценивают цифрами порядка 1000 (плюс к этому, имеются так называемые «полугейслеры», описываемые формулой XYZ и тоже обладающие спектром интересных свойств).

Благодаря несложной и гибкой структуре в основе, желательные свойства компаундов Гейслера могут быть настроены путем подстройки их композиционного состава. Иначе говоря, у исследователей имеется весьма широкий класс веществ, простых в изготовлении и зачастую состоящих из относительно недорогих общедоступных компонентов, но позволяющих при этом получать материалы с весьма экзотическими ферромагнитными или полупроводниковыми свойствами.

Благодаря этому, в частности, компаунды Гейслера ныне считаются очень перспективным материалом для изготовления солнечных батарей и других термоэлектрических генераторов, способных напрямую преобразовывать тепло в электричество. Например, без подвижных деталей конструкции вырабатывать электроэнергию от процессов побочного тепловыделения машин и приборов.

Когда же в середине 2000-х годов сначала теоретики, а вскоре и экспериментаторы открыли в природе совершенно новое состояние материи под названием топологический изолятор , то через некоторое время выяснилось, что и тут компаунды Гейслера оказываются в высшей степени полезным материалом.

На протяжении последних лет шести-семи топологические изоляторы, или кратко ТИ, являются очень горячей темой исследований в области твердотельной физики и материаловедения. Главным характерным свойством ТИ считается тот факт, что, хотя данные материалы реально являются изоляторами или полупроводниками, однако их поверхности ведут себя как проводящий ток металл — но металл далеко не обычный. Словно в сверхпроводниках, в ТИ электроны движутся по поверхностям без взаимодействия со своим окружением — поскольку они находятся в неведомом прежде квантовом состоянии «топологической защиты».

При этом в резком контрасте с физикой сверхпроводников находится другое свойство ТИ. В топологических изоляторах на поверхности имеется не один, а два не взаимодействующих друг с другом тока — по одному на каждое из направлений спина, которые текут в противоположных направлениях.

И понятно, наверное, что два этих устойчивых спиновых тока, на которые не действуют дефекты структуры или загрязнения в материале, как будто созданы для того, чтобы их применяли в спинтронике (а также и в прочих приложениях квантовой информатики — вроде квантовых компьютеров).

Так что уже из этих соображений можно представить, сколь мощный интерес и даже, можно сказать, бурное возбуждение проявились в научном сообществе, когда выяснилось, что именно такими замечательными свойствами ТИ обладают давно исследуемые и осваиваемые учеными материалы Гейслера.

Причин для подобного возбуждения называет сразу несколько.

Во-первых, интерес к компаундам Гейслера вызван их возможностями проявлять, как это называют специалисты, «полуметаллический» характер. Термином «полуметаллический характер» обозначают то, что данный материал способен одновременно обеспечивать металлическое поведение электронов с одним спиновым компонентом (например, для электронов со «спином-вверх») и изолирующее поведение для другой спиновой ориентации (типа «спин-вниз»). При этом материалы могут демонстрировать уровень спин-поляризации 100%, что делает их идеальными кандидатами для спин-поляризаторов (инжекторов) или же, наоборот, для спин-детекторов.

Во-вторых, компаунды Гейслера — это не просто весьма большой класс материалов, насчитывающий свыше 1000 представителей. Он содержит в себе — согласно расчетам — свыше 50 компаундов, имеющих отчетливые признаки топологических изоляторов.

Отсюда же следует и «в-третьих»: благодаря такому разнообразию, теперь становится возможным не только подбирать желательные, но и разрабатывать совершенно новые физические эффекты. Уже вполне ясно, что, поскольку эти материалы состоят из трех элементов, они заведомо могут предлагать широкий диапазон и других интересных свойств в дополнение к квантовому состоянию топологической защиты поверхности.

В частности, теперь становится возможным комбинировать в одном материале сразу несколько необычных квантовых состояний, когда, например, сверхпроводимость и топологическая поверхность взаимодействуют друг с другом. А это открывает путь к совершенно новым, экспериментально не обнаруженным пока характеристикам, некоторые из которых уже предсказаны теоретически...

В-четвертых, наконец, разработка новых гейслеровых компаундов — это в данной области отнюдь не единственный подход к порождению желаемых свойств материала. Другой многообещающей альтернативой является модификация уже хорошо известных материалов, поскольку и в них можно подстраивать структуру под желательные характеристики. Причем подобное «перемоделирование» в итоге тоже может порождать материалы, которые вполне можно рассматривать как новые.

Одна из типичных процедур для модификации хорошо освоенных в производстве материалов — это ионная имплантация. При этой операции образец стандартного материала обрабатывают пучком ионов, которые порождают изменения в кристаллической решетке и остаются встроенными в структуру материала как присадки. После чего новые свойства материала — это результат сразу двух факторов: перемен структуры, вызванных «бомбардировкой», и присутствием новых атомов в составе структуры.

Подводя же итог всем этим важным открытиям применительно конкретно к спинтронике, уже можно достаточно уверенно говорить, что компаундам Гейслера суждено сыграть здесь ключевую роль. Поскольку понятно, что эти материалы позволяют совершенно по-новому преодолеть известные препятствия, мешающие скомбинировать обычные ферромагнетики со стандартными промышленными технологиями в индустрии полупроводников.

