Равновесие физика. Равновесие механической системы

Равновесием механической системы называют такое её состояние, при котором все точки рассматриваемой системы покоятся по отношению к выбранной системе отсчета.

Моментом силы относительно какой‑либо оси называют произведение величины этой силы F на плечо d.

Проще всего выяснить условия равновесия на примере простейшей механической системы - материальной точки. Согласно первому закону динамики (см. Механика), условием покоя (или равномерного прямолинейного движения) материальной точки в инерциальной системе координат является равенство нулю векторной суммы всех приложенных к ней сил.

При переходе к более сложным механическим системам одного этого условия для их равновесия оказывается недостаточно. Кроме поступательного движения, к которому приводят нескомпенсированные внешние силы, сложная механическая система может совершать вращательное движение или деформироваться. Выясним условия равновесия абсолютно твердого тела - механической системы, состоящей из собрания частиц, взаимные расстояния между которыми не изменяются.

Возможность поступательного движения (с ускорением) механической системы можно устранить так же, как и в случае с материальной точкой, потребовав равенства нулю суммы сил, приложенных ко всем точкам системы. Это и есть первое условие равновесия механической системы.

В нашем случае твердое тело деформироваться не может, поскольку мы условились, что взаимные расстояния между его точками не изменяются. Но в отличие от материальной точки к абсолютно твердому телу можно приложить пару равных и противоположно направленных сил в разных его точках. При этом поскольку сумма этих двух сил равна нулю, то рассматриваемая механическая система поступательного движения совершать не будет. Однако очевидно, что под действием такой пары сил тело начнет вращаться относительно некоторой оси со всевозрастающей угловой скоростью.

Возникновение в рассматриваемой системе вращательного движения обусловлено наличием нескомпенсированных моментов сил. Моментом силы относительно какой‑либо оси называется произведение величины этой силы $F$ на плечо $d,$ т. е. на длину перпендикуляра, опущенного из точки $O$ (см. рис.), через которую проходит ось, на направление силы. Отметим, что момент силы при таком определении - алгебраическая величина: он считается положительным, если сила приводит к вращению против часовой стрелки, и отрицательным - в противном случае. Таким образом, второе условие равновесия твердого тела заключается в требовании равенства нулю суммы моментов всех сил относительно любой оси вращения.

В случае, когда оба найденных условия равновесия выполнены, твердое тело будет пребывать в состоянии покоя, если в момент начала действия сил скорости всех его точек были равны нулю. В противном случае оно будет совершать равномерное движение по инерции.

Рассмотренное определение равновесия механической системы ничего не говорит о том, что произойдет, если система чуть‑чуть выйдет из положения равновесия. При этом имеется три возможности: система вернется в свое прежнее состояние равновесия; система, несмотря на отклонение, не изменит своего состояния равновесия; система выйдет из состояния равновесия. Первый случай называют устойчивым состоянием равновесия, второй - безразличным, третий - неустойчивым. Характер положения равновесия определяется зависимостью потенциальной энергии системы от координат. На рисунке показаны все три типа равновесия на примере тяжелого шарика, находящегося в углублении (устойчивое равновесие), на гладком горизонтальном столе (безразличное), на вершине бугорка (неустойчивое).

Изложенный выше подход к проблеме равновесия механической системы рассматривался учеными еще в древнем мире. Так, закон равновесия рычага (т. е. твердого тела с закрепленной осью вращения) был найден Архимедом в III в. до н. э.

В 1717 г. Иоганн Бернулли разработал совершенно иной подход к нахождению условий равновесия механической системы - метод виртуальных перемещений. В основе его лежит вытекающее из закона сохранения энергии свойство сил реакций связей: при малом отклонении системы от положения равновесия полная работа сил реакций связей равна нулю.

При решении задач статики (см. Механика) на основании описанных выше условий равновесия существующие в системе связи (опоры, нити, стержни) характеризуются возникающими в них силами реакции. Необходимость учета этих сил при определении условий равновесия в случае систем, состоящих из нескольких тел, приводит к громоздким расчетам. Однако благодаря равенству нулю работы сил реакции связей при малых отклонениях от положения равновесия можно избежать рассмотрения этих сил вообще.

