Роль силы трения. Трение и его значение в жизни человека

Автор проекта

Третьяк Ксения ученица 7 класса

Зайцева Любовь ученица 7 класса

Тема исследования группы

Трение -друг или враг?

Цели исследования

Выяснить роль трения.

Ход исследования

1.Выяснить природу трения.

2.Роль трения в жизни животных и растений.

3.Роль трения в технике.

4.Трение в нашей жизни.

Результаты проведённого исследования

Природа трения.

Трение – удивительный феномен природы! Оно подарило человечеству тепло и огонь, возможность в короткое время остановить скоростной поезд и автомобиль, ускорить химическую реакцию в сто тысяч раз, записать человеческий голос на пластинку, услышать звуки скрипки и многое другое.В 1883 году знаменитый русский инженер и учёный Николай Павлович Петров писал: «Силу трения можно замечать всегда и повсюду, и её надо поставить в ряду могущественнейших способов, при посредстве которых природа превращает один вид энергии в другой, мало-помалу заменяя их тепловыми. Эта сила обнаруживает своё влияние в самых разнообразных явлениях природы, возбуждая живой интерес учёных самых разнообразных направлений. Знание законов трения необходимо и астроному, и физику, и физиологу, и технику».

Роль трения в жизни растений и животных. Без трения покоя ни люди, ни животные не могли бы ходить по земле, так как при ходьбе мы отталкиваемся ногами от земли. Не будь трения, предметы выскальзывали бы из рук. У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения силы трения. Среди живых организмов распространены приспособления (шерсть, щетина, чешуйки, шипы, расположенные наклонно к поверхности), благодаря которым трение получается малым при движении в одном направлении и большим – при движении в противоположном направлении. На этом принципе основано движение дождевого червя. Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.

Трение в технике. Направления использования сил трения в технике: передача движений с помощью трения, обработка материалов с помощью трения и использовании трения в механических конструкциях и орудиях труда.Трение – это главная причина изнашивания технических устройств, проблема, с которой человек столкнулся также на самой заре цивилизации. И в наше время борьба с изнашиванием технических устройств – важнейшая инженерная проблема, успешное решение которой позволило бы сэкономить десятки миллионов тонн стали, цветных металлов, резко сократить выпуск многих машин, запасных частей к ним.

Трение в нашей жизни. Огромная польза трения в нашей жизни настолько привычна и так сжилась с нашим бытом, что почти незаметна. Напомним, что человек, обитающий на суше и не умеющий летать, передвигается только благодаря наличию трения покоя в защищающей ступни обуви, конструкция которой при всем разнообразии становится постепенно все более совершенной. Увы, многие модели современной обуви, радующие глаз отделкой или модным фасоном, свидетельствуют, скорее, об обратном. Надев такую обувь, нередко чувствуешь себя беспомощным не только на обледеневшем тротуаре, но и на хорошо натертом паркете какого-нибудь фойе концертного зала. Похоже, обувщики и не подозревают, что полимерные материалы, из которых сейчас все чаще изготовляют обувь, имеют значительно более низкий коэффициент трения, чем натуральная кожа, не говоря уже о резине. Отсюда и скользкие башмаки – источники нешуточных неприятностей.

Мы провели небольшой социологический опрос группы жителей, которым задавались следующие вопросы:

1)Что Вы знаете о явлении трение?

2) Как Вы относитесь к гололёду, скользким тротуарам и дорогам?

3) Ваши пожелания администрации нашего поселка.

В опросе участвовали люди разных возрастов (60 человек)

На первый вопрос основная масса опрошенных не могла ответить определенно, т.к. не видела связи между трением и повседневным опытом.

На второй вопрос дети и школьники средних классов говорили, что лёд им нравится, можно покататься; а люди постарше уже понимают, в чём заключается опасность этого явления. Они высказывали в адрес администрации ряд предложений, например:

Посыпать дороги и тротуары песком, солью; - сделать хорошее освещение, чтобы были видны опасные места; - ограничить во время гололёда скорость транспорта на улицах; - проводить в школах беседы об оказании первой медицинской помощи в таких случаях; - проводить встречи с инспекторами ГИБДД.

