Распределение пуассона. Распределение и формула пуассона

Реферат на тему:

Плотность воздуха


План:

    Введение
  • 1 Взаимосвязи в пределах модели идеального газа
    • 1.1 Температура, давление и плотность
    • 1.2 Влияние влажности воздуха
    • 1.3 Влияние высоты над уровнем моря в тропосфере
  • Примечания

Введение

Плотность воздуха - масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Величина плотности воздуха является функцией от высоты производимых измерений, от его температуры и влажности. Обычно стандартной величиной считается значение 1,225 кг ⁄ м 3 , которая соответствует плотности сухого воздуха при 15°С на уровне моря.


1. Взаимосвязи в пределах модели идеального газа

Влияние температуры на свойства воздуха на ур. моря
Температура Скорость
звука
Плотность
воздуха (из ур. Клапейрона)
Акустическое
сопротивление
, С c , м·сек −1 ρ , кг·м −3 Z , Н·сек·м −3
+35 351,96 1,1455 403,2
+30 349,08 1,1644 406,5
+25 346,18 1,1839 409,4
+20 343,26 1,2041 413,3
+15 340,31 1,2250 416,9
+10 337,33 1,2466 420,5
+5 334,33 1,2690 424,3
±0 331,30 1,2920 428,0
-5 328,24 1,3163 432,1
-10 325,16 1,3413 436,1
-15 322,04 1,3673 440,3
-20 318,89 1,3943 444,6
-25 315,72 1,4224 449,1

1.1. Температура, давление и плотность

Плотность сухого воздуха может быть вычислена с использованием уравнения Клапейрона для идеального газа при заданных температуре (англ.) русск. и давлении:

Здесь ρ - плотность воздуха, p - абсолютное давление, R - удельная газовая постоянная для сухого воздуха (287,058 Дж ⁄ (кг·К)) , T - абсолютная температура в Кельвинах. Таким образом подстановкой получаем:

  • при стандартной атмосфере Международного союза теоретической и прикладной химии (температуре 0°С, давлении 100 КПа, нулевой влажности) плотность воздуха 1,2754 кг ⁄ м³ ;
  • при 20 °C, 101,325 КПа и сухом воздухе плотность атмосферы составляет 1,2041 кг ⁄ м³ .

В приведенной таблице даны различные параметры воздуха, вычисленные на основании соответствующих элементарных формул, в зависимости от температуры (давление взято за 101,325 КПа)


1.2. Влияние влажности воздуха

Под влажностью понимается наличие в воздухе газообразного водяного пара, парциальное давление которого не превосходит давления насыщенного пара для данных атмосферных условий. Добавление водяного пара в воздух приводит к уменьшению его плотности, что объясняется более низкой молярной массой воды (18 гр ⁄ мол) по сравнению с молярной массой сухого воздуха (29 гр ⁄ мол). Влажный воздух может рассматриваться как смесь идеальных газов, комбинация плотностей каждого из которых позволяет получить требуемое значение для их смеси. Подобная интерпретация позволяет определение значения плотности с уровнем ошибки менее 0,2% в диапазоне температур от −10 °C до 50 °C и может быть выражена следующим образом:

где - плотность влажного воздуха (кг ⁄ м³); p d - парциальное давление сухого воздуха (Па); R d - универсальная газовая постоянная для сухого воздуха (287,058 Дж ⁄ (кг·К)); T - температура (K); p v - давление водяного пара (Па) и R v - универсальная постоянная для пара (461,495 Дж ⁄ (кг·К)). Давление водяного пара может быть определено исходя из относительной влажности:

где p v - давление водяного пара; φ - относительная влажность и p sat - парциальное давление насыщенного пара, последнее может быть представлено в виде следующего упрощенного выражения:

которое дает результат в миллибарах. Давление сухого воздуха p d определяется простой разницей:

где p обозначает абсолютное давление рассматриваемой системы.


1.3. Влияние высоты над уровнем моря в тропосфере

Зависимость давления, температуры и плотности воздуха от высоты по сравнению со стандартной атмосферой (p 0 =101325 Па, T 0 =288,15 K, ρ 0 =1,225 кг/м³).

