Отложенное квантовое стирание. Вопрос о квантовом стирании данных

Стараюсь максимально просто объяснить чтобы и самому понять.

В опыте Томаса Юнга 1803 года фотоны света пролетали через одну или две щели в преграде и оставляли след на экране. При пролете через одну щель фотоны оставляют одну полоску на экране напротив щели. А при пролете через две щели фотоны проявляют себя как волна, потому что на экране возникает так называемая "интерференционная картина", которая может возникать при наложения двух волн одинаковой частоты, исходящих из 2-х точек (или щелей). Она представляет собой чередование ярких и светлых полос.

Яркие полосы там где гребни волн налагаются друг на друга, а темные - где верхний гребень одной волны налагается на нижний гребень другой (противофаза).

Тогда ученые поняли впервые, что фотон - волна. Давно это было. Позже тоже самое выяснилось и о электроне и многих других частицах.

Чтобы в этом точно убедиться, этот опыт, по мере развития техники, усовершенствовали до такой степени, что смогли стрелять не пучком электронов, а отдельными электронами. И оказалось, что каждый отдельный электрон создавал на экране интерференционную картину как будто он волна.

Все бы было так просто, если бы кому-то не пришло в голову понаблюдать , через какую из 2 щелей пролетел каждый электрон. И под наблюдением, к изумлению ученых, на экране появились две полоски (то есть, электроны вели себя как частицы - каждый раз пролетали только через одну щель).

Что значит "наблюдать"? Это значит, возле каждой щели ставился специальный датчик, который подавал сигнал, если именно через его щель пролетала частица.

Получается 2 возможных варианта объяснения:

1. "Мистический": Поведение электрона зависит от того, ведется ли за ним наблюдение или нет.

2. "Естественный": на электрон влияет то техническое устройство ("датчик"), которое фиксирует, через какую щель пролетает частица.

К еще большему удивлению ученых выяснилось, что результат одинаков для разных видов датчиков, точнее, для разных технологий наблюдения и для разных частиц. То есть, любое наблюдение одинаково влияет на поведение. Независимость от способа наблюдения усиливала подозрение в пользу мистического варианта объяснения как будто важен сам факт наблюдения, а не влияние прибора.

Чтобы разобраться с этим, решили усложнить опыт так, чтобы полностью исключить влияние датчика. Каким образом? Поставили эксперимент так, чтобы датчик пролета частицы через щель срабатывал ПОСЛЕ того , как частица уже проявила себя либо как частица, либо как волна, оставив соответствующий след на экране.

И вот именно тут произошло подтверждение мистического объяснения. Оказалось, будущие действия влияли на прошлые события. Если показания с датчика считывались после прилета частицы на экран, то оказывалось, что частица не вела себя как волна. А если не считывались - то на экране оставался след от волны.


Этот вариант эксперимента называется "Эксперимент с отложенным выбором ". Потому что вы на будущее переносите решение считывать ли информацию о том, через какую щель летела частица, или не считывать.

Вот об этом из Википедии https://goo.gl/iJrYUv:

Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора (и заявили о себе либо как частица либо как волна)
В пользу того, что на результат влияет сам факт наблюдения, а не наличие физического датчика, говорит то, что самые выдающиеся нобелевские физики 20 века Эйнштейн, Бор и другие много обсуждали это явление. Если бы всё упиралось в обычное физическое влияние детектора, никто бы не удивился, и говорить было бы не о чем. Напротив, ученые повыдвигали много сложных теорий по объяснению феномена. Точнее, по законам микромира на основании открытого феномена, при котором будущее наблюдение как-то влияет на прошлое событие. В частности, Эйнштейн так выразился:

«Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?»


А теперь подробнее. Как технически проводится эксперимент?

Каким образом можно установить датчик, до которого частица долетит после того, как она уже прилетела на экран? Разве такое возможно? Раз прилетела на экран, то, дальше никуда не летит.