Мы обратились в больницу поселения с просьбой о пострадавших во время гололеда

Мы обратились в ГИБДД за сведениями о дорожно - транспортных проишествиях по вине гололеда.

Вывод

Благодаря наличию в природе трения возможна жизнь в том виде, в каком она существует на Земле. Но вместе с тем, трение изнашивает машины и подошвы нашей обуви, двигатели автомобилей, самолетов, паровозов. Они все работают против трения, на это тратится огромное количество различных видов горючего. Трение в одних условиях полезно, а в других вредно. Следовательно, надо умело использовать силы трения. Когда в повседневной жизни, в производстве, в технике, на транспорте трение нам необходимо, нужно увеличивать его.

Стоит упомянуть и о роли силы трения в природе. Пример – это шероховатые лапки насекомых для улучшения сцепления с поверхностью, или, наоборот, это гладкие тела рыб, покрытые слизью для уменьшения трения о воду.

В природе животные и растения давно научились приспосабливаться и использовать силу трения себе во благо. То же необходимо делать и человеку, дабы обеспечить себе комфортное существование на планете Земля.

Еще примеры силы трения в природе:

· мы можем ходить по земле

· белки прыгают по веткам деревьев

· ленивец висит на ветке

· птичка может присесть на ветку

· вода точит камень

· образование планет и комет

· идет дождь и вода стекает в низину, хотя камень лежит и не скатывается в низину (у воды сила трения меньше, чем у камня)

· огромные валуны лежат на краях скал и не падают вниз - их держит сила трения

Силой трения называют силу, которая возникает при движении одного тела по поверхности другого. Она всегда направлена противоположно направлению движения. Сила трения прямо пропорциональна силе нормального давления на трущиеся поверхности и зависит от свойств этих поверхностей. Законы трения связаны с электромагнитным взаимодействием, которое существует между телами.

Различают трение внешнее и внутреннее .

Внешнее трение возникает при относительном перемещении двух соприкасающихся твердых тел (трение скольжения или трение покоя).

Внутреннее трение наблюдается при относительном перемещении частей одного и того же сплошного тела (например, жидкость или газ).

Различают сухое и жидкое (или вязкое ) трение.

Сухое трение возникает между поверхностями твердых тел в отсутствие смазки.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

Сухое трение, в свою очередь, подразделяется на трение скольжения и трение качения .

Рассмотрим законы сухого трения (рис. 4.5).

Рис. 4.5 Рис. 4.6

Подействуем на тело, лежащее на неподвижной плоскости, внешней силой , постепенно увеличивая ее модуль. Вначале брусок будет оставаться неподвижным, значит, внешняя сила уравновешивается некоторой силой , направленной по касательной к трущейся поверхности, противоположной силе . В этом случае и есть сила трения покоя.

Установлено, что максимальная сила трения покоя не зависит от площади соприкосновения тел и приблизительно пропорциональна модулю силы нормального давления N :

μ 0 – коэффициент трения покоя , зависящий от природы и состояния трущихся поверхностей.

Когда модуль внешней силы, а следовательно, и модуль силы трения покоя превысит значение F 0 , тело начнет скользить по опоре – трение покоя F тр.пок сменится трением скольжения F ск (рис. 4.6):

F тр = μ N , (4.4.1)

где μ – коэффициент трения скольжения.

Трение качения возникает между шарообразным телом и поверхностью, по которой оно катится. Сила трения качения подчиняется тем же законам, что и сила трения скольжения, но коэффициент трения μ ; здесь значительно меньше.

Подробнее рассмотрим силу трения скольжения на наклонной плоскости (рис. 4.7).

На тело, находящееся на наклонной плоскости с сухим трением, действуют три силы: сила тяжести , нормальная сила реакции опоры и сила сухого трения . Сила есть равнодействующая сил и ; она направлена вниз, вдоль наклонной плоскости. Из рис. 4.7 видно, что

F = mg sin α, N = mg cos α.