⇡ Cпинтроника в 3D

Гейслеровы материалы, спору нет, чрезвычайно перспективное направление для дальнейшего прогресса. Но дабы не создавалось ложное впечатление, будто это чуть ли не единственный на сегодня маршрут развития спинтроники, полезно было бы сделать обзор и других интересных разработок. Вроде, скажем, спинтроники на основе органических материалов. Или спинтронной трековой памяти (magnetic racetrack memory, MRM). Или, наконец, спинтронных источников питания на основе магнитных туннельных переходов.

Однако объем статьи не резиновый, поэтому здесь — в качестве в заключения обзора — ограничимся лишь кратким рассказом еще об одной примечательной и совсем новой разработке. Сделана она учеными Кембриджского университета и объединяет в себе сразу два наиболее перспективных направления в современной электронике — спинтронику и 3D-чипы.

Над идеей многослойных, или стековых, как еще говорят, конструкций 3D-чипов работы ведутся довольно давно, по меньшей мере с 1990-х годов. Суть замысла достаточно проста. Если на той же, что и сейчас, кремниевой основе научиться делать не плоские, а подлинно трехмерные — со множеством соединений меж слоями — интегральные схемы слоев эдак на 100, то закон Мура, скорее всего, и дальше будет исправно работать. Еще лет 15 как минимум.

Но одна из труднейших проблем, и поныне стоящих перед разработчиками 3D-чипов, заключается в том, что при опоре на традиционную электронику никак не удается придумать действительно хороший способ для передачи информации между слоями. Если опираться в этом деле на обычные транзисторы схемы, то из-за этого заметно возрастает энергопотребление, а отвод тепла в стековой конструкции, напротив, сильно усложняется — поскольку большинство элементов теперь спрятано во внутренних слоях чипа.

Иначе говоря, традиционный подход к конструированию чипа в 3D не только получается неуклюжим и дорогим, но еще и не позволяет удержать тепловыделение в рамках разумного. А это все означает, что в трехмерной конструкции микросхем для передачи информации между слоями крайне желательно опираться на что-то иное.

Ученые Кавендишской лаборатории в Кембридже решили применять для этого спинтронику. То есть в стековой многослойной конструкции, характерной для трехмерных чипов, они придумали и реализовали остроумный механизм вертикальных межслойных соединений, который работает на базе квантового спина частиц.

Свою разработку они назвали «спинтронный регистр сдвига», а работает эта конструкция как своего рода квантовый храповой механизм — где биты данных и команд, закодированные в спинах, однонаправленно проталкиваются из одного слоя в другой с минимальными затратами энергии и, соответственно, практически без тепловыделения.

Реализован этот «вертикальный регистр» в виде довольно хитрой многослойной структуры сэндвича, где два разных типа металлических слоев толщиной всего в несколько атомов попеременно уложены друг на друга. Свойства слоев сэндвича подобраны так, чтобы местоположение бита информации сдвигалось вверх на «одну ячейку регистра» для каждых двух перебросов в полярности магнитного поля.

Иначе говоря, определенный домен «спин-вверх» в магнитном слое (или ячейке) 12, скажем, после двукратного переключения магнитного поля появляется в ячейке (магнитном слое) 13. Данный механизм перескоков домена по слоям-этажам чипа — это, собственно, и есть базовый режим функционирования регистра сдвига в данной конструкции.

Понятно, что от лабораторной демонстрации устройства до массового производства спинтронных 3D-процессоров на его основе путь, скорее всего, очень неблизкий. Но зато нет сомнений, что продемонстрированная технология является подлинно новаторской, опирается на вполне стандартные производственные процедуры и для своего дальнейшего развития (на данный момент) не имеет препятствий принципиального характера.

Для буквально новорожденной технологии и этого, можно признать, совсем даже немало.

Рассмотрим теперь, что происходит на контакте ферромагнетика с полупроводником (рис. 1.17). Поскольку концентрация носителей заряда в полупроводнике намного меньше, чем в ферромагнитном металле, то из последнего в полупроводник диффундируют намного больше электронов. Динамическое равновесие устанавливается лишь тогда, когда на контакте сформируется значительный потенциальный барьер – "барьер Шоттки" (рис. 1.17,a). Из-за этого в области полупроводника, прилегающей к контакту, имеет место значительное искривление зон (валентной, запрещенной и зоны проводимости).


Рис. 1.17.

На рисунке: E B – верхний край валентной зоны; E П – нижний край зоны проводимости; E Ф – уровень Ферми

Когда к контакту приложено небольшое напряжение U ("+" к полупроводнику), мало что изменяется. Сквозь барьер Шоттки электрический ток не течет до тех пор, пока напряжение не достигнет величины, близкой к высоте барьера. Тогда становится возможным туннелирование электронов сквозь узкий барьер (рис. 1.17,б).

Поляризованные электроны из ферромагнетика входят в полупроводник с энергией, намного превышающей тепловую. Такие "горячие" электроны очень интенсивно рассеиваются и быстро теряют ориентацию своих спинов. Поэтому инжекция спин-поляризованного электрического тока из ферромагнитного металла в полупроводник оказывается очень неэффективной .