Кроме сил реакции на точки механической системы действуют и внешние силы. Какова их работа при малом отклонении от положения равновесия? Так как система первоначально покоится, то для любого её перемещения необходимо совершить некоторую положительную работу. В принципе эту работу могут совершать как внешние силы, так и силы реакции связей. Но, как мы уже знаем, полная работа сил реакции равна нулю. Поэтому для того, чтобы система вышла из состояния равновесия, суммарная работа внешних сил при любом возможном перемещении должна быть положительной. Следовательно, условие невозможности движения, т. е. условие равновесия, можно сформулировать как требование неположительности полной работы внешних сил при любом возможном перемещении: $ΔA≤0.$

Допустим, что при перемещениях точек системы $Δ\overrightarrow{γ}_1…\ Δ\overrightarrow{γ}_n$ сумма работ внешних сил оказалась равной $ΔA1.$ А что произойдет, если система совершит перемещения $−Δ\overrightarrow{γ}_1,−Δ\overrightarrow{γ}_2,\ …,−Δ\overrightarrow{γ}_n?$ Эти перемещения возможны так же, как и первые; однако работа внешних сил теперь изменит знак: $ΔA2 =−ΔA1.$ Рассуждая аналогично предыдущему случаю, мы придем к выводу, что теперь условие равновесия системы имеет вид: $ΔA1≥0,$ т. е. работа внешних сил должна быть неотрицательной. Единственная возможность «примирить» два этих почти противоречивых условия - потребовать точного равенства нулю полной работы внешних сил при любом возможном (виртуальном) перемещении системы из положения равновесия: $ΔA=0.$ Под возможным (виртуальным) перемещением тут подразумевается бесконечно малое мысленное перемещение системы, которое не противоречит наложенным на неё связям.

Итак, условие равновесия механической системы в виде принципа виртуальных перемещений формулируется следующим образом:

«Для равновесия любой механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ действующих на систему сил при любом возможном перемещении была равна нулю».

С помощью принципа виртуальных перемещений решаются задачи не только статики, но и гидростатики, и электростатики.

ВИДЫ РАВНОВЕСИЯ

В статике абсолютно твёрдого тела различают три вида равновесия.

1. Рассмотрим шарик, который находится на вогнутой поверхности. В поло­жении, показанном на рис. 88, шарик на­ходится в равновесии: сила реакции опо­ры уравновешивает силу тяжести .

Если отклонить шарик от положения равновесия, то векторная сумма сил тя­жести и реакции опоры уже не равна ну­лю: возникает сила , которая стремится вернуть шарик в первоначаль­ное положение равновесия (в точку О ).

Это пример устойчивого равновесия.

У с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся вернуть тело в положение равновесия.

Потенциальная энергия шарика в лю­бой точке вогнутой поверхности больше, чем потенциальная энергия в положении равновесия (в точке О ). Например, в точ­ке А (рис. 88) потенциальная энергия больше, чем потенциальная энергия в точке О на величину Е п (А ) - Е п (0) = mgh .

В положении устойчивого равновесия потенци- альная энергия тела имеет мини­мальное значение по сравнению с соседними положениями.

2. Шарик на выпуклой поверхности находится в положении равновесия в верхней точке (рис. 89), где сила тяжести уравновешена силой реакции опо­ры . Если отклонить шарик от точки О , то возникает сила , направлен­ная в сторону от положения равновесия.

Под действием силы шарик будет уда­ляться от точки О . Это пример неустой­чивого равновесия.

Н е у с т о й ч и в ы м называется такой вид равновесия, при выходе из которого возникают силы или моменты сил, которые стремятся увести тело ещё дальше от положения равновесия.

Потенциальная энергия шарика на вы­пуклой поверхности имеет наибольшее значение (максимум) в точке О . В любой другой точке потенциальная энергия ша­рика меньше. Например, в точке А (рис. 89) потенциальная энергия меньше, чем в точке О , на величину Е п (0 ) - Е п (А ) = mgh .

В положении неустойчивого равнове­сия потен-циальная энергия тела имеет максимальное значение по сравнению с соседними положениями.