Рис. 4.7

Если – тело остается неподвижным на наклонной плоскости. Максимальный угол наклона α определяется из условия (F тр) max = F или μ mg cosα = mg sinα, следовательно, tg α max = μ, где μ – коэффициент сухого трения.

F тр = μN = mg cosα,
F = mg sinα.

При α > α max тело будет скатываться с ускорением

a = g (sinα - μ cosα),
F ск = ma = F - F тр.

Если дополнительная сила F вн, направленная вдоль наклонной плоскости, приложена к телу, то критический угол α max и ускорение тела будут зависеть от величины и направления этой внешней силы.

Сила трения покоя сила, возникающая на границе соприкасающихся тел при отсутствии их относительного движения .

Сила трения покоя направлена по касательной к поверхности соприкасающихся тел (рис. 10) в сторону, противоположную силе F, и равна ей по величине: Fтр = - F.

При увеличении модуля силы F изгиб зацепившихся зазубрин будет возрастать и, в конце концов, они начнут ломаться и тело придёт в движение.

Сила трения скольжения это сила, возникающая на границе соприкасающихся тел при их относительном движении .

Вектор силы трения скольжения направлен противоположно вектору скорости движения тела относительно поверхности, по которой оно скользит.

Тело, скользящее по твёрдой поверхности, прижимается к ней силой тяжести Р, направленной по нормали. В результате этого поверхность прогибается и появляется сила упругости N (сила нормального давления или реакция опоры), которая компенсирует прижимающую силу Р (N = - P).

Чем больше сила N, тем глубже сцепление зазубрин и тем труднее их сломать. Опыт показывает, что модуль силы трения скольжения пропорционален силе нормального давления:

Безразмерный коэффициент μ называется коэффициентом трения скольжения. Он зависит от материалов соприкасающихся поверхностей и степени их шлифовки. Например, при передвижении на лыжах коэффициент трения зависит от качества смазки (современные дорогостоящие смазки), поверхности лыжни (мягкая, сыпучая, уплотнённая, оледенелая) тем или иным состоянием снега в зависимости от температуры и влажности воздуха и др. Большое количество переменных факторов делает сам коэффициент непостоянным. Если коэффициент трения лежит в пределах 0,045 – 0, 055 скольжение считается хорошим.

11вопрос. Вращение твердого тела относительно закрепленной оси. Момент инерции. Теорема Штейнера. Основное уравнение вращательного движения. Кинетическая энергия вращающегося тела. Вычисление момента инерции относительно неподвижной оси. Вращательное движение твердого тела относительно неподвижной оси. Основное уравнение динамики вращательного движения. Кинетическая энергия тела при вращательном движении.

В жизни многих растений трение играет положительную роль. Например, лианы, хмель, горох, бобы и другие вьющиеся растения благодаря трению могут цепляться за находящиеся поблизости опоры, удерживаются на них и тянутся к свету. Между опорой и стеблем возникают достаточно большое трение, т.к. стебли многократно обвивают опоры и очень плотно прилегают к ним.

У растений, имеющих корнеплоды, такие, как морковь, свекла, брюква, сила трения о грунт способствует удержанию их в почве. С ростом корнеплода давление окружающей земли на него увеличивается, а это значит, что сила трения тоже возрастает. Поэтому так трудно вытащить из земли большую свеклу, редьку или репу.

Таким растениям, как репейник, трение помогает распространять семена, имеющие колючки с небольшими крючками на концах.

Эти колючки зацепляются за шерсть животных и вместе с ними перемещаются. Семена же гороха, орехи благодаря своей шарообразной форме и малому трению качения перемещаются легко сами.

Организмы многих живых существ приспособились к трению, научились его уменьшать или увеличивать. Тело рыб имеет обтекаемую форму и покрыто слизью, что позволяет им развивать при плавании большую скорость.

Щетинистый покров моржей, тюленей, морских львов помогает им передвигаться по суше и льдинам.