Более эффективным в этом плане оказалась структура "ферромагнитный металл – туннельный переход – полупроводник" (рис. 1.17,в). Искривление зон в полупроводнике, отделенном от металла диэлектриком, незначительно. Если толщина диэлектрика очень мала (~1 нм), то уже при небольших напряжениях начинается туннелирование. Инжектированные спин-ориентированные электроны входят в полупроводник не такими "горячими", как в случае барьера Шоттки. И поэтому время их спин-релаксации значительно больше. Именно поэтому, например, в спин-транзисторе с полупроводниковой базой (рис. 1.6) между полупроводником и ферромагнетиками используют сверхтонкие туннельные переходы (на рис. 1.6 – из нитрида кремния).

Используя сверхтонкий туннельный переход, в 2007 г. на примере спин-транзистора, структура которого показана на рис. 1.18 , было установлено, что инжектированные в высокочистый кремний спин-поляризованные электроны могут иметь довольно большое время спин-релаксации и диффундировать на значительные (в масштабах нано- и даже микромира) расстояния – до 350 мкм


Рис. 1.18.

На пластину высокочистого кремния (Si (пл.)) толщиной 350 мкм сверху был нанесен слой металлизации (Al/Cu ) толщиной 10 нм, сверхтонкий туннельный слой Al 2 O 3 , слой ферромагнетика (CoFe) толщиной 10 нм и металлизация из алюминия (Al) . Эта структура выполняла роль эмиттера спин-поляризованных электронов. Снизу на пластину кремния (Si (пл.)) были нанесены слои ферромагнетика (NiFe) и меди (Cu) оба толщиной 4 нм. На последнем был выращен слой кремния n -типа (n-Si) и омический контакт из индия (In) .

Когда на эмиттер подавалось напряжение U Э, из ферромагнетика (CoFe) в кремний через сверхтонкий туннельный барьер (Al 2 O 3 и тонкий слой металлизации (Al/Cu) инжектировались электроны проводимости со спинами, ориентированными в направлении намагниченности ферромагнетика. Под действием напряжения U К1 , приложенного к коллекторному слою ферромагнетика (NiFe) , эти электроны дрейфуют сквозь пластину кремния. Время их спин-релаксации и длина диффузии оказались достаточными, чтобы заметная их часть прошла к коллектору. Направление ориентации спинов можно было определить, изменяя направление намагниченности "свободного" ферромагнетика. В этом случае ток коллектора резко уменьшался. Слой кремния n -типа (n-Si) использовался для дополнительного усиления и более точного измерения сигналов .

Ферромагнитные полупроводники

Туннельный переход, улучшая условия инжекции спин-поляризованного тока в полупроводник, все же создает повышенное электрическое сопротивление и требует увеличенных рабочих напряжений. Поэтому ученые обратили особое внимание на возможную альтернативу – на использование в качестве источника спин-поляризованного тока не металлических, а полупроводниковых ферромагнетиков – т.н. ферромагнитных полупроводников (ФП). Еще в 70-х годах ХХ в. изучались такие ФП, как халькогениды европия и шпинели типа CdCr 2 Se 4 [Нагаев Э.Л. Физика магнитных полупроводников. – М.: Наука. – 1979. – 431 с.]. Однако они обнаруживали ферромагнитные свойства лишь при низких температурах.

В последние два десятилетия ХХ в. интенсивно изучались т.н. "разбавленные магнитные полупроводники" (РМП, англ. diluted magnetic semiconductors, DMS). Это – классические полупроводники типа A 2 B 6 и A 3 B 5 , сильно, до максимально возможной растворимости, легированные атомами переходных ("магнитных") металлов, чаще всего марганца (Mn – поскольку он имеет наибольшую растворимость). Обменное взаимодействие электронов из частично заполненных d- и f- оболочек магнитных ионов с зонными носителями заряда основного полупроводника существенно изменяет свойства последнего и приводит к появлению не только ферромагнетизма, но и многих новых явлений, которые могут быть перспективными для практических применений. Однако у большинства таких РМП температура Кюри оказалась ниже комнатной (напр., у Ga 0,95 Mn 0,05 Sb TK = 110-250 K – в зависимости от технологии изготовления; у Ga 0,95 Mn 0,05 Sb TK = 80 K). И только у широкозонных полупроводников температура Кюри оказалась выше комнатной (у Ga 1-x Mn x N , напр., TK = 400 K). У GaN , легированного гадолинием (магнитный момент его атома равен 8 магнетонам Бора), тонкие пленки становятся ферромагнитными даже в случае, когда один атом гадолиния приходится почти на миллион ионов галлия и азота. Позднее оказалось, что, используя дополнительные легирующие элементы (Zn, C d и др.), можно существенно повысить температуру Кюри также и узкозонных полупроводников (напр., на основе InSb-Mn: Zn, Cd удается получить непрерывный ряд РМП с TK = 320-400 K).

В последнее десятилетие синтезируется и изучается значительно более широкий спектр магнитных полупроводников. Ферромагнитные свойства при температурах выше комнатной выявлены даже у таких классических полупроводников, как кремний и германий, легированных марганцем или другими „магнитными" атомами. Здесь многое зависит от технологии легирования и от применения дополнительных легирующих элементов.