Для вычисления плотности воздуха на определенной высоте в тропосфере могут использоваться следующие параметры (в параметрах атмосферы указано зна­чение для стандартной атмосферы):

  • стандартное атмосферное давление на уровне моря - p 0 = 101325 Па;
  • стандартная температура на уровне моря - T 0 = 288,15 K;
  • ускорение свободного падения над поверхностью Земли - g = 9,80665 м ⁄ сек 2 (при данных вычислениях считается независимой от высоты величиной);
  • скорость падения температуры (англ.) русск. с высотой, в пределах тропосферы - L = 0,0065 K ⁄ м;
  • универсальная газовая постоянная - R = 8,31447 Дж ⁄ (Мол·K) ;
  • молярная масса сухого воздуха - M = 0,0289644 кг ⁄ Мол.

Для тропосферы (т.е. области линейного убывания температуры - это единственное свойство тропосферы, используемое здесь) температура на высоте h над уровнем моря может быть задана формулой:

Давление на высоте h :

Тогда плотность может быть вычислена подстановкой соответствующих данной высоте h температуры T и давления P в формулу:

Эти три формулы (зависимость температуры, давления и плотности от высоты) и использованы для построения графиков, приведенных справа. Графики нормализованы - показывают обший вид поведения параметров. "Нулевые" значения для верных вычислений нужно каждый раз подставлять в соответствии с показаниями соответствующих приборов (градусника и барометра) на данный момент на уровне моря.

Выведенные дифференциальные уравнения (1.2, 1.4) содержат параметры, которые характеризуют жидкость или газ: плотность r , вязкость m , а также параметры пористой среды – коэффициенты пористости m и проницаемости k . Для дальнейших расчетов надо знать зависимость этих коэффициентов от давления.

Плотность капельной жидкости . При установившейся фильтрации капельной жидкости можно считать ее плотность, не зависящей от давления, то есть рассматривать жидкость как несжимаемую: r = const .

В неустановившихся процессах необходимо учитывать сжимаемости жидкости, которая характеризуется коэффициентом объемного сжатия жидкости b ж . Этот коэффициент обычно считают постоянным:

Проинтегрировав последнее равенство от начального значений давления р 0 и плотности r 0 до текущих значений, получим:

При этом получаем линейную зависимость плотности от давления.

Плотность газов . Сжимаемые жидкости (газы) при малых изменениях давления и температуры также можно характеризовать коэффициентами объёмного сжатия и температурного расширения. Но при больших изменениях давлений и температур эти коэффициенты меняются в больших пределах, поэтому зависимость плотности идеального газа с давлением и температурой находятся на основе уравнения состояния Клайперона – Менделеева :

где R’ = R/M m – газовая постоянная, зависящая от состава газа.

Газовая постоянная для воздуха и метана соответственно равны, R΄ воздуха = 287 Дж/кг K˚; R΄ метан = 520 Дж/кг K˚.

Последнее уравнение иногда записывают в виде:

(1.50)

Из последнего уравнения видно, что плотность газа зависит от давления и температуры, поэтому если известна плотность газа, то необходимо указывать давление, температуру и состав газа, что неудобно. Поэтому вводятся понятия нормальных и стандартных физических условий.

Нормальные условия соответствуют температуре t = 0°С и давлению p ат = 0,1013°МПа. Плотность воздуха при нормальных условиях равна ρ в.н.ус = 1,29 кг/м 3 .

Стандартные условия соответствуют температуре t = 20°С и давлению p ат = 0,1013°МПа. Плотность воздуха при стандартных условиях равна ρ в.ст.ус = 1,22 кг/м 3 .

Поэтому по известной плотности при данных условиях можно рассчитать плотность газа при других значениях давления и температуры:

Исключая пластовую температуру, получим уравнение состояния идеального газа, которым будем пользоваться в дальнейшем:

где z – коэффициент, характеризующий степень отклонения состояния реального газа от закона идеальных газов (коэффициент сверхсжимаемости) и зависящий для данного газа от давления и температуры z = z(p, Т) . Значения коэффициента сверхсжимаемости z определяются по графикам Д. Брауна.

Вязкость нефти . Эксперименты показывают, что коэффициенты вязкости нефти (при давлениях выше давления насыщения) и газа увеличиваются с повышением давления. При значительных изменениях давления (до 100 МПа) зависимость вязкости пластовых нефтей и природных газов от давления можно принять экспоненциальной:

(1.56)

При малых изменениях давления эта зависимость имеет линейный характер.

