Понятие число авогадро. Число Авогадро: интересные сведения

Формализация нечетких понятий и отношений естественного языка возможна на основе понятий нечеткой и лингвистической переменных.

Нечеткой переменной называется кортеж C >, где X - название переменной; U - универсальное множество (область определения переменной X); C - нечеткое множество на U, описывающее нечеткое ограничение на значения переменной х.

Множество C описывает семантику нечеткой переменной, и его часто называют функцией совместимости нечеткой переменной. Переменная u является для X базовой переменной. Множество C определяет ту степень, с которой элементу x соответствует значение u. Значения нечеткой переменной есть числа.

Пример. Нечеткая переменная X, именуемая "человек высокого роста". Положим U = (170-200), а C определим следующим образом:

График этой функции совместимости изображен на рис.2.13.

Лингвистическойпеременной называется кортеж, M >, где X - название переменной; T(X) - терм-множество, определяющее названия лингвистических значений X из универсального множества U; G - синтаксические правила, описывающие процесс получения новых значений лингвистической переменной; M - семантическое правило, позволяющее ставить каждой нечеткой переменной X ее смысл M (X).

Лингвистическая переменная - это переменная более высокого порядка, чем нечеткая переменная, поскольку значениями лингвистической переменной являются нечеткие переменные.

Различают числовые и нечисловые лингвистические переменные. Лингвистическая переменная называется числовой, если ее область определения U есть подмножество из R 1 , т.е. из множества вещественных чисел. Значения числовой лингвистической переменной называют нечеткими числами.

Пример. Числовая лингвистическая переменная "НАДЕЖНОСТЬ" может быть описана следующим образом:

< НАДЕЖНОСТЬ, T, , G, M >

где T = {очень низкая, низкая, средняя, высокая, очень высокая}; G - процедура перебора элементов из T; M - ограничения, обусловленные значениями из T и определяющие смысл лингвистических значений. В частности, M могут быть выбраны так:

M [очень низкая]

M [низкая]

M [средняя]

M [высокая]

M [очень высокая]

Примером нечисловой лингвистической переменной может служить переменная КРАСИВЫЙ, формализующая понятие "красивый город" со значениями "не очень красивый", "красивый", "очень красивый", "очень-очень красивый" и т.п.

В дальнейшем будем рассматривать только числовые лингвистические переменные.

Порождение элементов из T(X) возможно двумя способами: процедурой просмотра элементов терм-множества и путем реализации некоторого алгоритма. Если терм-множество T(X) и функцию M можно задавать алгоритмически, то такую лингвистическую переменную называют структурированной.


Рассмотрим один из возможных способов алгоритмического задания синтаксического G и семантического M правил, связанных с данной лингвистической переменной. Для этого отождествим слова: "или", "и", "не", "очень" c отдельными операциями над нечеткими множествами следующим образом:

"или" - операция объединения; "и" - операция пересечения;

"не" - операция взятия дополнения;

"очень" - операция концентрирования.

Теперь, имея лишь небольшой набор первичных термов, можно аналитически записывать достаточно сложные лингвистические конструкции. Рассмотрим, например, лингвистическую переменную "ВЕС" на множестве людей. В качестве первичных выберем термы "легкий" T 1 и "тяжелый" T 2 . Тогда терм "не очень легкий и не очень тяжелый" можно записать так: ù(T 1 2) Ç ù(T 2 2), а "очень-очень-очень тяжелый" - (T 2 3) и т.д.

Пусть смысл лингвистического значения "легкий" определяется выражением

M (легкий)

а смысл значения “тяжелый” - выражением:

M (тяжелый)

Тогда значение “не очень тяжелый“ определяется выражением

M (не очень тяжелый)

2.9.1. Определение. Методами теории нечетких множеств описывают смысловые понятия, например, для понятия «надежность работы узла» можно определить такие составляющие, как «небольшая величина надежности узла», «средняя величина надежности узла», «большая величина надежности узла», которые задаются как нечеткие множества на базовом множестве, определяемом всеми возможными значениями величин надежности.