3. На горизонтальной поверхности силы, действующие на шарик, уравновешены в любой точке: (рис. 90). Если, например, сместить шарик из точки О в точку А , то равнодействующая сил
тяжести и реакции опоры по-прежнему равна нулю, т.е. в точке А шарик также находится в положении равновесия.

Это пример безразличного равнове­сия.

Б е з р а з л и ч н ы м называется такой вид равновесия, при выходе из которого тело остаётся в новом положении в равновесии.

Потенциальная энергия шарика во всех точках горизонтальной поверхности (рис. 90) одинакова.

В положениях безразличного равнове­сия потен- циальная энергия одинакова.

Иногда на практике приходится опре­делять вид равновесия тел различной формы в поле сил тяжести. Для этого нужно запомнить следующие правила:

1. Тело может находиться в положении устой- чивого равновесия, если точка приложения силы реакции опоры находится выше центра тяжести тела. При этом эти точки лежат на одной вертикали (рис. 91).

На рис. 91, б роль силы реакции опоры играет сила натяжения нити .

2. Когда точка приложения силы реакции опоры находится ниже центра тяжести, возможны два случая:

Если опора точечная (площадь поверхности опоры мала), то равновесие неустойчивое (рис. 92). При небольшом отклонении от положения равновесия момент сил и стремится увеличить от­клонение от начального положения;

Если опора неточечная (площадь поверх- ности опоры велика), то положение равновесия устой- чивое в том случае, когда линия действия силы тяжести АА " пересекает поверхность опоры тела
(рис. 93). В этом случае при небольшом отклонении тела от положения равновесия возникает момент сил и , кото­рый возвращает тело в первоначальное положение.


??? ОТВЕТЬТЕ НА ВОПРОСЫ:

1. Как изменяется положение центра тяжести тела, если тело вывести из положения: а) устой­чивого равновесия? б) неустойчивого равновесия?

2. Как изменяется потенциальная энергия те­ла, если изменить его положение при безразлич­ном равновесии?

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1 положение 2). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1 положение 1). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1 положение 3).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О, изображенная на рисунке 2), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 2,1), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 2,2), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 2,3), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 2 изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2. Если же его отклонить на угол (положение 3), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

Раздел механики, в котором изучаются условия равновесия тел, называется статикой. Проще всего рассмотреть условия равновесия абсолютно твердого тела, т. е. такого тела, размеры и форму которого можно считать неизменными. Понятие абсолютно твердого тела является абстракцией, поскольку все реальные тела под влиянием приложенных к ним сил в той или иной степени деформируются, т. е. меняют свою форму и размеры. Величина деформаций зависит как от приложенных к телу сил, так и от свойств самого тела - его формы и свойств материала, из которого оно изготовлено. Во многих практически важных случаях деформации бывают малыми и использование представлений об абсолютно твердом теле является оправданным.

Модель абсолютно твердого тела. Однако не всегда малость деформаций является достаточным условием для того, чтобы тело можно было считать абсолютно твердым. Чтобы пояснить это, рассмотрим следующий пример. Доска, лежащая на двух опорах (рис. 140а), может рассматриваться как абсолютно твердое тело, несмотря на то, что она слегка прогибается под действием сил тяжести. Действительно, в этом случае условия механического равновесия позволяют определить силы реакции опор не учитывая деформации доски.

Но если та же доска лежит на тех же опорах (рис. 1406), то представление об абсолютно твердом теле является неприменимым. В самом деле, пусть крайние опоры находятся на одной горизонтали, а средняя - чуть ниже. Если доска абсолютно твердая, т. е. вообще не прогибается, то она совсем не давит на среднюю опору Если же доска прогибается, то она давит на среднюю опору, причем тем сильнее, чем больше деформация. Условия

равновесия абсолютно твердого тела в этом случае не позволяют определить силы реакции опор так как приводят к двум уравнениям для трех неизвестных величин.

Рис. 140. Силы реакции, действующие на доску, лежащую на двух (а) и на трех (б) опорах

Такие системы носят название статически неопределимых. Для их расчета необходимо учитывать упругие свойства тел.