Здесь m 0 – вязкость при фиксированном давлении p 0 ; β m – коэффициент, определяемый экспериментально и зависящий от состава нефти или газа.

Пористость пласта . Чтобы выяснить, как зависит от давления коэффициент пористости, рассмотрим вопрос о напряжениях, действующих в пористой среде, заполненной жидкостью. При уменьшении давления в жидкости увеличивается силы на скелет пористой среды, поэтому пористость уменьшается.

Вследствие малой деформации твердой фазы считают обычно, что изменение пористости зависит от изменения давления линейно. Закон сжимаемости породы записывают следующим образом, вводя коэффициент объемной упругости пласта b с :

где m 0 – коэффициент пористости при давлении p 0 .

Лабораторные эксперименты для разных зернистых пород и промысловые исследования показывают, что коэффициент объемной упругости пласта составляет (0,3 – 2) 10 -10 Па -1 .

При значительных изменениях давления изменение пористости описывается уравнением:

а при больших – экспоненциальной:

(1.61)

В трещиноватых пластах проницаемость изменяется в зависимости от давления более интенсивно, чем в пористых, поэтому в трещиноватых пластах учет зависимости k(p) более необходим, чем в гранулярных.

Уравнения состояния жидкости или газа, насыщающих пласт, и пористой среды замыкают систему дифференциальных уравнений.

Где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 .

Ряд распределения закона Пуассона имеет вид:


Назначение сервиса . Онлайн-калькулятор используется для построения Пуассоновского распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Число испытаний: n = , Вероятность p =
Вычислить вероятность для: m =
наступит раз
менее раз
не менее раз
более раз
не более раз
не менее и не более раз
наступит хотя бы один раз
В случае, когда n велико, а λ = p·n > 10 формула Пуассона дает очень грубое приближение и для расчета P n (m) используют локальную и интегральную теоремы Муавра-Лапласа .

Числовые характеристики случайной величины Х

Математическое ожидание распределения Пуассона
M[X] = λ

Дисперсия распределения Пуассона
D[X] = λ

Пример №1 . Семена содержат 0.1% сорняков. Какова вероятность при случайном отборе 2000 семян обнаружить 5 семян сорняков?
Решение.
Вероятность р мала, а число n велико. np = 2 P(5) = λ 5 e -5 /5! = 0.03609
Математическое ожидание : M[X] = λ = 2
Дисперсия : D[X] = λ = 2

Пример №2 . Среди семян ржи имеется 0.4% семян сорняков. Составить закон распределения числа сорняков при случайном отборе 5000 семян. Найти математическое ожидание и дисперсию этой случайной величины.
Решение. Математическое ожидание: M[X] = λ = 0.004*5000 = 20. Дисперсия: D[X] = λ = 20
Закон распределения:

X 0 1 2 m
P e -20 20e -20 200e -20 20 m e -20 /m!

Пример №3 . На телефонной станции неправильное соединение происходит с вероятностью 1/200. Найдите вероятность того, что среди 200 соединений произойдет:
а) ровно одно неправильное соединение;
б) меньше чем три неправильных соединения;
в) больше чем два неправильных соединения.
Решение. По условию задачи вероятность события мала, поэтому используем формулу Пуассона (15).
а) Задано: n = 200, p = 1/200, k = 1. Найдем P 200 (1).
Получаем: . Тогда P 200 (1) ≈ e -1 ≈ 0,3679.
б) Задано: n = 200, p = 1/200, k < 3. Найдем P 200 (k < 3).
Имеем: a = 1.

в) Задано: n = 200, p = 1/200, k > 2. Найдем P 200 (k > 2).
Эту задачу можно решить проще: найти вероятность противоположного события, так как в этом случае нужно вычислить меньше слагаемых. Принимая во внимание предыдущий случай, имеем

Рассмотрим случай, когда n является достаточно большим, а p - достаточно малым; положим np = a, где a - некоторое число. В этом случае искомая вероятность определяется формулой Пуассона:


Вероятность появления k событий за время длительностью t можно также найти по формуле Пуассона:
где λ - интенсивность потока событий, то есть среднее число событий, которые появляются в единицу времени.

Пример №4 . Вероятность того, что деталь бракованная, равна 0.005. проверяется 400 деталей. Укажите формулу вычисления вероятности того, что больше 3 деталей оказались с браком.