Обобщением описания лингвистических переменных с формальной точки зрения является введение нечетких и лингвистических переменных .

Нечеткой переменной называется тройка множеств , где a - наименование нечеткой переменной, X - область определения, - нечеткое подмножество в множестве X, описывающее ограничения на возможные значения переменной a .

Лингвистической переменной называется набор множеств , где b - название лингвистической переменной, T(b) – множество лингвистических (вербальных) значений переменной b , называемое еще терм-множеством лингвистической переменной, X - область определения, G - синтаксическое правило, имеющее форму грамматики, порождающее наименования aÎT(b) вербальных значений лингвистических переменных b , М - семантическре правило, которое ставит в соответствие каждой нечеткой переменной a нечеткое множество, - смысл нечеткой переменной a .

Из определения следует, что лингвистической переменной называется переменная, заданная на количественной (измеряемой) шкале и принимающая значения, являющиеся словами или словосочетаниями естественного языка общения. Нечеткие переменные описывают значения лингвистической переменной. На рис. 2.20 показана взаимосвязь основных понятий.

Таким образом, лингвистическими переменными можно описать трудноформализуемые понятия в виде качественного, словесного описания. Лингвистическая переменная и все ее значения связываются при описании с конкретной количественной шкалой, которая по аналогии с базовым множеством иногда называется базовой шкалой.



Применяя лингвистические переменные, можно формализовать качественную информацию в системах управления, которая специалистами (экспертами) формулируется в словесной форме. Это позволяет строить нечеткие модели систем управления (нечеткие регуляторы).

2.9.2. Вид функций принадлежности. Рассмотрим требования, которые выдвигаются к виду функций принадлежности нечетких множеств, описывающих термы лингвистических переменных.

Пусть лингвистическая переменная содержит базовое терм-множество T={T i }, . Нечеткая переменная, соответствующая терму T i , задана множеством , где нечеткое множество . Определим множество С i как носитель нечеткого множества . Будем считать, что XÍR 1 , где R 1 - упорядоченное множество действительных чисел. Обозначим нижнюю границу множества X через infX=x 1 , а верхнюю границу - supX=x 2 .

Множество T упорядочим согласно выражению

"T i ,T j ÎT i>j«($xÎC i)("yÎC j)(x>y). (2.5)

Выражение (2.5) требует, чтобы терм, который имеет носитель, расположенный левее, получил меньший номер. Тогда терм-множество всякой лингвистической переменной должно удовлетворять условиям:

("T i ÎT)($xÎX)( ); (2.8)

("b)($x 1 ÎR 1)($x 2 ÎR 2)("xÎX)(x 1 . (2.9)

Условие (2.6) требует, чтобы значения функций принадлежности крайних термов (T 1 и T 2) в точках x 1 и x 2 соответственно равнялись единице и чтобы не допускался вид колоколобразных кривых, как это показано на рис. 2.21.

Рис.2.21

Условие (2.7) запрещает в базовом множестве X пар термов типа T 1 и T 2 , T 2 и T 3 . Для пары T 1 и T 2 отсутствует естественная разграниченность понятий. Для пары T 2 и T 3 отрезку не соответствует никакое понятие. Условие (2.7) запрещает существование термов типа T 4 , поскольку каждое понятие имеет по крайней мере один типичный объект. Условие (2.8) определяет физическое ограничение (в рамках задачи) на числовые значения параметров.

На рис. 2.22 приведен пример задания функций принадлежности термов «малое значение цены», «небольшое значение цены», «среднее значение цены», «достаточно большое значение цены», «большое значение цены» лингвистической переменной «цена товара».

2.9.3. Универсальные шкалы . Функции принадлежности строятся по результатам опросов экспертов. Однако порядок использования нечетких множеств, построенных по результатам опроса экспертов, имеет недостаток, который заключается в том, что изменение условий функционирования модели (объекта) требует корректировки нечетких множеств. Корректировка может быть осуществлена по результатам повторного опроса экспертов.