Для начала надо познакомиться с важнейшим понятием квантовой механики "запутанная пара ".

Это 2 частицы, которые появились в результате одного события, и, находясь на любом расстоянии друг от друга , обладают взаимосвязанными свойствами таким образом, что изменения какого-либо параметра одного члена запутанной пары очень быстро влияют на этот же параметр другого фотона, даже, если он находится на другом краю вселенной.

Что такое "очень быстро"? Это, по крайней мере, в 100 000 раз быстрее скорости света!!! (А, возможно, эта скорость передачи информации внутри запутанной пары вообще... бесконечна!!! Просто у науки пока нет инструментов для измерения таких скоростей).


Когда было открыто существование таких связанных между собой пар частиц, появилась возможность для эксперимента с отложенным выбором. Одна частица оставляет след на экране, (она называется "сигнальная частица"), а другая продолжает лететь в другом направлении в сторону датчика-указателя щели, через которую летит частица. Это называется "холостая частица". Если датчик будет включен, то, в экспериментах всегда оказывалось, что сигнальная частица оставила след на экране как след от частицы, а не от волны. А если он не был включен, то, на экране был след волны.

Напоминаю, до экрана частица долетает раньше чем до датчика. Но, долетев до экрана в лаборатории на Земле, она уже "знает" будет ли включен датчик, даже если он стоит на Луне. В этом заключается мистический элемент.

Сразу возникает желание включить или выключить датчик после того, как частица уже прилетела на экран. Но это не возможно. Поскольку датчик стоит в этом эксперименте дальше экрана, то любой сигнал на его включение будет идти некоторое время не выше скорости света. И наша команда дойдет до него в идеальном случае одновременно с фотоном, а в реальности всегда хотя бы на мгновение дольше.

Теперь не важные, но любопытные технические детали эксперимента.


В начале полета частицы её помечают определенным образом. То есть, вместо датчика, на пути полёта частиц устанавливается постановщик меток на частицу (или "маркировка"). И тогда, будучи помеченной, она оставляет на экране точечный след, как частица. А, если на пути полета к экрану с этой же частицы снять уже поставленную метку (стереть "квантовым ластиком"), после чего нельзя определить, через какую щель пролетел сигнальный фотон, то, эта частица оставит на экране след, как волна (интерференционная картина).

(Иностранное слово "Ластик" - это аналог стирательной резинки, то есть, средство удаления информации).

Данные стираются квантовым методом. Это называется "Эксперимент квантового ластика ".

А теперь самое интересное. У этого эксперимента есть вариант с возможностью удалить информацию "после того как", после того как фотон достигнет экрана. И о чудо! Выяснилось, что если метку стереть уже "после того как", то, это стирание влияет на след на экране, оставленный ранее! То есть, будущее действие повлияло на прошлое событие.

Этот вариант эксперимента называется "Эксперимент квантового ластика с отложенным выбором ".

Как создается запутанная пара фотонов? В начале, фотон пропускается через кристалл бета-бората бария (BBO), который преобразует единичный фотон в пару запутанных фотонов пониженной частоты, сигнальный и холостой, которые летят в разные стороны.

Последний технический вопрос. Каким образом ставится и снимается метка с частиц?

Это зависит от каждого типа частиц. Например, фотоны могут имеют поляризацию. Перед каждой прорезью в двухщелевой пластине помещается поляризатор, выполняя поляризацию по часовой стрелке для света, проходящего через одну щель, и против часовой стрелки для света, проходящего через другую щель. Эта поляризация регистрируется на датчике, "маркируя" таким образом фотоны и разрушая интерференционную картину.

Наконец, линейный поляризатор устанавливается на пути первого запутанного фотона из пары, придавая ему диагональную поляризацию (см. рис. 2). Запутанность гарантирует дополнительную диагональную поляризацию у второго фотона, который проходит через двухщелевую пластину. Это нивелирует влияние круговых поляризаторов: каждый фотон будет давать смесь света, поляризованного по часовой стрелке и против неё. Следовательно, второй детектор больше не может определить, какой именно путь был выбран, и интерференционная картина восстанавливается.