Ученым недавно стало известно, как устроена кожа дельфинов, и почему они меняют свою кожу каждые 2 часа. Кожа дельфина обладает особым демпфирующим действием, позволяющим гасить турбулентность. Эта гипотеза высказана в 1957 г. немецким инженером Крамером и в настоящее вpeмя подтверждена экспериментально. Передняя часть тела дельфина обтекается ламинарно, а позади спинного плавника пограничный слой становится турбулентным.

Таким образом, «мягкость» или «волнистость» кожи дельфинов помогают им значительно уменьшать трение при скольжении в воде, а потеря частиц кожи по всему телу создает в процессе движения водовороты воды, которые сглаживают трение с потоком вокруг дельфина. Применение аналогичных технологий скольжения при строительстве судов, позволит повысить скорость движения кораблей.

У животных и человека образующие сустав кости не касаются друг друга; они покрыты суставным хрящом, который выполняет роль буфера между костными поверхностями.

А по краям хряща прикрепляется синовиальная оболочка, в которой имеется жидкость, уменьшающая трение между суставными поверхностями. Проблема трения и изнашивания в суставах решена природой на таком уровне, о котором инженеры - трибологи мoгут пока только мечтать. Ежедневные нагрузки, например, в тазобедренном суставе человека превышают тысячу ньютонов при прыжках, а трение и изнашивание практически отсутствует. В результате безотказная работа в течение всей жизни!

Дело в том, что суставная жидкость по своему составу сходна с плазмой крови, но обладает большей вязкостью, чем кровь. Внутреннее трение суставной жидкости падает в сотни раз при резком повышении скорости! Кроме того, тончайший слой этого необычного вещества ведет себя при сжатии так же, как слой резины. Поэтому трение, возникающее при скольжении в этой специфической среде, имеет весьма мало общего со знакомым жидким трением. При ходьбе, жидкость начинает выдавливаться из капилляров хряща, усиливая смазочное действие, и уменьшая трение. Суставная жидкость обладает необычной способностью резко увеличивать вязкость под давлением. В итоге процесс выдавливания смазки из хряща автоматически регулируется под действием нагрузки.

Интересно решается в живой природе инженерная задача равномерного прокачивания жидкостей по трубам.

В момент «рабочeго хода» сердца артерии упрyго расширяются, накапливая энергию. Зато в промежутках между сокращениями сердечных мышц скопленная в артериях энергия проталкивает кровь дальше в более мелкие сосуды, обеспечивая не только постоянство скорости движения, но и меньший расход энергии. Упрyгость сосудов возникает блaгодаря присутствию в артериальных стенках особого вещества ­ эластина. Снижению потерь на трение способствует также особый, напоминающий ламинарный, режим течения крови в сосудах

Чтобы увеличить сцепление с грунтом, стволами деревьев, на конечностях животных имеется целый ряд различных приспособлений: когти, острые края копыт, подковные шипы, тело пресмыкающихся покрыто бугорками и чешуйками.

Действие органов хватания (хватательные органы жуков, клешни рака; передние конечности

и хвост некоторых пород обезьян; хобот слона) тоже тесно связано с трением.

Ведь предмет или живое существо будет тем прочнее схвачено, чем больше трение между ним и органом хватания. Величина же силы трения находится в прямой зависимости от прижимающей силы.

Поэтому органы хватания устроены так, что могут либо охватывать добычу с двух сторон и зажимать ее, либо обвивать несколько раз и за счет этого стягивать с большой силой.

Кости животных и человека в местах их подвижного сочленения имеют очень гладкую поверхность, а внутренняя оболочка полости сустава выделяет специальную жидкость, которая служит суставной «смазкой».

При глотании пищи и ее движении по пищеводу трение уменьшается за счет предварительного дробления и пережевывания пищи, а также смачивания ее слюной.
При действии же органов движения у животных и человека трение проявляется как полезная сила.

У многих живых организмов существуют приспособления, благодаря которым трение получается небольшим при движении в одном направлении и резко увеличивается при движении в обратном направлении. Это, например, шерсть и чешуйки, растущие наклонно к поверхности кожи. На этом принципе основано движение дождевого червя.