Одним из путей преодоления данного недостатка является переход к универсальным шкалам измерения значений оцениваемых параметров. Известная методика построения универсальных шкал предполагает описание частоты явлений и процессов, которая на качественном уровне в естественном языке определяется следующими словами и словосочетаниями: «никогда», «чрезвычайно редко», «редко», «ни редко ни часто», «часто», «очень часто», «почти всегда» (или им подобными). Человек этими понятиями пользуется для оценки субъективных частостей событий (отношение числа событий, характеризованных понятием, к общему числу событий).

Универсальная шкала строится на отрезке и представляет собой ряд пересекающихся колоколообразных кривых, соответствующих шкалируемым частотным оценкам. Универсальную шкалу лингвистической переменной для заданного оцениваемого параметра объекта управления строят по следующей процедуре.

1. По данным экспертного опроса определяется минимальное x min и максимальное x max значения переменной шкалы X .

2. Строятся по результатам экспертного опроса функции принадлежности нечетких множеств, описывающих значения лингвистической переменной, определенной на шкале X . На рис. 2.23 показан пример построения функций принадлежности , где a 1 , a 2 , a 3 - некоторые названия нечетких переменных.

3. Точки (x min ,0) и (x max ,1) соединяются прямой линией p 0 , которая является функцией отображения p 0:X® .

4. Переход от шкалы относительных частот появления событий к частотным оценкам, называемым квантификаторами, происходит следующим образом.

Для произвольной точки z на универсальной шкале строится ее прообраз на шкале X . Затем по функциям принадлежности нечетких множеств, соответствующих термам a 1 , a 2 , a 3 , определяются значения , которые принимаются в качестве значений соответствующих функций принадлежности в точке z на универсальной шкале . Функция p (p=p 0 в рассмотренном примере) определяется экспертным опросом, т.к. ее выбор влияет на адекватность модели исследуемому объекту.

2.9.4. Множественные функции отображения . Однозначное определение функции отображения p ограничивают возможности одновременного учета разных критериев в системе управления, которые могут даже находиться в антогонизме по отношению друг к другу, а также возможность одновременного учета различных условий управления, определяемых свойствами управляемого объекта.

Учет различных условий и критериев определяется субъективным подходом к решению задачи. Если же принять функцию отображения однозначного вида, то тем самым различные точки зрения будут сведены к «общему знаменателю» или фактически отвергнуты. Практика показывает, что при управлении трудноформализуемыми процессами учет всех вариантов субъективного воззрения повышает качество управления, увеличивая устойчивость к различного рода возмущениям. Однако следует заметить, что почти никогда не удается учесть в людях все условия, влияющие на выбор управления, и все характеристики объекта. Рассмотрим, как осуществляется формализованный учет условий управления при опросе экспертов в виде множественных функций отображения.

Пусть по опросам экспертов количественно и качественно определен состав состояний исследуемого объекта. Оценка состояний объекта производится по значениям признаков y i ÎY={y 1 ,y 2 ,…,y p } .

Все учесть невозможно, поэтому при оценке состояний лучше использовать нечеткие категории, а нечеткие определения значений параметров следует производить с известной степенью неуверенности в правильности определений. Действительно, всегда можно предположить, что есть некоторое множество признаков , не указанных экспертами по разным причинам: про них забыли; эксперты считают, что эти признаки не влияют на точность; эти параметры нельзя оценить, следствие сложностей технического характера.

Функциям отображения p i ÎP={p 1 ,p 2 ,…,p b } сопоставляются степени уверенности b(p i)Î , которые задаются экспертами. Также каждой функции отображения p i сопоставляется вес a(p i) , который соответствует уровню компетентности эксперта. Значения весов a(p i) определяются числами отрезка . Таким образом, множественная функция отображения P={p 1 ,p 2 ,…,p b } состоит из набора функций отображений p i , каждой из которых ставится в соответствие степень g(p i) , определяемая как конъюнкция степеней компетентности и уверенности в правильном определении функций отображения p i , т.е. g(p i) =a(p i)&b(p i) .