Вот вопрос, который я буду задавать специалистам:

Здравствуйте!

Если стирать метку с "холостого" фотона запутанной пары ПОСЛЕ того как его "сигнальный" фотон уже долетел до детектора, то, восстановится интерференционная картина, которую создает сигнальный фотон?

Если отвечают "ДА", то будущее управляет прошлым. Если нет, то не управляет. Но, правильный ответ "ДА". Это результат эксперимента. Но не порядочным ученым не нравится сам факт влияния будущего на прошлое, и они будут словоблудить, признавая-отрицая оно и тоже.

Я одного такого молодого русского физика вызвал на публичную дискуссию. Публично он отказался, а в личной переписке ходил по кругу, то признавая, то отрицая то, что признавал и постоянно меня унижал всякими намеками на мою тупость и суеверие.


Лев Худой в (управляет ли сознание материей)

В "опыте Юнга" электроны из электронной пушки пролетают через 1 или 2 щели в преграде и оставляют след на экране.

При пролете через одну щель электроны оставляют одну полоску на экране против щели, как будто, электрон - частица.

Интересное происходит при пролете через 2 щели в преграде.

Электроны проявляют себя как волна (интерференционная картина из множества полос как результат наложения волн), если не наблюдать за тем, через какую щель пролетал каждый электрон.

А если наблюдать, через какую из 2 щелей пролетел каждый электрон, то на экране будет 2 полоски (то есть, электроны вели себя как частицы).

Получается 2 возможных варианта:

1. Поведение электрона зависит от того, наблюдал ли за ним человек или нет. То есть, сознание человека влияет на поведение электрона.

2. На электрон влияет то техническое устройство ("детектор"), которое фиксирует через какую щель он летит. (Далее информация передается человеку от детектора, и человек тут не при чем).
Чтобы разобраться с этим решили записывать данные с включенного детектора и картину на экране, но не сообщать всё это человеку.

Выяснилось. Если во время эксперимента не наблюдать за пролетом электронов через каждую щель, а записать показатели детекторов обоих щелей о пролете через них каждого электрона, но, эти данные не изучить человеком, а сразу уничтожить после эксперимента, то мы получим на экране волновую картину, а не две полоски. Это называется "стирание данных".


А, если, данные не уничтожать, а изучить после опыта, то, на экране получится 2 полоски напротив щелей.

Вот это стирание данных наиболее удивительно. Но, прежде чем разобраться с этим, надо точно выяснить - реальный ли это эксперимент или вымышленный?

В википедии есть небольшая статья без всяких ссылок, где стирание данных названо "Эксперимент квантового ластика" :

Эксперимент имеет две стадии: сначала экспериментатор отмечает через какую прорезь прошел каждый фотон без нарушения движения, и демонстрирует нарушение интерференционной картины. Эта стадия показывает, что существует «путевая» информация, которая вызывает повреждение интерференционной картины, но нет механического нарушения (как полагалось в начале создания квантовой теории). Вторая стадия проходит, стирая «путевую» информацию, и демонстрируя, что интерференционная картина восстановлена.

Из того что я накопал в интернете выходит, что в дискуссиях на русском языке народ разделился на 2 категории - одни считают, что хоть стирай данные, хоть не стирай, всё равно, на экране будут 2 полоски, другие считают что при стирании данных с детекторов на экране получится волновая картина с множеством полос (более 2).

Я брал инфу, в том числе, отсюда:

Опыт Юнга объясняет Том Кэмпбел.
Корпускулярно-волновой дуализм

Рассмотрим квантовое стирание для фотона, где маркером пути является его поляризация.