Пример №5 . Вероятность появления бракованных деталей при их массовом производстве равна p. определить вероятность того, что в партии из N деталей содержится а) ровно три детали; б) не более трех бракованных деталей.
p=0,001; N = 4500
Решение.
Вероятность р мала, а число n велико. np = 4.5 < 10. Значит случайная величина Х – распределена по Пуассоновскому распределению. Составим закон.
Случайная величина X имеет область значений (0,1,2,...,m). Вероятности этих значений можно найти по формуле:

Найдем ряд распределения X.
Здесь λ = np = 4500*0.001 = 4.5
P(0) = e - λ = e -4.5 = 0.01111
P(1) = λe -λ = 4.5e -4.5 = 0.04999

Тогда вероятность того, что в партии из N деталей содержится ровно три детали, равна:

Тогда вероятность того, что в партии из N деталей содержится не более трех бракованных деталей:
P(x<3) = P(0) + P(1) + P(2) = 0,01111 + 0,04999 + 0,1125 = 0,1736

Пример №6 . Автоматическая телефонная станция получает в среднем за час N вызовов. Определить вероятность того, что за данную минуту она получит: а) ровно два вызова; б) более двух вызовов.
N = 18
Решение.
За одну минуту АТС в среднем получает λ = 18/60 мин. = 0,3
Считая, что случайное число X вызовов, поступивших на АТС за одну минуту,
подчиняется закону Пуассона, по формуле найдем искомую вероятность

Найдем ряд распределения X.
Здесь λ = 0.3
P(0) = e - λ = e -0.3 = 0.7408
P(1) = λe -λ = 0.3e -0.3 = 0.2222

Вероятность того, что за данную минуту она получит ровно два вызова:
P(2) = 0,03334
Вероятность того, что за данную минуту она получит более двух вызовов:
P(x>2) = 1 – 0,7408 – 0,2222 – 0,03334 = 0,00366

Пример №7 . Рассматриваются два элемента, работающих независимо друг от друга. Продолжительность времени безотказной работы имеет показательное распределение с параметром λ1 = 0,02 для первого элемента и λ2 = 0,05 для второго элемента. Найти вероятность того, что за 10 часов: а) оба элемента будут работать безотказно; б) только Вероятность того, что за 10 часов элемент №1 не выйдет из строя:
Рещение.
P 1 (0) = e -λ1*t = e -0.02*10 = 0,8187

Вероятность того, что за 10 часов элемент №2 не выйдет из строя:
P 2 (0) = e -λ2*t = e -0.05*10 = 0,6065

а) оба элемента будут работать безотказно;
P(2) = P 1 (0)*P 2 (0) = 0,8187*0,6065 = 0,4966
б) только один элемент выйдет из строя.
P(1) = P 1 (0)*(1-P 2 (0)) + (1-P 1 (0))*P 2 (0) = 0.8187*(1-0.6065) + (1-0.8187)*0.6065 = 0.4321

Пример №7 . Производство даёт 1% брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбраковано будет не больше 17?
Примечание : поскольку здесь n*p =1100*0.01=11 > 10, то необходимо использовать

Снова напомним ситуацию, которая была названа схемой Бернулли: производится n независимых испытаний, в каждом из которых некоторое событие А может появиться с одной и той же вероятностью р . Тогда для определения вероятности того, что в этих n испытаниях событие А появится ровно k раз (такая вероятность обозначалась P n (k ) ) может быть точно вычислена по формуле Бернулли , гдеq =1− p . Однако при большом числе испытаний n расчеты по формуле Бернулли становятся очень неудобными, так как приводят к действиям с очень большими числами. Поэтому (если помните это когда-то проходилось при изучении схемы и формулы Бернулли при изучении первой части теории вероятностей «Случайные события») при больших n предлагались значительно более удобные (хотя и приближенные) формулы, которые оказывались тем точнее, чем больше n (формула Пуассона, локальная и интегральная формула Муавра-Лапласа). Если в схеме Бернулли число опытов n велико, а вероятность р появления события А в каждом испытании мала, то хорошее приближение дает упомянутая формула Пуассона
, где параметра = n p . Эта формула и приводит к распределению Пуассона. Дадим точные определения