Практическое использование множественных функций показало, что в пределах определенной компетентности экспертов построенная множественная функция отображения хорошо согласуется с их индивидуальными мнениями о наиболее правдоподобном соответствии нечетких понятий точкам предметной шкалы X .


НЕЧЕТКАЯ ЛОГИКА

Нечеткая операция «И»

Задание нечетких множеств позволяет обобщить четкие логические операции в их нечеткие аналоги. Нечетким расширением операции «И» является триангулярная норма Т , Другим название T –нормы яляется S –конорма. На рис. 3.1 приведено схемотехническое предствление T –нормы.

Нечеткая операция «И» в общей форме определяется как отображение:

для которых выполняются аксиомы:

Аксиомы граничных условий T –нормы:

Аксиома упорядоченности:

В теории нечетких множеств существует бесчисленное количество нечетких операций «И», которые определяются способами задания операции (Т) при выполнении условий (3.1) - (3.2). В теории нечеткого управления применимы следующие способы задания операции (Т), перечисленные ниже.

Логическое произведение [Заде, 1973 г.]:

, "xÎR . (3.6)

Алгебраическое произведение [Бандлер, Кохоут, 1980 г.]:

, "xÎR , (3.7)

где «.» - произведение, принятое в классической алгебре.

Граничное произведение [Лукашевич, Гилес, 1976 г.]:

, (3.8)

где - символ граничного произведения.

Сильное, или драстическое (drastic), произведение [Вебер, 1983 г.]:

(3.9)

где D - символ сильного произведения.

На рис. 3.2 показана функция принадлежности при логическом, алгебраическом, граничном и сильном произведении нечетких множеств.

Нечеткая операция «ИЛИ»

Нечетким расширением операции «ИЛИ» является S –норма. Иногда применяют название T –конорма. На рис. 3.3 приведено схемотехническое предствление S –нормы.

Нечеткая операция «ИЛИ» определяется как отображение

для которого выполняются отображения:

Аксиомы граничных условий T –нормы:

, ; (3.10)

Аксиомы объединения (перечечения):

Аксиома упорядоченности:

Из бесконечного числа нечетких операций, удовлетворяющих аксиомам (3.10) – (3.14), в теории управления нашли применением следующие операции, перечисленные ниже.

Логическая сумма [Заде, 1973 г.]:

, "xÎR . (3.15)

Алгебраическая сумма [Бандлер и Кохоут, 1980 г.]:

, "xÎR , (3.16)

Граничная сумма [Лукашевич, Гилес, 1976 г.]:

, (3.17)

Сильная, или драстическое (drastic), сумма [Вебер, 1983 г.]:

(3.18)

Сравнение аксиом T –нормы с аксиомами S –нормы показывает, что различие в них состоит только в аксиомах граничных условий.

На рис. 3.4 показана функция принадлежности при логической, алгебраической, граничной и сильной сумме нечетких множеств.

Нечеткая операция «НЕ»

Операция нечеткого «НЕ» определяется как отображение , для которого выполняются аксиомы:

Множество отображений, удовлетворяющих аксиомам (3.19) – (3.21), являются нечетким отрицанием. Операция нечеткого отрицания в виде схемы показана на рис. 3.5.

Из бесконечного числа нечетких операций «НЕ», удовлетворяющих аксиомам (3.19) – (3.21), в теории управления нашли применение следующие операции, перечисленные ниже.

Нечеткое «НЕ» по Заде (1973) определяется как вычитание из единицы:

. (3.22)

Нечеткое «НЕ» по Сугено (1977) или l-дополнение определяется в виде формулы

. (3.23)

При l=0 уравнение (3.23) совпадает с уравнением (3.22).

Нечеткое «НЕ» по Ягеру (1980) определяется в виде формулы:

, (3.24)

где p>0 – параметр. При p=1 уравнение (3.24) совпадает с уравнением (3.22).