На рис. 10, а источник S испускает одиночные фотоны, плоско поляризованные в направлении h , перпендикулярном рисунку. Фотон в виде волны проходит через щели 1 и 2 и регистрируется детектором D , который сканирует область регистрации, поперечную оптической оси. В результате прохождения через установку большого числа фотонов возникает интерференционная картина.

Рис. 10 . Квантовое стирание локализации фотона

Перед щелью 1 устанавливаем полуволновую пластинку E , показанную на рис. 10, б . Она поворачивает плоскость поляризации на в направлении v и является маркером пути фотона через щели. Фотоны с взаимно перпендикулярными поляризациями проходят через разные щели, между собой не интерферируют, интенсивности излучений складываются, получается распределение света на экране регистратора, показанное на рис. 9, б .

Стираем информацию о пути фотона, устанавливая перед регистратором анализатор G с углом поляризации . Анализатор проектирует на свою ось вектора электрических полей, прошедших щели 1 и 2. Выходящие из анализатора поля имеют одинаковые направления и уменьшенные в два раза интенсивности согласно закону Малюса.

.

Информация о путях фотона через щели стерта, он оказывается волной, проходит одновременно через две щели, интерференция восстанавливается, как показано на рис. 10, в .

Особенностью рассматриваемых процессов является то, что все действия производятся над одиночным фотоном.

По поводу квантового стирания возникает вопрос: как «узнает фотон» во что ему превратиться – в частицу, и проходить через одну щель как на рис. 10, б , или в волну, и проходить одновременно через две щели, как на рис. 10, в ? Ведь место, где должен быть сделан выбор, расположено до щелей, а место, где реально этот выбор делается, расположено после щелей – там, где ставится или не ставится анализатор. Причина и следствие поменялись местами? Ответ на этот вопрос связан с квантовой нелокальностью микрообъекта.

В "опыте Юнга" электроны (фотоны) из электронной (фотонной) пушки пролетают через одну или две щели в преграде и оставляют след на экране.

При пролете через одну щель электроны оставляют одну полоску на экране напротив щели, как будто, электрон - частица.

Интересное происходит при пролете через 2 щели в преграде.

При пролете через две щели электроны проявляют себя как волна (интерференционная картина из множества полос как результат наложения 2 волн, исходящих из каждой щели). Позже этот опыт усовершенствовали до такой степени, что смогли стрелять не пучком электронов, а отдельными электронами. Для интереса решили наблюдать , через какую из 2 щелей пролетел каждый электрон. И под наблюдением к изумлению ученых на экране появились две полоски (то есть, электроны вели себя как частицы).

Что значит "наблюдать"? Это значит, на пути полета частицы ставился специальный детектор, который подавал сигнал, если через него пролетала частица.

Получается 2 возможных варианта:

1. Поведение электрона зависит от того, ведется ли за ним наблюдение или нет.

2. На электрон влияет то техническое устройство ("детектор"), которое фиксирует через какую щель он летит

К еще большему удивлению ученых выяснилось, что результат одинаков для разных видов детекторов, точнее для разных технологий наблюдения. При чем, тот же результат для фотонов и некоторых других частиц. Наблюдение влияет поведение.

У очень серьезных ученых возникла ненаучная мистическая гипотеза, что на поведение частиц влияет информация о записи данных. Чтобы разобраться с этим, решили усложнить опыт так, чтобы полностью исключить влияние детектора. Решили обхитрить природу. Каким образом? Поставили эксперимент так, чтобы детектор срабатывал ПОСЛЕ того как частица уже проявила себя либо как частица, либо как волна.

Как именно стираются данные? Квантовым методом. Это называется "Эксперимент квантового ластика ". (иностранное слово "Ластик" - это аналог стирательной резинки, то есть, средство удаления информации).

Вот самое главное оттуда:

Основной результат эксперимента заключается в том, что не имеет значения, был процесс стирания выполнен до или после того, как фотоны достигли экрана детектора.