Приведенный пример показывает, что применимость модели абсолютно твердого тела в статике определяется не столько свойствами самого тела, сколько условиями, в которых оно находится. Так, в рассмотренном примере даже тонкую соломинку можно считать абсолютно твердым телом, если она лежит на двух опорах. Но даже очень жесткую балку нельзя считать абсолютно твердым телом, если она лежит на трех опорах.

Условия равновесия. Условия равновесия абсолютно твердого тела представляют собой частный случай динамических уравнений, когда ускорение отсутствует, хотя исторически статика возникла из потребностей строительной техники почти на два тысячелетия раньше динамики. В инерциальной системе отсчета твердое тело находится в равновесии, если векторная сумма всех действующих на тело внешних сил и векторная сумма моментов этих сил равны нулю. При выполнении первого условия равно нулю ускорение центра масс тела. При выполнении второго условия отсутствует угловое ускорение вращения. Поэтому если в начальный момент тело покоилось, то оно будет оставаться в покое и дальше.

В дальнейшем мы ограничимся изучением сравнительно простых систем, в которых все действующие силы лежат в одной плоскости. В этом случае векторное условие

сводится к двум скалярным:

если расположить оси плоскости действия сил. Некоторые из входящих в условия равновесия (1) действующих на тело внешних сил могут быть заданы, т. е. их модули и направления известны. Что же касается сил реакции связей или опор, ограничивающих возможное перемещение тела, то они, как правило, заранее не заданы и сами подлежат определению. В отсутствие трения силы реакции перпендикулярны поверхности соприкосновения тел.

Рис. 141. К определению направления сил реакции

Силы реакции. Иногда возникают сомнения в определении направления силы реакции связи, как, например, на рис. 141, где изображен стержень, опирающийся в точке А о гладкую вогнутую поверхность чашки и в точке В на острый край чашки.

Для определения направления сил реакции в этом случае можно мысленно немного подвинуть стержень, не нарушая его контакта с чашкой. Сила реакции будет направлена перпендикулярно поверхности, по которой скользит точка контакта. Так, в точке А действующая на стержень сила реакции перпендикулярна поверхности чашки, а в точке В - перпендикулярна стержню.

Момент силы. Моментом М силы относительно некоторой точки

О называется векторное произведение радиуса-вектора проведенного из О в точку приложения силы, на вектор силы

Вектор М момента силы перпендикулярен плоскости, в которой лежат векторы

Уравнение моментов. Если на тело действует несколько сил, то второе, связанное с моментами сил условие равновесия записывается в виде

При этом точка О, из которой проводятся радиусы-векторы должна выбираться общей для всех действующих сил.

Для плоской системы сил векторы моментов всех сил направлены перпендикулярно плоскости, в которой лежат силы, если моменты рассматриваются относительно точки, лежащей в этой же плоскости. Поэтому векторное условие (4) для моментов сводится к одному скалярному: в положении равновесия алгебраическая сумма моментов всех внешних действующих сил равна нулю. Модуль момента силы относительно точки О равен произведению модуля

силы на расстояние от точки О до линии, вдоль которой действует сила При этом моменты, стремящиеся повернуть тело по часовой стрелке, берутся с одним знаком, против часовой стрелки - с противоположным. Выбор точки, относительно которой рассматриваются моменты сил, производится исключительно из соображений удобства: уравнение моментов будет тем проще, чем больше сил будут иметь равные нулю моменты.

Пример равновесия. Для иллюстрации применения условий равновесия абсолютно твердого тела рассмотрим следующий пример. Легкая лестница-стремянка состоит из двух одинаковых частей, шарнирно соединенных вверху и связанных веревкой у основания (рис. 142). Определим, какова сила натяжения веревки, с какими силами взаимодействуют половинки лестницы в шарнире и с какими силами они давят на пол, если на середине одной из них стоит человек весом Р.

Рассматриваемая система состоит из двух твердых тел - половинок лестницы, и условия равновесия можно применять как для системы в целом, так и для ее частей. Применяя условия равновесия ко всей системе в целом, можно найти силы реакции пола и (рис. 142). При отсутствии трения эти силы направлены вертикально вверх и условие равенства нулю векторной суммы внешних сил (1) принимает вид

Условие равновесия моментов внешних сил относительно точки А записывается следующим образом:

где - длина лестницы, угол, образованный лестницей с полом. Решая систему уравнений (5) и (6), находим

Рис. 142. Векторная сумма внешних сил и сумма моментов внешних сил в равновесии равна нулю

Разумеется, вместо уравнения моментов (6) относительно точки А можно было бы написать уравнение моментов относительно точки В (или любой другой точки). При этом получилась бы система уравнений, эквивалентная использованной системе (5) и (6).