Для Т- норм и S- норм могут существовать различные варианты отрицаний из-за бесконечного числа возможных нечетких операций «НЕ». Однако, желательно выбирать такие варианты отрицаний, которые удовлетворяют условиям:

Эти условия по аналогии с четкой логикой называют нечеткими законами де Моргана. Операции (3.25) и (3.26) называют взаимно дуальными, т.к. в теории нечетких множеств доказывается, что из (3.25) следует (3.26) и, наоборот, из (3.26) следует (3.25).

Взаимно дуальными являются также следующие нечеткие операции:

; (3.29)

Алгебра нечетких выводов

3.4.1. База нечетких правил. В нечеткой логике существует понятие нечеткого предложения (fuzzy proposition). Нечеткое предложение определяется в виде высказывания « ». Символ «x » обозначает физическую величину (ток, напряжение, давление, скорость и прочее), символ « » обозначает лингвистическую переменную (ЛП), а символ «p » - аббревиатура proposition – предложение. Например, в высказывании «величина тока есть большая» физической переменной x является «величина тока», которая может быть измерена датчиком тока. Нечеткое множество определено ЛП «большая» и формализовано функцией принадлежности m А (х) . Связке «есть» соответствует операция упорядоченности в виде равенства, которая обозначается символом «=». Получает формализованный вид предложение « » .

Нечеткое предложение может состоять из нескольких отдельных нечетких предложений, соединенных между собой связками «И», «ИЛИ». Выбор логических связок «И», «ИЛИ» от смысла и контекста предложений, от взаимосвязи между ними. Отметим, что операции нечеткого «И» и «ИЛИ» по Заде (формулы (3.6) и (3.15)) в теории управления предпочтительны по отношению к остальным, т.к. они не имеют избыточности. Когда нечеткие предложения не являются эквивалентными, но коррелированны и взаимосвязаны, то возможно применение Т- норм и S- норм по Лукашевичу (формулы (3.8) и (3.17)).

Предложение p может быть представлено как нечеткое отношение Р с функцией принадлежности: . Для составления нечеткого предложения, состоящего из нескольких отдельных нечетких предложений, соединенных между собой связками «И», используют индикатор «если». В результате получаем систему условных нечетких высказываний:

.

Нечеткие предложения называютусловиями или предпосылками .

Множество условий позволяет построить множество выводов или заключений . В этом случае применяют индикатор «тогда».

Продукционное нечеткое правило (fuzzy rule) – это совокупность условий и выводов:

R 1: если x 1 = и x 2 = и …, тогда y 1 = и y 2 = и …

……………………………………………………………,

где символ R 1 – аббревиатура «rule» - правило.

Например , правило при управлении температурой воды сформулировано в следующем виде: «R 1 : если температура воды есть холодная и температура воздуха есть холодная, тогда проверни вентиль горячей воды влево на большой угол и вентиль холодной воды вправо на большой угол».

Нечеткие условия для решения задачи:

-x 1 - температура воды (измеряется датчиком); - холодная;

-x 2 - температура воздуха (измеряется датчиком); - холодная;

Нечеткие условия вывода:

-y 1 - угол поворота вентиля влево, - большой;

-y 2 - угол поворота вентиля вправо, – большой.

Данному лингвистическому нечеткому правилу соответствует формализованная запись:

R 1: если x 1 = и x 2 = , тогда y 1 = и y 2 = , (3.31)

где , , и – нечеткие множества, заданные функциями принадлежности.

Совокупность нечетких продукционных правил образует базу нечетких правил , где R i: если …, тогда …; . Для базы нечетких правил справедливы следующие свойства: непрерывность, непротиворечивость, полнота.

Непрерывность определена понятиями: упорядоченная совокупность нечетких множеств; прилегающие нечеткие множества.

Совокупность нечетких множеств {A i } называется упорядоченной , если для них задано отношение порядка: «<»:A 1 <…

Если совокупность нечетких множеств { } упорядочена, то множества и , и называются прилегающими при условии, что эти нечеткие множества являются перекрывающимися.

База нечетких правил называется непрерывной , если для правил

R k: если x 1 = и x 2 = , тогда y= и k’¹k

выполнены условия:

Ù и являются прилегающими;

Ù и являются прилегающими;

‑ и являются прилегающими.