На контакте ферромагнитного полупроводника с обычным полупроводником такого же типа проводимости не возникает значительных барьеров (рис. 1.19,а,б). Если ФП и обычный полупроводник имеют разные типы проводимости, то возникает р-п -переход, прохождение электрического тока сквозь который возможно лишь в одном направлении (рис. 1.19,в,г). На рис. 1.19 кроме валентных зон (E В1 и E В2) и зон проводимости (E П1 и E П2) условно показаны также зоны d- и f- электронов (E fd), которые обычно также присутствуют в ферромагнитных полупроводниках. В зависимости от их положения относительно уровня Ферми (E Ф) они могут быть частично или полностью заполненными. Даже если они заполнены частично, электропроводность по таким зонам ограничена, так как f- и d- электроны имеют малую подвижность (большую эффективную массу).

Инжекция в полупроводник спин-поляризованного тока из ферромагнитных полупроводников оказалась намного эффективней, чем из ферромагнитных металлов, и степень его спин-поляризации может быть намного выше – вплоть до 100% .


Рис. 1.19.

В последнее десятилетие активно синтезируются и изучаются также ферромагнитные полупроводниковые нанокомпозитные материалы, в состав которых входят магнитные структуры с пониженной размерностью – наночастицы, ферромагнитные нанопроволоки, сверхтонкие ферромагнитные пленки, представляющие собой квантовые плоскости. Температуры Кюри для таких нанокомпозитных полупроводников могут существенно отличаться от температуры Кюри соответствующего „чистого" полупроводника. Кроме того, появляются возможности значительно изменять свойства системы с помощью внешнего магнитного поля

Спинтронные светодиоды

Используя эти достижения, удалось создать, например, прототипы спинтронных светодиодов и спиновых аккумуляторов.

Спинтронные светодиоды на основе -перехода в отличаются тем, что их излучение циркулярно поляризовано. Это связано с тем, что в область гетероперехода, где происходит рекомбинация, в отличие от обычных светодиодов инжектируются спин-поляризованные электроны проводимости или спин-поляризованные "дырки". В AlGaAs GaAs и в других полупроводниках этой группы) разрешены оптические переходы при рекомбинации электронов, имеющих спин +1/2, лишь с дырками со спином –1/2, или наоборот – электронов, имеющих спин –1/2, лишь с дырками со спином +1/2. Поэтому фотоны, которые при этом излучаются, имеют спин ±1, т.е. являются право- или лево-поляризованными. Это – чисто квантовый эффект. Динамика вращения электрического вектора в такой циркулярно поляризованной световой волне показана на рис. 1.20 .

При поглощении циркулярно поляризованного света действуют те же самые правила отбора. В результате этого атомы, поглощающие циркулярно поляризованный фотон, переходят в состояния с магнитным квантовым числом, отличающимся на ±1 от исходного состояния. В ряде новейших технологий, о которых мы здесь не рассказываем, это свойство циркулярно поляризованного света используется для "оптического намагничивания" ансамблей атомов или для их "оптической накачки" – создания инверсной заселенности возбужденных состояний атомов.. На подложке из арсенида галлия p + (p + -GaAs ) последовательно нанесены слои GaAs:Be (20 нм), наночастицы ферромагнитного полупроводника MnAs диаметром около 3 нм, распределенные в матрице арсенида галлия толщиной 10 нм, туннельный барьер из арсенида алюминия (AlAs ), тонкая пленка арсенида галлия (GaAs , 1 нм) и ферромагнитный слой MnAs толщиной 20 нм. Сверху сформированы контакты из золота к подложке и к слою MnAs .

Если наночастицы MnAs с помощью внешнего магнитного поля перемагнитить в направлении, противоположном направлению намагниченности магнитожесткого слоя MnAs (ферромагнетик с фиксированной намагниченностью), то за счет инжекции из него через туннельный переход спин-поляризованных электронов на внешних выводах возникает электрическое напряжение. Если замкнуть внешнюю электрическую цепь, то к ферромагнитным наночастицам MnAs "потекут" электроны, спины которых ориентированы в направлении намагниченности "фиксированного" ферромагнетика. Эти электроны, накапливаясь, приводят к постепенной переориентации ферромагнитных наночастиц. Если внешнюю цепь разомкнуть, то ток прекращается, а вместе с ним прекращается и перемагничивание ферромагнитных наночастиц.

Можно заряжать бесконтактно. Такие аккумуляторы могут стать эффективным источником напряжения питания для спинтронных схем и для микроустройств, вживляемых в организм человека или животных.

Спинтроника — новое направление в микроэлектронике, базирующееся на использовании такой квантово-механической характеристики электронов, как спин. Устройства, созданные на ее основе, обещают решить многие и существующие, и ожидаемые в ближайшем будущем проблемы традиционной микроэлектроники: энергонезависимость, уменьшение энергопотребления, увеличение плотности логических элементов и скорости обработки данных. Вторую половину XX века без преувеличения можно назвать эрой микроэлектроники. В течение этих 50 лет мир был свидетелем технологической революции, ставшей возможной благодаря цифровой логике и базирующимся на ней информационным технологиям. Однако в любых устройствах, от первого транзистора до современных поражающих своими вычислительными возможностями микропроцессоров, микроэлектроника в основном использует только одно свойство электрона — его заряд. В то же время электрон имеет еще одну, правда, сугубо квантово-механическую характеристику — собственный угловой момент, или спин (и связанный с ним магнитный момент), — которая вплоть до недавнего времени не пользовалась особым вниманием разработчиков и исследователей. Сегодня ситуация меняется, и на авансцену выходит новая технология, получившая название "спинтроника" (spintronics — от spin transport electronics или spin-based electronics). Напомним, что во внешнем магнитном поле собственный магнитный момент электрона, обусловленный спином, ориентируется либо параллельно вектору магнитной индукции (вверх), либо антипараллельно (вниз). В устройствах, построенных на спиновом эффекте, используются, в частности, ферромагнетики. Поэтому прежде чем переходить к их (устройств) более детальному рассмотрению, опишем вкратце магнитные свойства этих материалов.