В чем суть эксперимента? В начале пути полета фотона к экрану его помечают определенным образом, чтобы знать через какую щель он пролетит. И тогда, будучи помеченным, он оставляет на экране точечный след, как частица. А, если на пути полета к экрану с этого же фотона снять уже поставленную метку (стереть квантовым ластиком), то, этот фотон оставит на экране след как волна (интерференционная картина).

А теперь самое интересное. У этого эксперимента есть вариант с возможностью удалить информацию "после того как", после того как фотон достигнет экрана. И о чудо! Выяснилось, что если метку стереть уже "после того как", то это стирание влияет на след на экране оставленный ранее! То есть, будущее действие повлияло на прошлое событие.

Этот вариант эксперимента называется "Эксперимент квантового ластика с отложенным выбором ".

Возникает вопрос: каким образом можно стереть метку с фотона после того как он уже прилетел на экран? Разве такое возможно?

Возможно! Для этого из одного фотона создают два, каждый из которых обладает половиной энергии исходного фотона. Это называется "запутанная пара " фотонов. Эти 2 фотона так связаны между собой, что находясь на любом расстоянии друг от друга , обладают взаимосвязанными свойствами таким образом, что изменения какого либо параметра одного фотона запутанной пары очень быстро влияют на этот же параметр другого фотона, даже если он находится на другом краю вселенной.

Что такое очень быстро? Это по крайней мере в 100 000 раз быстрее скорости света!!! (А возможно, эта скорость передачи информации внутри запутанной пары вообще бесконечна!!!).

Итак, в начале фотон пропускается через кристалл бета-бората бария (BBO), который преобразует единичный фотон в пару запутанных фотонов пониженной частоты которые летят в разные стороны. Их называют условно сигнальный и холостой. Сигнальный пролетает через 2 щели на экран, где и оставляет след как от частицы или как след от волны. А вот холостой летит в другую сторону, не будучи ограниченным расстоянием до экрана. И именно над ним производится манипуляция по снятию метки, после чего детектор не может определить через какую щель пролетел сигнальный фотон.

В пользу того, что на результат влияет сам факт наблюдения, а не наличие физического детектора, говорит то, что самые выдающиеся нобелевские физики 20 века Эйнштейн, Бор и другие много обсуждали это явление. Если бы всё упиралось в обычное физическое влияние детектора, никто бы не удивился, и говорить было бы не о чем. Напротив, ученые повыдвигали много сложных теорий по объяснению феномена. Точнее, по законам микромира на основании открытого феномена при котором будущее наблюдение как-то влияет на прошлое событие. В частности, Эйншейн так выразился:

«Вы действительно верите в то, что Луны нет на небе, пока мы не взглянем на неё?»

Из того что я накопал в интернете выходит, что в дискуссиях на русском языке народ разделился на 2 категории - одни считают, что хоть стирай данные, хоть не стирай, всё равно, на экране будут 2 полоски, другие считают что при стирании данных с детекторов на экране получится волновая картина с множеством полос (более 2).

Я брал инфу, в том числе, отсюда:

(текстовая версия тут http://lampalap.blogspot.com/2014/12/blog-post_16.html )

Вот инфа о нём:

Том Кэмпбелл (Thomas Campbell) - физик-ядерщик, работал на NASA.

все эти квантовые дела подробно описываются словами и картинками со схемами в книге Грина Брайана "Ткань космоса: Пространство, время и текстура реальности" http://e-libra.ru/read/311672-tkan-kosmosa:-prostranstvo,-vremya-i-tekstura-realnosti.html . В сети многие цитируют эту книгу.

Бра́йан Рэ́ндолф Грин (англ. Brian Randolph Greene, 9 февраля 1963 года) — физик-теоретик и один из наиболее известных струнных теоретиков, с 1996 года является профессором Колумбийского университета .