Непротиворечивость базы нечетких правил рассмотрим на примере . База нечетких правил для управления роботом задана в виде:

………………………………….

R i: если препятствие впереди, то двигайся влево,

R i +1: если препятствие впереди, то двигайся вправо,

……………………………………

База правил противоречива.

Пример непротиворечивой базы нечетких правил следующий:

R 1: если x 1 = или x 2 = , тогда y= ;

R 2: если x 1 = или x 2 = , тогда y= ;

R 3: если x 1 = или x 2 = , тогда y= .

Если правила содержат два условия и один вывод, то эти правила представляют собой систему с двумя входами x 1 и x 2 и одним выходом y . Данная система может быть представлена в матричной форме:

x 2 x 1
y=
y=
y=

База нечетких правил непротиворечива.

N A = 6,022 141 79(30)×10 23 моль −1 .

Закон Авогадро

На заре развития атомной теории () А. Авогадро выдвинул гипотезу, согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть необходимое следствие кинетической теории, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объем, при нормальных условиях равный 22,41383 . Эта величина известна как молярный объем газа .

Сам Авогадро не делал оценок числа молекул в заданном объеме, но понимал, что это очень большая величина. Первую попытку найти число молекул, занимающих данный объем, предпринял в Й. Лошмидт ; было установлено, что в 1 см³ идеального газа при нормальных условиях содержится 2,68675·10 19 молекул. По имени этого ученого указанная величина была названа числом (или постоянной) Лошмидта . С тех пор было разработано большое число независимых методов определения числа Авогадро. Превосходное совпадение полученных значений является убедительным свидетельством реального существования молекул.

Связь между константами

  • Через произведение постоянной Больцмана Универсальная газовая постоянная , R =kN A .
  • Через произведение элементарного электрического заряда на число Авогадро выражается постоянная Фарадея , F =eN A .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Постоянная Авогадро" в других словарях:

    постоянная Авогадро - Avogadro konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas(ai) Grafinis formatas atitikmenys: angl. Avogadro constant vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. константа Авогадро … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    постоянная Авогадро - Avogadro konstanta statusas T sritis fizika atitikmenys: angl. Avogadro’s constant; Avogadro’s number vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. постоянная Авогадро, f; число Авогадро, n pranc. constante d’Avogadro, f; nombre… … Fizikos terminų žodynas

    постоянная Авогадро - Avogadro konstanta statusas T sritis Energetika apibrėžtis Apibrėžtį žr. priede. priedas(ai) MS Word formatas atitikmenys: angl. Avogadro’s constant vok. Avogadro Konstante, f; Avogadrosche Konstante, f rus. константа Авогадро, f; постоянная… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    - (Авогадро число) (NA), число молекул или атомов в 1 моле вещества; NA=6,022?1023 моль 1. Названа по имени А. Авогадро … Современная энциклопедия

    Авогадро постоянная - (Авогадро число) (NA), число молекул или атомов в 1 моле вещества; NA=6,022´1023 моль 1. Названа по имени А. Авогадро. … Иллюстрированный энциклопедический словарь

    Авогадро (Avogadro) Амедео (9.8.1776, Турин, ‒ 9.7.1856, там же), итальянский физик и химик. Получил юридическое образование, затем изучал физику и математику. Член корреспондент (1804), ординарный академик (1819), а затем директор отделения… …

    - (Avogadro) Амедео (9.8.1776, Турин, 9.7.1856, там же), итальянский физик и химик. Получил юридическое образование, затем изучал физику и математику. Член корреспондент (1804), ординарный академик (1819), а затем директор отделения физико… … Большая советская энциклопедия

    Постоянная тонкой структуры, обычно обозначаемая как, является фундаментальной физической постоянной, характеризующей силу электромагнитного взаимодействия. Она была введена в 1916 году немецким физиком Арнольдом Зоммерфельдом в качестве меры… … Википедия