Сила натяжения веревки и силы взаимодействия в шарнире для рассматриваемой физической системы являются внутренними и поэтому не могут быть определены из условий равновесия всей системы как целого. Для определения этих сил необходимо рассматривать условия равновесия отдельных частей системы. При этом

удачным выбором точки, относительно которой составляется уравнение моментов сил, можно добиться упрощения алгебраической системы уравнений. Так, например, в данной системе можно рассмотреть условие равновесия моментов сил, действующих на левую половинку лестницы, относительно точки С, в которой находится шарнир.

При таком выборе точки С силы, действующие в шарнире, не войдут в это условие, и мы сразу находим силу натяжения веревки Т:

откуда, учитывая, что получаем

Условие (7) означает, что равнодействующая сил Т и проходит через точку С, т. е. направлена вдоль лестницы. Поэтому равновесие этой половинки лестницы возможно, только если сила действующая на нее в шарнире, также направлена вдоль лестницы (рис. 143), а ее модуль равен модулю равнодействующей сил Т и

Рис. 143. Линии действия всех трех сил, действующих на левую половинку лестницы, проходят через одну точку

Абсолютное значение силы действующей в шарнире на другую половинку лестницы, на основании третьего закона Ньютона равно а ее направление противоположно направлению вектора Направление силы можно было бы определить непосредственно из рис. 143, учитывая, что при равновесии тела под действием трех сил линии, по которым действуют эти силы, пересекаются в одной точке. Действительно, рассмотрим точку пересечения линий действия двух из этих трех сил и составим уравнение моментов относительно этой точки. Моменты первых двух сил относительно этой точки равны нулю; значит, должен равняться нулю и момент третьей силы, что в соответствии с (3) возможно, только если линия ее действия также проходит через эту точку.

Золотое правило механики. Иногда задачу статики можно решить, вообще не рассматривая условий равновесия, а используя закон сохранения энергии применительно к механизмам без трения: ни один механизм не дает выигрыша в работе. Этот закон

называют золотым правилом механики. Для иллюстрации такого подхода рассмотрим следующий пример: тяжелый груз весом Р подвешен на невесомом шарнире с тремя звеньями (рис. 144). Какую силу натяжения должна выдержать нить, соединяющая точки А и В?

Рис. 144. К определению силы натяжения нити в трехзвенном шарнире, поддерживающем груз весом Р

Попробуем с помощью этого механизма поднимать груз Р. Отвязав нить в точке А, потянем ее вверх так, чтобы точка В медленно поднялась на расстояние Это расстояние ограничено тем, что сила натяжения нити Т должна оставаться неизменной в процессе перемещения. В данном случае, как будет видно из ответа, сила Т вообще не зависит от того, насколько сжат или растянут шарнир. Совершенная при этом работа . В результате груз Р поднимается на высоту которая, как ясно из геометрических соображений, равна Так как при отсутствии трения никаких потерь энергии не происходит, можно утверждать, что изменение потенциальной энергии груза, равное определяется совершенной при подъеме работой. Поэтому

Очевидно, что для шарнира, содержащего произвольное число одинаковых звеньев,

Нетрудно найти силу натяжения нити и в том случае, когда требуется учитывать вес самого шарнира совершаемую при подъеме работу следует приравнять сумме изменений потенциальных энергий груза и шарнира. Для шарнира из одинаковых звеньев центр масс его поднимается на Поэтому

Сформулированный принцип («золотое правило механики») применим и тогда, когда в процессе перемещений не происходит изменения потенциальной энергии, а механизм используется для преобразования силы. Редукторы, трансмиссии, вороты, системы рычагов и блоков - во всех таких системах преобразованную силу можно определить, приравнивая работы преобразованной и приложенной сил. Другими словами, при отсутствии трения отношение этих сил определяется только геометрией устройства.