Дискретная случайная величина Х имеет распределение Пуассона , если она принимает значения 0, 1, 2, ... с вероятностями р 0 , р 1 , ... , которые вычисляются по формуле

а число а является параметром распределения Пуассона. Обращаем внимание, что возможных значений с.в. Х бесконечно много это все целые неотрицательные числа. Таким образом, д.с.в Х с распределением Пуассона имеет следующий закон распределения:

При вычислении математического ожидания (по их определению для д.с.в. с известным законом распределения) придется теперь считать не конечные суммы, а суммы соответствующих бесконечных рядов (так как таблица закона распределения имеет бесконечно много столбцов). Если же посчитать суммы этих рядов, то окажется, что и математическое ожидание, и дисперсия случайной величины Х с распределением Пуассона совпадает с параметром а этого распределения:

,
.

Найдем моду d (X ) распределенной по Пуассону случайной величины Х . Применим тот же самый прием, что был использован для вычисления моды биномиально распределенной случайной величины. По определению моды d (X )= k , если вероятность
наибольшая среди всех вероятностей р 0 , р 1 , ... . Найдем такое число k (это целое неотрицательное число). При таком k вероятность p k должна быть не меньше соседних с ней вероятностей: p k −1 p k p k +1 . Подставив вместо каждой вероятности соответствующую формулу, получим, что число k должно удовлетворять двойному неравенству:

.

Если расписать формулы для факториалов и провести простые преобразования, можно получить, что левое неравенство дает k ≤ а , а правое k ≥ а −1 . Таким образом, число k удовлетворяет двойному неравенству а −1 ≤ k ≤ а , т.е. принадлежит отрезку [а −1, а ] . Поскольку длина этого отрезка, очевидно, равна 1 , то в него может попасть либо одно, либо 2 целых числа. Если число а целое, то в отрезке [а −1, а ] имеется 2 целых числа, лежащих на концах отрезка. Если же число а не целое, то в этом отрезке есть только одно целое число.

Таким образом, если число а целое, то мода распределенной по Пуассону случайной величины Х принимает 2 соседних значения: d (X )=а−1 и d (X )=а . Если же число а не целое, то мода имеет одно значение d (X )= k , где k есть единственное целое число, удовлетворяющее неравенству а −1 ≤ k ≤ а , т.е. d (X )= [а ] .

Пример . Завод отправил на базу 5000 изделий. Вероятность того, что в пути изделие повредится, равно 0.0002 . Какова вероятность, что повредится 18 изделий? Каково среднее значение поврежденных изделий? Каково наивероятнейшее число поврежденных изделий и какова его вероятность?

Во многих задачах практики приходится иметь дело со случайными величинами, распределенными по своеобразному закону, который называется законом Пуассона.

Рассмотрим прерывную случайную величину , которая может принимать только целые, неотрицательные значения:

причем последовательность этих значений теоретически не ограничена.

Говорят, что случайная величина распределена по закону Пуассона, если вероятность того, что она примет определенное значение , выражается формулой

где а – некоторая положительная величина, называемая параметром закона Пуассона.

Ряд распределения случайной величины , распределенной по закону Пуассона, имеет вид:

Убедимся, прежде всего, что последовательность вероятностей, задаваемая формулой (5.9.1), может представлять собой ряд распределения, т.е. что сумма всех вероятностей равна единице. Имеем:

.

На рис. 5.9.1 показаны многоугольники распределения случайной величины , распределенной по закону Пуассона, соответствующие различным значениям параметра . В таблице 8 приложения приведены значения для различных .

Определим основные характеристики – математическое ожидание и дисперсию – случайной величины , распределенной по закону Пуассона. По определению математического ожидания

.

Первый член суммы (соответствующий ) равен нулю, следовательно, суммирование можно начать с :

Обозначим ; тогда

. (5.9.2)

Таким образом, параметр представляет собой не что иное, как математическое ожидание случайной величины .

Для определения дисперсии найдем сначала второй начальный момент величины :

По ранее доказанному

кроме того,

Таким образом, дисперсия случайной величины, распределенной по закону Пуассона, равна её математическому ожиданию .

Это свойство распределения Пуассона часто применяется на практике для решения вопроса, правдоподобна ли гипотеза о том, что случайная величина распределена по закону Пуассона. Для этого определяют из опыта статистические характеристики – математическое ожидание и дисперсию – случайной величины. Если их значения близки, то это может служить доводом в пользу гипотезы о пуассоновском распределении; резкое различие этих характеристик, напротив, свидетельствует против гипотезы.