    - (число Авогадро), число структурных элементов (атомов, молекул, ионов или др. ч ц) в ед. кол ва в ва (в одном моле). Названа в честь А. Авогадро, обозна чается NA. А. п. одна из фундаментальных физических констант, существенная для определения мн … Физическая энциклопедия

    ПОСТОЯННАЯ - величина, имеющая неизменное значение в области её использования; (1) П. Авогадро то же, что Авогадро (см.); (2) П. Больцмана универсальная термодинамическая величина, связывающая энергию элементарной частицы с её температурой; обозначается k,… … Большая политехническая энциклопедия

Книги

  • Биографии физических констант. Увлекательные рассказы об универсальных физических постоянных. Выпуск 46
  • Биографии физических констант. Увлекательные рассказы об универсальных физических постоянных , О. П. Спиридонов. Настоящая книга посвящена рассмотрению универсальных физических постоянных и их важной роли в развитии физики. Задача книги - в популярной форме рассказать о появлении в истории физики…

Итальянский учёный Амедео Авогадро - современник А. С. Пушкина - был первым, кто понял, что количество атомов (молекул) в одном грамм-атоме (моле) вещества одинаково для всех веществ. Знание же этого числа открывает путь к оценке размеров атомов (молекул). При жизни Авогадро его гипотеза не получила должного признания. Истории числа Авогадро посвящена новая книга Евгения Залмановича Мейлихова, профессора МФТИ, главного научного сотрудника НИЦ «Курчатовский институт».

Если бы в результате какой-либо мировой катастрофы все накопленные знания оказались бы уничтоженными и к грядущим поколениям живых существ пришла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это - атомная гипотеза: <...> все тела состоят из атомов - маленьких телец, находящихся в беспрерывном движении.

Р. Фейнман, «Фейнмановские лекции по физике»

Число Авогадро (константа Авогадро, постоянная Авогадро) определяется как количество атомов в 12 граммах чистого изотопа углерода-12 (12 C). Обозначается оно обычно как N A , реже L . Значение числа Авогадро, рекомендованное CODATA (рабочая группа по фундаментальным постоянным) в 2015 году: N A = 6,02214082(11) · 10 23 моль −1 . Моль - это количество вещества, которое содержит N A структурных элементов (то есть столько же элементов, сколько атомов содержится в 12 г 12 C), причем структурными элементами обычно являются атомы, молекулы, ионы и др. По определению атомная единицы массы (а. е. м.) равна 1/12 массы атома 12 C. Один моль (грамм-моль) вещества имеет массу (молярную массу), которая, будучи выраженной в граммах, численно равна молекулярной массе этого вещества (выраженной в атомных единицах массы). Например: 1 моль натрия имеет массу 22,9898 г и содержит (примерно) 6,02 · 10 23 атомов, 1 моль фторида кальция CaF 2 имеет массу (40,08 + 2 · 18,998) = 78,076 г и содержит (примерно) 6,02 · 10 23 молекул.

В конце 2011 года на XXIV Генеральной конференции по мерам и весам единогласно принято предложение определить моль в будущей версии Международной системы единиц (СИ) таким образом, чтобы избежать его привязки к определению грамма. Предполагается, что в 2018 году моль будет определён непосредственно числом Авогадро, которому будет приписано точное (без погрешности) значение, базирующееся на результатах измерений, рекомендованных CODATA. Пока же число Авогадро является не принимаемой по определению, а измеряемой величиной.

Эта константа названа в честь известного итальянского химика Амедео Авогадро (1776–1856), который хотя сам этого числа и не знал, но понимал, что это очень большая величина. На заре развития атомной теории Авогадро выдвинул гипотезу (1811 год), согласно которой при одинаковых температуре и давлении в равных объёмах идеальных газов содержится одинаковое число молекул. Позже было показано, что эта гипотеза есть следствие кинетической теории газов, и сейчас она известна как закон Авогадро. Его можно сформулировать так: один моль любого газа при одинаковых температуре и давлении занимает один и тот же объём, при нормальных условиях равный 22,41383 л (нормальным условиям соответствуют давление P 0 = 1 атм и температура T 0 = 273,15 К). Эта величина известна как молярный объём газа.