Рассмотрим с этой точки зрения разобранный выше пример со стремянкой. Конечно, использовать стремянку в качестве подъемного механизма, т. е. поднимать человека, сближая половинки стремянки, вряд ли целесообразно. Однако это не может помешать нам применить описанный метод для нахождения силы натяжения веревки. Приравнивая работу, совершаемую при сближении частей стремянки, изменению потенциальной энергии человека на стремянке и связывая из геометрических соображений перемещение нижнего конца лестницы с изменением высоты груза (рис. 145), получаем, как и следовало ожидать, приведенный ранее результат:

Как уже отмечалось, перемещение следует выбрать таким, чтобы в процессе его можно было считать действующую силу постоянной. Легко убедиться, что в примере с шарниром это условие не накладывает ограничений на перемещение, так как сила натяжения нити не зависит от угла (рис. 144). Напротив, в задаче о стремянке перемещение следует выбирать малым, ибо сила натяжения веревки зависит от угла а.

Устойчивость равновесия. Равновесие бывает устойчивым, неустойчивым и безразличным. Равновесие устойчиво (рис. 146а), если при малых перемещениях тела из положения равновесия действующие силы стремятся вернуть его обратно, и неустойчиво (рис. 1466), если силы уводят его дальше от положения равновесия.

Рис. 145. Перемещения нижних концов лестницы и перемещение груза при сближении половинок стремянки

Рис. 146. Устойчивое (а), неустойчивое (б) и безразличное (в) равновесия

Если же при малых смещениях действующие на тело силы и их моменты по-прежнему уравновешиваются, то равновесие безразличное (рис. 146в). При безразличном равновесии соседние положения тела также являются равновесными.

Рассмотрим примеры исследования устойчивости равновесия.

1. Устойчивому равновесию соответствует минимум потенциальной энергии тела по отношению к ее значениям в соседних положениях тела. Этим свойством часто удобно пользоваться при отыскании положения равновесия и при исследовании характера равновесия.

Рис. 147. Устойчивость равновесия тела и положение центра масс

Вертикальная свободно стоящая колонна находится в устойчивом равновесии, поскольку при малых наклонах ее центр масс приподнимается. Так происходит до тех пор, пока вертикальная проекция центра масс не выйдет за пределы площади опоры, т. е. угол отклонения от вертикали не превысит некоторого максимального значения. Другими словами, область устойчивости простирается от минимума потенциальной энергии (при вертикальном положении) до ближайшего к нему максимума (рис. 147). Когда центр масс расположен точно над границей площади опоры, колонна также находится в равновесии, но неустойчивом. Горизонтально лежащей колонне соответствует гораздо более широкая область устойчивости.

2. Имеются два круглых карандаша с радиусами и Один из них расположен горизонтально, другой уравновешен на нем в горизонтальном положении так, что оси карандашей взаимно перпендикулярны (рис. 148а). При каком соотношении между радиусами равновесие устойчиво? На какой максимальный угол можно при этом отклонить от горизонтали верхний карандаш? Коэффициент трения карандашей друг о друга равен

На первый взгляд может показаться, что равновесие верхнего карандаша вообще неустойчиво, так как центр масс верхнего карандаша лежит выше оси, вокруг которой он может поворачиваться. Однако здесь положение оси вращения не остается неизменным, поэтому этот случай требует специального исследования. Поскольку верхний карандаш уравновешен в горизонтальном положении, центры масс карандашей лежат на этой вертикали (рис. ). проходит левее новой точки опоры С, то сила тяжести стремится вернуть верхний карандаш в положение равновесия.

Выразим это условие математически. Проведя вертикаль через точку В, видим, что должно выполняться условие

Так как то из условия (8) получаем

Поскольку сила тяжести будет стремиться возвратить верхний карандаш в положение равновесия только при Следовательно, устойчивое равновесие верхнего карандаша на нижнем возможно только тогда, когда его радиус меньше радиуса нижнего карандаша.

Роль трения. Для ответа на второй вопрос следует выяснить, какие причины ограничивают допустимый угол отклонения. Во-первых, при больших углах отклонения вертикаль, проведенная через центр масс верхнего карандаша, может пройти правее точки опоры С. Из условия (9) видно, что при заданном отношении радиусов карандашей максимальный угол отклонения

Всегда ли условий равновесия твердого тела достаточно для определения сил реакции?