Ферромагнетиками называются вещества, в которых собственное (внутреннее) магнитное поле может в сотни и тысячи раз превосходить вызвавшее его внешнее магнитное поле. Это объясняется существованием так называемого обменного взаимодействия, связанного с перекрытием волновых функций электронов, принадлежащих соседним атомам кристаллической решетки, а также нескомпенсированных спиновых магнитных моментов валентных электронов. Именно обменное взаимодействие заставляет спины электронов ориентироваться параллельно или антипараллельно в зависимости от того, какое из состояний является энергетически более выгодным. В первом случае говорят о ферромагнетизме, а во втором — об антиферромагнетизме.

При температуре ниже так называемой точки Кюри ферромагнетик разбивается на домены самопроизвольной намагниченности. В отсутствие внешнего магнитного поля направления векторов намагниченности разных доменов произвольны и результирующая намагниченность всего тела может быть равной нулю. Во внешнем магнитном поле векторы намагниченности ориентируются в преимущественном направлении, создавая сильное внутреннее магнитное поле.

Магнитную структуру кристалла антиферромагнетика можно рассматривать как состоящую из двух подрешеток, намагниченных противоположно друг другу. Если магнитные моменты подрешеток численно равны, то спонтанная намагниченность не возникает, если нет, то она появляется (ферримагнетизм). Такими свойствами обладают, например, ферриты. При низких температурах магнитная восприимчивость антиферромагнетиков ничтожно мала, т. е. они практически не намагничиваются во внешнем магнитном поле.


Устройства, использующие спин-эффекты

Начало новой электроники, базирующейся на физических эффектах, обусловленных спином, относят к 1988 г., когда было открыто явление гигантской магниторезистивности (Giant Magneto Resistance — GMR). GMR наблюдается в искусственных тонкопленочных материалах, составленных из чередующихся ферромагнитных и немагнитных слоев. Сопротивление такого композита минимально, когда магнитные поля в ферромагнитных слоях направлены параллельно, и максимально, когда они антипараллельны.

В основе устройств, использующих GMR, лежит так называемый спиновый клапан (spin valve), структура которого представлена на рис. 1. Он состоит из двух слоев ферромагнетика (сплавы никеля, железа и кобальта), разделенных тонким слоем немагнитного металла (обычно это медь). В одном из слоев ферромагнетика магнитное поле "закреплено", другими словами, намагниченность данного слоя относительно нечувствительна к изменениям внешнего магнитного поля. Такая фиксация магнитного поля обычно выполняется с помощью плотно прилегающего слоя антиферромагнетика. Образующаяся граница раздела между двумя пленками препятствует изменению намагниченности в ферромагнетике. Другой слой ферромагнетика является "свободным" — его намагниченность может быть изменена внешним полем относительно малой напряженности. Сопротивление спинового клапана при антипараллельных магнитных полях в ферромагнетиках на 5—10 % выше, чем при параллельных.

Еще один тип спинового клапана можно построить, используя явление магнитного туннельного перехода (Magnetic Tunnel Junction — MTJ). Такие клапаны состоят из закрепленного и свободного магнитных слоев, которые разделены очень тонким слоем изолятора, обычно им служит окись алюминия (рис. 2). Сопротивление здесь изменяется с помощью внешнего магнитного поля точно таким же способом, как и в предыдущем случае. При антипараллельных магнитных полях в ферромагнетиках его значение увеличивается на 20—40%.

Явления в полупроводниках традиционно описывались с квантово-механических позиций. Пришло время и для специальной теории относительности, поскольку в 1990 г. двое американских ученых, Суприйо Датта (Supriyo Datta) и Бисуоджит Дас (Biswajit Das), рассмотрели возможность создания спинового полевого транзистора (spin Field-Effect Transistor — spin FET), основанного на релятивистском эффекте. В обычном полевом транзисторе напряжение, прикладываемое к затвору, управляет величиной тока между истоком и стоком. В релятивистском полевом транзисторе истоком и стоком должны служить ферромагнетики с параллельно ориентированными спинами электронов, соединенные узким полупроводниковым каналом (рис. 3). Спины инжектируемых в исток электронов устанавливаются параллельно магнитным полям истока и стока. Таким образом, от истока к стоку течет спин-поляризованный ток. При этом электроны должны двигаться со скоростью, составляющей 1 % от скорости света в вакууме. Величина тока регулируется посредством приложенного к затвору напряжения. Фокус состоит в следующем. Если перейти в неподвижную систему отсчета, связанную с электроном, то, согласно специальной теории относительности, в ней появляется магнитное поле, напряженность которого определяется (в гауссовой системе единиц) формулой
,
где — скорость движения электронов, — напряженность электрического поля, созданного приложенным к затвору потенциалом, а квадратные скобки обозначают векторное произведение. При достаточной величине напряженности магнитного поля (таким образом, скорость движения электронов в данном случае весьма существенна) спины электронов изменяют ориентацию на противоположную. В результате сопротивление канала возрастает и ток уменьшается.