Первую попытку найти число молекул, занимающих данный объём, предпринял в 1865 году Й. Лошмидт. Из его вычислений следовало, что количество молекул в единице объёма воздуха равно 1,8 · 10 18 см −3 , что, как оказалось, примерно в 15 раз меньше правильного значения. Через восемь лет Дж. Максвелл привёл гораздо более близкую к истине оценку - 1,9 · 10 19 см −3 . Наконец в 1908 году Перрен даёт уже приемлемую оценку: N A = 6,8 · 10 23 моль −1 числа Авогадро, найденную из экспериментов по броуновскому движению.

С тех пор было разработано большое число независимых методов определения числа Авогадро, и более точные измерения показали, что в действительности в 1 см 3 идеального газа при нормальных условиях содержится (примерно) 2,69 · 10 19 молекул. Эта величина называется числом (или постоянной) Лошмидта. Ей соответствует число Авогадро N A ≈ 6,02 · 10 23 .

Число Авогадро - одна из важных физических постоянных, сыгравших большую роль в развитии естественных наук. Но является ли она «универсальной (фундаментальной) физической постоянной»? Сам этот термин не определён и обычно ассоциируется с более или менее подробной таблицей числовых значений физических констант, которые следует использовать при решении задач. В связи с этим фундаментальными физическими постоянными зачастую считаются те величины, которые не являются константами природы и обязаны своим существованием всего лишь выбранной системе единиц (таковы, например, магнитная и электрическая постоянные вакуума) или условным международным соглашениям (такова, например, атомная единица массы). В число фундаментальных констант часто включают многие производные величины (например, газовую постоянную R , классический радиус электрона r e = e 2 / m e c 2 и т. п.) или, как в случае с молярным объёмом, значение некоторого физического параметра, относящегося к специфическим экспериментальным условиям, которые выбраны лишь из соображений удобства (давление 1 атм и температура 273,15 К). С этой точки зрения число Авогадро есть истинно фундаментальная константа.

Истории и развитию методов определения этого числа и посвящена настоящая книга. Эпопея длилась около 200 лет и на разных этапах была связана с многообразными физическими моделями и теориями, многие из которых не потеряли актуальности и по сей день. К этой истории приложили руку самые светлые научные умы - достаточно назвать А. Авогадро, Й. Лошмидта, Дж. Максвелла, Ж. Перрена, А. Эйнштейна, М. Смолуховского. Список можно было бы и продолжить...

Автор должен признаться, что идея книги принадлежит не ему, а Льву Фёдоровичу Соловейчику - его однокашнику по Московскому физико-техническому институту, человеку, который занимался прикладными исследованиями и разработками, но в душе остался физиком-романтиком. Это человек, который (один из немногих) продолжает «и в наш жестокий век» бороться за настоящее «высшее» физическое образование в России, ценит и в меру сил пропагандирует красоту и изящество физических идей. Известно, что из сюжета, который А. С. Пушкин подарил Н. В. Гоголю, возникла гениальная комедия. Конечно, здесь не тот случай, но, может быть, и эта книга покажется кому-то полезной.

Эта книга - не «научно-популярный» труд, хотя и может показаться таковым с первого взгляда. В ней на некотором историческом фоне обсуждается серьёзная физика, используется серьёзная математика и обсуждаются довольно сложные научные модели. Фактически книга состоит из двух (не всегда резко разграниченных) частей, рассчитанных на разных читателей - одним она может показаться интересной с историко-химической точки зрения, а другие, возможно, сосредоточатся на физико-математической стороне проблемы. Автор же имел в виду любознательного читателя - студента физического или химического факультета, не чуждого математики и увлечённого историей науки. Есть ли такие студенты? Точного ответа на этот вопрос автор не знает, но, исходя из собственного опыта, надеется, что есть.

Введение (в сокращении) к книге: Мейлихов Е. З. Число Авогадро. Как увидеть атом. - Долгопрудный: ИД «Интеллект», 2017.