Как практически можно определить направление сил реакции при отсутствии трения?

Как можно использовать золотое правило механики при анализе условий равновесия?

Если в шарнире, показанном на рис. 144, нитью соединить не точки А и В, а точки Л и С, то какой будет ее сила натяжения?

Как связана устойчивость равновесия системы с ее потенциальной энергией?

Какими условиями определяется максимальный угол отклонения тела, опирающегося на плоскость в трех точках, чтобы не была утрачена его устойчивость?

Тело находится в состоянии покоя (или движется равномерно и прямолинейно), если векторная сумма всех сил, действующих на него, равна нулю. Говорят, что силы уравновешивают друг друга. Когда мы имеем дело с телом определенной геометрической формы, при вычислении равнодействующей силы можно все силы прикладывать к центру масс тела.

Условие равновесия тел

Чтобы тело, которое не вращается, находилось в равновесии, необходимо, чтобы равнодействующая всех сил, действующий на него, была равна нулю.

F → = F 1 → + F 2 → + . . + F n → = 0 .

На рисунке выше изображено равновесие твердого тела. Брусок находится в состоянии равновесия под действием трех действующих не него сил. Линии действия сил F 1 → и F 2 → пересекаются в точке O . Точка приложения силы тяжести - центр масс тела C . Данные точки лежат на одной прямой, и при вычислении равнодействующей силы F 1 → , F 2 → и m g → приводятся к точке C .

Условия равенства нулю равнодействующей всех сил недостаточно, если тело может вращаться вокруг некоторой оси.

Плечом силы d называется длина перпендикуляра, проведенного от линии действия силы к точке ее приложения. Момент силы M - произведение плеча силы на ее модуль.

Момент силы стремится повернуть тело вокруг оси. Те моменты, которые поворачивают тело против часовой стрелки, считаются положительными. Единица измерения момента силы в международной системе CИ - 1 Н ь ю т о н м е т р.

Определение. Правило моментов

Если алгебраическая сумма всех моментов, приложенных к телу относительно неподвижной оси вращения, равна нулю, то тело находится в состоянии равновесия.

M 1 + M 2 + . . + M n = 0

Важно!

В общем случае для равновесия тел необходимо выполнение двух условий: равенство нулю равнодействующей силы и соблюдение правила моментов.

В механике есть разные виды равновесия. Так, различают устойчивое и неустойчивое, а также безразличное равновесие.

Типичный пример безразличного равновесия - катящееся колесо (или шар), которое, если остановить его в любой точке, окажется в состоянии равновесия.

Устойчивое равновесие - такое равновесие тела, когда при его малых отклонениях возникают силы или моменты сил, которые стремятся вернуть тело в равновесное состояние.

Неустойчивое равновесие - состояние равновесия, при малом отклонении от которого силы и моменты сил стремятся вывести тело из равновесия еще больше.

На рисунке выше положение шара (1) - безразличное равновесие, (2) - неустойчивое равновесие, (3) - устойчивое равновесие.

Тело с неподвижной осью вращения может находится в любом из описанных положений равновесия. Если ось вращения проходит через центр масс, возникает безразличное равновесие. При устойчивом и неустойчивом равновесии центр масс располагается на вертикальной прямой, которая проходит через ось вращения. Когда центр масс находится ниже оси вращения, равновесие является устойчивым. Иначе - наоборот.

Особый случай равновесия - равновесие тела на опоре. При этом упругая сила распределяется по всему основанию тела, а не проходит через одну точку. Тело покоится в равновесии, когда вертикальная линия, проведенная через центр масс, пересекает площадь опоры. Иначе, если линия из центра масс не попадает в контур, образованный линиями, соединяющими точки опоры, тело опрокидывается.

Пример равновесия тела на опоре - знаменитая Пизанская башня. По легенде с нее сбрасывал шары Галилео Галилей, когда проводил свои опыты по изучению свободного падения тел.

Линия, проведенная из центра масс башни пересекает основание приблизительно в 2,3 м от его центра.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Понравилась статья? Поделитесь с друзьями!