Это перспективные разработки, а если вернуться к эффекту GMR, то следует отметить, что сфера его применения расширяется. Кроме прописки в технологиях чтения жестких дисков, спиновые клапаны на GMR используются в гальванических изоляторах и MRAM (Magneto resistive RAM).

GMR-базированный гальванический изолятор выполняет ту же функцию, что и оптоэлектронный, обеспечивая развязку цепей по питанию и земляной шине. Его основными элементами являются плоская катушка и GMR-сенсор, встроенные в интегральную схему (рис. 4). Для передачи сигнала из одной цепи в другую по катушке пропускается ток. Созданное им магнитное поле воздействует на GMR-сенсор. Такой изолятор работает в 10 раз быстрее современных оптических и это еще не предел.

На рис. 5 приведена схема ячейки магниторезистивной памяти (Motorola), основанной на магнитном туннельном переходе. Для хранения информации MRAM использует явление гистерезиса, а для считывания — GMR. Она функционирует подобно полупроводниковой статической памяти (SRAM), однако ее важной особенностью является способность сохранять данные при выключении питания. Если такую память использовать в персональных компьютерах, то они не будут требовать выполнения довольно длительной процедуры загрузки при включении.

Рис. 5. Ячейка MRAM

Основными элементами ячейки памяти MRAM являются взаимно перпендикулярные разрядная (bit line) и числовая (word line) шины, между которыми располагается структура MTJ. При операции записи (рис. 5а) по шинам пропускается электрический ток, создающий магнитное поле, которое меняет направление намагниченности в свободном ферромагнетике. При операции чтения (рис. 5б) открывается развязывающий транзистор и ток проходит через структуру MTJ. Изменение сопротивления ячейки может быть интерпретировано как двоичные 0 или 1 . Такая память работает в 1000 раз быстрее традиционной EEPROM и не имеет ограничения по количеству циклов перезаписи.

Перспективные направления

Общим для всех устройств, описанных выше, является то, что в их основе лежит металл. Существенный недостаток такого подхода — невозможность усиливать сигналы. Очевидные металлические аналоги традиционным полупроводниковым транзисторам, в которых отток электрона из базы n-p-n транзистора позволяет десяткам других поступать от эмиттера в коллектор, сегодня отсутствуют. Найти материалы, которые обладали бы как свойствами ферромагнетиков, так и полупроводников, — давнишняя мечта исследователей. Но она труднодостижима: уж очень велико различие в кристаллической структуре и характере химических связей. Ферромагнитные полупроводники, с одной стороны, были бы источниками спин-поляризованных электронов, а с другой — легко интегрировались бы с традиционными полупроводниковыми устройствами. Идеальный ферромагнитный полупроводник должен иметь точку Кюри (температура, при которой ферромагнетик теряет свои свойства) выше комнатной температуры и допускать создание зон с n — и p -проводимостью в одном монокристалле. Сегодня большое внимание привлекают так называемые разбавленные магнитные полупроводники, сплавы, в которых некоторые атомы в случайном порядке заменяются атомами с магнитными свойствами, например Mn 2+ . Имеются теоретические предсказания, что для некоторых классов таких материалов точка Кюри будет выше комнатной температуры.

Несмотря на то что исследования по спинтронике проводятся во многих странах, до практических результатов еще достаточно далеко. Предстоит изучить особенности переноса спин-поляризованных электронов в различных материалах и через поверхности раздела, а также научиться генерировать их в большом количестве.

Спинтроника - устоявшийся термин, но существуют разные его толкования: электроника переноса спина (spin transport electronics), электроника, основанная на спине (spin-based electronics) или просто спин-электроника (spin-electronics).

Спинтроника объединяет области исследований и разработок наноэлектронных приборов и устройств на основе эффектов и явлений переноса спинов в качестве носителей информационного сигнала. Магнитным спином обладают не только электроны, но и некоторые другие элементарные частицы, а также ядра некоторых атомов. В спинтронике изучаются магнитные и магнитооптические взаимодействия в полупроводниковых структурах, динамика и когерентные свойства спинов в конденсированных средах, а также квантовые магнитные явления в структурах нанометрового размера. Наряду с ранее известными магнетиками по мере развития спинтроники появились новые - магнитные полупроводники - вещества, которые одновременно могут быть магнитами, полупроводниками и оптическими средами. Зонная структура магнитного полупроводника отличается от двухзонной структуры обычных полупроводников, металлов и диэлектриков наличием особой - третьей зоны, которая образуется электронными d- и f- оболочками атомов переходных или редкоземельных элементов. Экспериментальная техника спинтроники включает в себя магнитооптическую спектроскопию с высоким (фемтосекундным) временным разрешением, микромеханическую магнитометрию, атомно- и магнитосиловую сканирующую микроскопию субатомного разрешения, сканирующую оптическую микроскопию ближнего поля, спектроскопию ядерного магнитного резонанса (ЯМР) и др. Химические, литографические и молекулярно-кластерные технологии позволяют созда­вать для спинтроники разнообразные наноструктуры с необходимыми магнитными свойствами. Если в обычной твердотельной микро- и наноэлектронике информация представляется с помощью электрического заряда, то в спинтронике используется представление информации с помощью магнитного момента квантовых частиц.