Математические способности Брайана были настолько высоки, что в двенадцать лет он начал брать частные уроки у профессора Колумбийского университета , поскольку к тому времени он уже освоил школьную программу.

После окончания Стайвесантской школы (Stuyvesant High School) Брайан Грин в 1980 году поступил на физический факультет Гарвардского университета, где получил степень бакалавра. Став обладателем стипендии Родса, он продолжил обучение в Оксфордском университете и в 1987 году получил докторскую степень .

В 1996 году Грин перешёл в Колумбийский университет, где он работает по сей день. В Колумбийском университете Грин является содиректором университетского Института струн, космологии и астрофизики (ISCAP) и руководит исследовательской программой, посвящённой приложению теории струн к проблемам космологии. До этого, с 1990 года, Грин работал на физическом факультете Корнеллского университета. Там он стал профессором в 1995 году.

Профессор Грин часто даёт лекции вне стен университетских аудиторий, как на популярном, так и на специальном уровне, в более чем двадцати пяти странах.

Один из его последних проектов — организация ежегодного Всемирного фестиваля науки (World Science Festival), который проходит в Нью-Йорке с 2008 года.

Брайан Грин — вегетарианец с детства и веган с 1997 года

Книга Брайана Грина «Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории» (1999) была первой попыткой популяризации теории струн и М-теории. Она стала финалистом Пулитцеровской премии в разделе нехудожественной литературы и лауреатом премии The Aventis Prizes for Science Books в 2000 году.

Эта книга легла в основу телевизионного научно-популярного минисериала на канале PBS, а профессор Грин выступил в роли ведущего. Его вторая книга «Ткань космоса: Пространство, время и текстура реальности» (2004) является ещё более популяризированной версией «Элегантной Вселенной».

В этом видео https://www.youtube.com/watch?v=SnQkTfSpfOU ("ДОКАЗАТЕЛЬСТВА ВИРТУАЛЬНОСТИ НАШЕГО МИРА") на времени 10:35 это называется эксперимент с "отложенным выбором" и что этот эксперимент проведен в 2006 году.

Интерференция света в опыте Юнга

Иллюстрация: Timm Weitkamp (CC BY)

Команда физиков из Австралийского национального университета реализовала мысленный эксперимент Уилера с отложенным выбором, заменив фотоны сверххолодными метастабильными атомами гелия. Новая работа подтвердила классические положения принципа дополнительности Нильса Бора. опубликована в Nature Physics .

В 1978 году Джон Арчибальд Уилер предложил более изощренный вариант классического двущелевого опыта Юнга, доказавшего волновую природу света. По Юнгу пучок света направляется на перегородку с двумя узкими щелями. При этом размер каждой щели примерно соответствует длине волны излучаемого света. Проходя сквозь щели, свет попадает на проекционный экран позади. Если бы фотоны проявляли исключительно корпускулярные свойства, то на экране были бы два ярко освещенных участка позади щелей и темный участок между ними. В то же время, если фотоны проявляют волновые свойства, то каждая щель становится вторичным источником волн. Эти волны интерферируют, и вместо двух освещенных полос, возникает множество светлых и темных зон на проекционном экране. Причем один из локальных максимумов освещенности находится там, где должно быть темное место (в случае, если бы фотон был только частицей).

Казалось бы, волновая природа света экспериментально доказана, однако, математически это значило, что фотон одновременно проходит через обе щели. Тогда физики попытались, посредством измерения, определить - через какую щель в действительности пролетает один фотон. Выяснилось, что в случае наблюдения фотон вновь начал действовать как частица, как если бы «знал», что за ним наблюдают. Факт наблюдения словно разрушает волновую функцию. И наоборот, как только наблюдения нет, фотон вновь начинает интерферировать сам с собой, действуя как волна.