Определим для случайной величины , распределенной по закону Пуассона, вероятность того, что она примет значение не меньше заданного . Обозначим эту вероятность :

Очевидно, вероятность может быть вычислена как сумма

Однако значительно проще определить её из вероятности противоположного события:

(5.9.4)

В частности, вероятность того, что величина примет положительное значение, выражается формулой

(5.9.5)

Мы уже упоминали о том, что многие задачи практики приводят к распределению Пуассона. Рассмотрим одну из типичных задач такого рода.

Пусть на оси абсцисс Ох случайным образом распределяются точки (рис. 5.9.2). Допустим, что случайное распределение точек удовлетворяет следующим условиям:

1. Вероятность попадания того или иного числа точек на отрезок зависит только от длины этого отрезка, но не зависит от его положения на оси абсцисс. Иными словами, точки распределяются на оси абсцисс с одинаковой средней плотностью. Обозначим эту плотность (т.е. математическое ожидание числа точек, приходящихся на единицу длины) через .

2. Точки распределяются на оси абсцисс независимо друг от друга, т.е. вероятность попадания того или другого числа точек на заданный отрезок не зависит от того, сколько их попало на любой другой отрезок, не перекрывающийся с ним.

3. Вероятность попадания на малый участок двух или более точек пренебрежимо мала по сравнению с вероятностью попадания одной точки (это условие означает практическую невозможность совпадения двух или более точек).

Выделим на оси абсцисс определенный отрезок длины и рассмотрим дискретную случайную величину – число точек, попадающих на этот отрезок. Возможные значения величины будут

Так как точки попадают на отрезок независимо друг от друга, то теоретически не исключено, что их там окажется сколь угодно много, т.е. ряд (5.9.6) продолжается неограниченно.

Докажем, что случайная величина имеет закон распределения Пуассона. Для этого вычислим вероятность того, что на отрезок попадет ровно точек.

Сначала решим более простую задачу. Рассмотрим на оси Ох малый участок и вычислим вероятность того, что на этот участок попадет хотя бы одна точка. Будем рассуждать следующим образом. Математическое ожидание числа точек, попадающих на этот участок, очевидно, равно (т.к. на единицу длины попадает в среднем точек). Согласно условию 3 для малого отрезка можно пренебречь возможностью попадания на него двух или больше точек. Поэтому математическое ожидание числа точек, попадающих на участок , будет приближенно равно вероятности попадания на него одной точки (или, что в наших условиях равнозначно, хотя бы одной).

Таким образом, с точностью до бесконечно малых высшего порядка, при можно считать вероятность того, что на участок попадет одна (хотя бы одна) точка, равной , а вероятность того, что не попадет ни одной, равной .

Воспользуемся этим для вычисления вероятности попадания на отрезок ровно точек. Разделим отрезок на равных частей длиной . Условимся называть элементарный отрезок «пустым», если в него не попало ни одной точки, и «занятым», если в него попала хотя бы одна. Согласно вышедоказанному вероятность того, что отрезок окажется «занятым», приближенно равна ; вероятность того, что он окажется «пустым», равна . Так как, согласно условию 2, попадания точек в неперекрывающиеся отрезки независимы, то наши n отрезков можно рассмотреть как независимых «опытов», в каждом из которых отрезок может быть «занят» с вероятностью . Найдем вероятность того, что среди отрезков будет ровно «занятых». По теореме о повторении опытов эта вероятность равна

или, обозначая ,

(5.9.7)

При достаточно большом эта вероятность приближенно равна вероятности попадания на отрезок ровно точек, так как попадание двух или больше точек на отрезок имеет пренебрежимо малую вероятность. Для того чтобы найти точное значение , нужно в выражении (5.9.7) перейти к пределу при :

(5.9.8)

Преобразуем выражение, стоящее под знаком предела:

(5.9.9)

Первая дробь и знаменатель последней дроби в выражении (5.9.9) при , очевидно, стремятся к единице. Выражение от не зависит. Числитель последней дроби можно преобразовать так:

(5.9.10)

При и выражение (5.9.10) стремится к . Таким образом, доказано, что вероятность попадания ровно точек в отрезок выражается формулой

где , т.е. величина Х распределена по закону Пуассона с параметром .