Одно из явлений спинтроники, названное гигантским магнитным сопротивлением (GMR), было использовано в магнитных головках жестких дисков. В результате емкость дисков за пять лет выросла в сто раз. Стратегическая и экономическая значимости разработок в области спинтроники очевидна. В спинтронных устройствах переворот спина практически не требует затрат энергии, а в промежутках между операциями устройство отключается от источника питания. Если изменить направление спина, то кинетическая энергия электрона не изменится. Это означает, что тепла почти не выделяется. Скорость изменения положения спина очень высока. Эксперименты показали, что переворот спина осуществляется за несколько пикосекунд (триллионных долей секунды).

В магнитоупорядоченных кристаллах спины взаимодействуют между собой двояким образом: это или обычное магнитное диполь-дипольное взаимодействие, или обменное взаимодействие. Два типа взаимодействия вызывают два рода уп­ругих сил в магнитном диэлектрике - магнитные и обменные силы. Первые являются дальнодействующими. Во взаимодействии принимают участие сразу много узлов кристаллической решетки и его часто называют коллективным.

В ближнем порядке между соседними атомами имеет место обменное взаимодействие. Обменные силы являются короткодействующими и хорошо описывают коротковолновые возмущения узлов кристаллической решетки. В этом случае смещения соседних узлов кристаллической решетки достаточно велики, и обменные силы выступают на первый план.

Таким образом, длинноволновые возмущения вызывают магнитные силы или магнитную упругость, а за коротковолновые возмущения - обменные силы или обменную упругость.

Наличие двух типов возмущения порождает возможность генерации и распространения двух видов волн - спиновых магнитостатических и спиновых обменных.

Волны первого типа называют магнитостатическими, второго - спиновыми. Деление спиновых волн на два типа весьма условно, и необходим одновременный учет вклада обоих типов взаимодействий (рис. 5.11).

Как отмечалось, различают несколько типов волн. Если длина волны l значительно больше размеров кристаллической решетки (l >> а), то в магнитоупорядоченных структурах могут распространяться медленные волны. Они обусловленны дальнодействующим диполь-дипольным взаимодействием. Волны этого типа называют магнито-статическими (МСВ). Эти волны способны переносить энергию в результате диполь-дипольного взаимодействия.

Рис.5 11. Схема формирование спиновой волны

Если длина волны возмущений (l ³ а), то такие волны обусловлены обменным взаимодействием, а волны этого типа носят название спиновых волн (СВ). Энергия в такого типа волнах переносится благодаря обмену. Существуют дипольнообменные волны, для которых дипольный и обменный механизмы переноса одинаково существенны.

Итак, спиновая волна представляет собой волну нарушения магнитной упорядоченности или элементарное возбуждение.

Квазичастицы, соответствующие спиновой волне, называются магнонами. Магноны, как и все квазичастицы, обладают энергией Е = ћw, квазиимпульсом р = ћk и магнитным моментом m.

В простейшем случае магнитный момент магнона равен магнитному моменту атома и направлен против равновесной намагниченности.

Практический интерес представляет поверхностная магнитодипольная волна или поверхностная магнитостатическая волна (ПМСВ). Ее групповая скорость совпадает по знаку с фазовой скоростью, их энергия и фаза перемещаются в одну и ту же сторону. Для пленки железо-иттриевого граната (ЖИГ) частота колебаний составляет порядка 10 ГГц при скорости распространения v = 4 - 10 6 см/с.

Уникальные свойства магнитостатических волн широко используются в элементах и приборах СВЧ-диапазона длин волн. Наибольшее распространение получили линии задержки на магнитостатических волнах.

Линии задержки представляют собой устройства для временной задержки электрических сигналов при несущественных искажениях их формы.

Теоретически могут быть разработаны линии задержки в широкой полосе частот с различным законом изменения времени задержки, например, постоянная задержка, линейная задержка и др.

Одна из конструкций линий задержки СВЧ-сигналов представлена на рис. 5.12. Линия задержки монтируется на подложке из оксида алюминия (искусственный сапфир, корунд). Управляющий экран является одновременно основанием возбуждающей микрополосковой линии. Входной и выходной СВЧ-сигналы проходят по компланарным волноводам, которые формируются в экране методом травления. На управляющий экран наносится стеклянная подложка толщиной порядка 20 мкм. Микрополоски размещались на стеклянной подложке и соединялись с проводниками компланарных линий. Входной и выходной микрополоски делаются достаточно узкими (до 50 мкм) для обеспечения необходимой ширины полосы возбуждения.

Рис. 5.12.Структура линии задержки на ЖИГ-пленке:

1 – ГГГ-подложка; 2 - ЖИГ-пленка; 3 – микрополосковая

линия; 4 – управляющий экран (серебро - золото);

5 – подложка из оксида алюминия; 6 – выход компланарной линии; 7 - вход компланарной линии

Отдельно готовится пленка железо-иттриевого граната (Y 3 Fe 5 О 12) на подложке из галлий-гадолиниевого граната (ГГГ) (Gd 3 Ga 5 O 12). Такое сочетание позволяет получить пленки высокой степени структурного совершенствования, небольшими потерями на частотах СВЧ-диапазона. Такой сэндвич ЖИГ-ГГГ помещается сверху на стеклянную подложку.