Констатируя экспериментально наблюдаемый корпускулярно-волновой дуализм, Нильс Бор постулировал принцип дополнительности. Он гласит, что если наблюдатель измеряет свойства квантового объекта как частицы, то он ведет себя как частица. Если же измеряются его волновые свойства, то для наблюдателя он ведет себя как волна. Поэтому для полного описания квантовомеханических явлений необходимо применять два, казалось бы, противоречащих друг другу представления, которые, в итоге, оказываются взаимно дополняющими, что и отражено в названии принципа.

Чтобы преодолеть это противоречие и проверить эффект наблюдателя Уилер предложил использовать интерферометр Маха – Цандера . Он состоит из четырех зеркал. Первое расщепляет поток света на два пучка, которые затем отражаются от двух непрозрачных зеркал и сводятся вновь вместе в четвертом зеркале. По двум сторонам от него стоят детекторы. Фотоны необходимо выпускать по одному.

Одиночный фотон как бы расщепляется на два в первом зеркале, или, иными словами, проявляет волновые свойства. Затем он отражается от двух идеальных зеркал, вновь интерферирует сам с собой в четвертом полупрозрачном зеркале, и наконец попадает в один из детекторов. Для каждого конкретного фотона срабатывает только один из детекторов, но если повторять опыт много раз, получится некоторое нетривиальное соотношение отсчетов двух детекторов. Это соотношение показывает, что частица, достигнув четвертого зеркала, ведет себя как волна. Если же четвертое зеркало убрать, то соотношение между срабатываниями будет 50:50. Это выглядит так, как будто в момент первого расщепления частица уже «решила», по какому пути она пойдет.

Идея Уилера заключалась в том, чтобы появление в схеме четвертого зеркала решалось посредством генератора случайных чисел уже после того, как фотон вошел в интерферометр, но до того, как его поглотил один из детекторов – так называемый отложенный выбор. Таким образом, экспериментаторы лишали бы фотон возможности «узнать», производится ли наблюдение или нет, и тем самым определить свое «поведение» – предстать частицей или волной. Впервые эту гипотетическую схему удалось реализовать лишь в 2007 году.


Схема интерферометра Маха - Цендера

Изображение: Wikimedia Commons


Слева классическая схема эксперимента Уиллера. Справа его новая реализация на атомах и с использованием лазерных имульсов

Изображение: Manning A.G. et als.

В новом исследовании австралийские физики использовали более массивные частицы – атомы, тем самым протестировав экспериментальную схему Уилера в совершенно новых условиях.

Ученые использовали сверххолодные атомы гелия, выпуская их поодиночке из оптической дипольной ловушки . Под действием гравитации атомы начинали падать в специальный детектор в виде микроканальной пластины . Спустя миллисекунду после начала падения лазерный луч «ударял» по атому, заставляя его занять суперпозицию двух дипольных моментов , направленных в разные стороны. Это был аналог «первого расщепляющего зеркала» Уилера.

Затем ученые решали – применить ли им второй лазерный импульс, для рекомбинации этих двух состояний. Всего могло быть два варианта такого смешанного состояния: первое в виде суммы двух волн и второе в виде разности. Какое из них возникнет, определял квантовый генератор случайных чисел. После применения второго лазерного импульса уже нельзя было определенно сказать - в каком из двух состояний находится атом. Всего таких экспериментальных проб было совершено больше тысячи.

Выяснилось, что если второй лазерный импульс не применялся, то вероятность детекции каждого из дипольных моментов равнялась 0,5. В то же время, после воздействия второго лазерного импульса наблюдалась четкая картина интерференции, выраженной в виде синусоиды, так же как и в опыте Юнга.

Таким образом, подтвердилось предположение Нильса Бора о том, что не имеет смысла приписывать то или иное поведение частицам – как волны или как собственно частицы - до того как было произведено измерение. Впрочем, существует еще одно маловероятное объяснение, что частицы каким-то образом получают информацию из будущего. Оно предполагает, что информация может передаваться быстрее света, что невозможно с точки зрения теории относительности.



Понравилась статья? Поделитесь с друзьями!