Отметим, что величина по смыслу представляет собой среднее число точек, приходящееся на отрезок .

Величина (вероятность того, что величина Х примет положительное значение) в данном случае выражает вероятность того, что на отрезок попадет хотя бы одна точка:

Таким образом, мы убедились, что распределение Пуассона возникает там, где какие-то точки (или другие элементы) занимают случайное положение независимо друг от друга, и подсчитывается количество этих точек, попавших в какую-то область. В нашем случае такой «областью» был отрезок на оси абсцисс. Однако наш вывод легко распространить и на случай распределения точек на плоскости (случайное плоское поле точек) и в пространстве (случайное пространственное поле точек). Нетрудно доказать, что если соблюдены условия:

1) точки распределены в поле статистически равномерно со средней плотностью ;

2) точки попадают в неперекрывающиеся области независимым образом;

3) точки появляются поодиночке, а не парами, тройками и т.д., то число точек , попадающих в любую область (плоскую или пространственную), распределяются по закону Пуассона:

где – среднее число точек, попадающих в область .

Для плоского случая

где – площадь области ; для пространственного

где - объем области .

Заметим, что для пуассоновского распределения числа точек, попадающих в отрезок или область, условие постоянной плотности () несущественно. Если выполнены два других условия, то закон Пуассона все равно имеет место, только параметр а в нем приобретает другое выражение: он получается не простым умножение плотности на длину, площадь или объем области, а интегрированием переменной плотности по отрезку, площади или объему. (Подробнее об этом см. n° 19.4)

Наличие случайных точек, разбросанных на линии, на плоскости или объеме – неединственное условие, при котором возникает распределение Пуассона. Можно, например, доказать, что закон Пуассона является предельным для биномиального распределения:

, (5.9.12)

если одновременно устремлять число опытов к бесконечности, а вероятность – к нулю, причем их произведение сохраняет постоянное значение:

Действительно, это предельное свойство биномиального распределения можно записать в виде:

. (5.9.14)

Но из условия (5.9.13) следует, что

Подставляя (5.9.15) в (5.9.14), получим равенство

, (5.9.16)

которое только что было доказано нами по другому поводу.

Это предельное свойство биномиального закона часто находит применение на практике. Допустим, что производится большое количество независимых опытов , в каждом из которых событие имеет очень малую вероятность . Тогда для вычисления вероятности того, что событие появится ровно раз, можно воспользоваться приближенной формулой:

, (5.9.17)

где - параметр того закона Пуассона, которым приближенно заменяется биномиальное распределение.

От этого свойства закона Пуассона – выражать биномиальное распределение при большом числе опытов и малой вероятности события – происходит его название, часто применяемое в учебниках статистики: закон редких явлений.

Рассмотрим несколько примеров, связанных с пуассоновским распределением, из различных областей практики.

Пример 1. На автоматическую телефонную станцию поступают вызовы со средней плотностью вызовов в час. Считая, что число вызовов на любом участке времени распределено по закону Пуассона, найти вероятность того, что за две минуты на станцию поступит ровно три вызова.

Решение. Среднее число вызовов за две минуты равно:

Кв.м. Для поражения цели достаточно попадания в нее хотя бы одного осколка. Найти вероятность поражения цели при данном положении точки разрыва.

Решение. . По формуле (5.9.4) находим вероятность попадания хотя бы одного осколка:

(Для вычисления значения показательной функции пользуемся таблицей 2 приложения).

Пример 7. Средняя плотность болезнетворных микробов в одном кубическом метре воздуха равна 100. Берется на пробу 2 куб. дм воздуха. Найти вероятность того, что в нем будет обнаружен хотя бы один микроб.

Решение. Принимая гипотезу о пуассоновском распределении числа микробов в объеме, находим:

Пример 8. По некоторой цели производится 50 независимых выстрелов. Вероятность попадания в цель при одном выстреле равна 0,04. Пользуясь предельным свойством биномиального распределения (формула (5.9.17)), найти приближенно вероятность того, что в цель попадет: ни одного снаряда, один снаряд, два снаряда.

Решение. Имеем . По таблице 8 приложения находим вероятности.



Понравилась статья? Поделитесь с друзьями!