Таким образом, сформированная линия задержки на поверхностных МСВ работает в диапазоне порядка 10 ГГц, с полосой 200 МГц, задержкой в полосе порядка 100 нс/см при вносимых потерях порядка 10 дБ.

Одним из направлений, связанных с разработкой бездисперсионных перестраиваемых линий задержки на МСВ в широкой полосе частот, является использование каскадных схем. Это - последовательно включенные две линейно перестраи­ваемые ЛЗ с комплементарными характеристиками. С этой целью используются ЛЗ на поверхностных или прямых объемных МСВ с нормальной дисперсией или ЛЗ на обратных объемных МСВ с аномальной дисперсией.

Такие конструкции позволяют в определенных пределах модулировать по величине полную задержку сигнала Весьма интересное применение магнитостатические волны нашли в фильтрах СВЧ-сигналов. Такие фильтры имеют верхнюю частотную границу в области выше 50 - 60 ГГц и работают в реальном масштабе времени. Фильтры на МСВ способны легко перестраиваться по спектральному диапазону за счет изменения внешнего магнитного поля.

На магнитостатических волнах разработаны эффективные линии передачи, шумоподавители, полосковые замедляющие структуры и другие устройства СВЧ-диапазона.

В области наноэлектроники существует много идей использования спинов электронов в качестве носителей информационного сигнала в приборах и устройствах обработки и хранения информации.

Предложена конструкция транзистора, напоминающая конструкцию МДП-транзистора. Спин-электронное устройство должно содержать три основных элемента:

Генератор - исток для инжектирования спин-поляризованных электронов, спины которых выстроены в нужном направлении;

Устройство управления спиновым потоком в полупроводнике, например электрическое поле для перемещения электронов;

Детектор - сток для измерения результирующего спинового тока.

В качестве истока используется ферромагнетик, который инжектирует поток электронов со 100 %-ной спиновой поляризацией в канал транзистора. Стоком служит спиновой фильтр, который пропускает только электроны с соответствующей спиновой поляризацией. Спин-орбитальное взаимодействие внутри канала управляется напряжением затвора и производит поворот спинов. При повороте на 180 ° электроны уже не проходят в сток, ток равен нулю. Это и есть закрытое состояние транзистора. Потенциал затвора создает перпендикулярное электрическое поле в канале, которое вызывает анизотропию движения электронов относительно этого направления.

Следует подчеркнуть, что полевой спиновый транзистор работает совершенно на других принципах, нежели обычный полевой транзистор. Спиновый транзистор будет обладать низким управляющим напряжением, малым энергопотреблением и высоким быстродействием. Нужны поиски компромиссных решений потому, что уменьшение напряжения на затворе приводит к увеличению длины канала для эффективного поворота спинов.

Это снижает быстродействие и делает недопустимо большим ток в закрытом состоянии из-за процессов релаксации спина. Вывод такой: до тех пор, пока не разработают структуры, в которых гораздо более сильное спин-орбитальное взаимодействие, спиновый полевой транзистор будет уступать кремниевому. Следует добавить, что ни идеального 100 %-ного инжектора спинового тока, ни соответственно 100 %-ного фильтра пока не существует. Но это начало работ. Вспомним, как неуклюже выглядел первый транзистор - не чета нынешнему чуду прогресса.

Началось массовое производство спинтронных модулей памяти MRAM (Magnetoresistance Random Access Memory - магниторезистивная память с произвольной выборкой). Главное отличие таких модулей - записанная информация не пропадает при отключении питания, так как электроны способны сохранять положение спина сколь угодно долго. MRAM уже нашла применение в сотовых телефонах, мобильных компьютерах, идентификационных картах. Кроме того, новую память используют военные для управления боевыми ракетами и для контроля за космическими станциями. Высокоточные угловые, позиционные и скоростные спиновые сенсоры широко используются в автомобильных агрегатах и механизмах, например, в антиблокировочной тормозной системе, известной водителям как ABS (Antilock Braking System), благодаря которой автомобиль сохраняет прямолинейное движение при торможении на скользком дорожном покрытии. Современную компьютерную, теле- и видеотехнику невозможно представить без спинтронных устройств. Помимо жестких дисков, достижения спинтроники можно найти в персональных видеорекордерах (тюнерах для захвата видеосигнала с аналоговых устройств), аппаратуре телевидения высокой четкости (HDTV), DVD-приводах с интерференцией в ближнем поле (near field recording, NFR) при записи.

Работы в области спинтроники и создания устройств на эффектах переноса спина только разворачиваются. Ожидается, что они будут иметь преимущество перед известными устройствами по переносу зарядов по таким параметрам, как разме­ры, быстродействие, диссипация энергии. Спины электронов, локализированные в квантовых точках, можно использовать как носители информационного сигнала для вычислительных устройств нового поколения.

В ближайшие годы спинтроника будет развиваться по трем главным направлениям: квантовый компьютер, спиновый полевой транзистор и спиновая память. Вполне возможно, что через 10 - 15 лет новая область науки - спинтроника будет так же важна, как сегодня важна электроника.



Понравилась статья? Поделитесь с друзьями!