Щетинки, направленные назад, свободно пропускают тело червя вперед, но тормозят обратное движение. При удлинении тела головная часть продвигается вперед, а хвостовая остается на месте, при сокращении головная часть задерживается, а хвостовая подтягивается к ней.

Водяной жук - вертячка изумительно быстро носится на поверхности воды. Чтобы захватить их сачком, требуется большая ловкость. Вертячка - лучший пловец среди водных жуков.

Оказывается, быстроте передвижения он во многом обязан покрывающей тело жировой смазке, которая значительно уменьшает трение о воду.

Все движения соприкасающихся тел друг относительно друга всегда происходят с трением: ось колеса испытывает трение в подшипнике, а его обод - трение о рельс; дверь открывается со скрипом, свидетельствующим о трении в петлях; шарик, катящийся по горизонтальному столу, останавливается под действием сил трения качения. Когда мы изучаем движение какого-нибудь тела и исключаем из рассмотрения трение, то мы, упрощая задачу, одновременно в той или иной степени искажаем действительное положение вещей. Во всех опытах, которые мы приводили для иллюстрации законов движения, мы предполагали, что трение отсутствует. В действительности же силы трения всегда влияют в большей или меньшей степени на характер движения.

Роль трения не всегда ограничивается торможением движений тел. Во многих случаях движение, например ходьба, становится возможным только благодаря действию сил трения, в частности трения покоя. При ходьбе мы ставим ноги на землю таким образом, что они должны были бы скользить назад, если бы силы трения покоя не существовало (действительно, когда мы пытаемся идти по гладкому льду, то ноги скользят назад). Так как сила трения покоя действует в направлении, противоположном тому, в котором должно было бы возникнуть скольжение, то возникает сила трения покоя, направленная вперед. Она и сообщает телу человека ускорение вперед.

Примерно так же обстоит дело и во всех самодвижущихся экипажах (велосипед, автомобиль, электровоз). Двигатель экипажа вызывает вращение ведущих колес. Если бы сила трения покоя отсутствовала, то экипаж оставался бы на месте и колеса начали бы буксовать, так что точки колеса, прикасающиеся в данный момент к земле или рельсам, проскальзывали бы назад. Возникающая сила трения покоя, действующая на колеса со стороны земли, направлена вперед и сообщает экипажу ускорение либо, уравновешивая другие силы, действующие на экипаж, поддерживает его равномерное движение. Если эта сила трения недостаточна (например, на льду), то экипаж не движется, а колеса буксуют. Наоборот, если у движущегося экипажа, колеса которого вращаются, замедлить вращение колес, не замедляя скорости самого экипажа, то в отсутствие сил трения колеса начали бы скользить по земле вперед; значит, в действительности возникает сила трения, направленная назад. На этом основано действие тормозов.

Если к электровозу прицеплен состав, то, как только электровоз двинется вперед, сцепка растянется и возникнет сила упругости сцепки, которая будет действовать на состав: это и есть сила тяги. Если увеличить силу, действующую со стороны двигателя на колеса, то увеличится и сила трения покоя, а значит, и сила тяги. Наибольшая сила тяги равна наибольшей силе трения покоя ведущих колес. При дальнейшем увеличении сил со стороны двигателя колеса начнут проскальзывать и тяга может даже уменьшиться.

Не менее важную роль играют силы трения покоя и в несамодвижущихся экипажах. Рассмотрим подробнее движение лошади, тянущей сани (рис. 72). Лошадь ставит ноги и напрягает мускулы таким образом, что в отсутствие сил трения покоя ноги скользили бы назад. При этом возникают силы трения покоя , направленные вперед. На сани же, которые лошадь тянет вперед через постромки с силой,со стороны земли действует сила трения скольжения , направленная назад. Чтобы лошадь и сани получили ускорение, необходимо, чтобы сила трения копыт лошади о поверхность дороги, была больше, чем сила трения, действующая на сани. Однако, как бы ни был велик коэффициент трения подков о землю, сила трения покоя не может быть больше той силы, которая должна была вызвать скольжение копыт (§ 64), т. е. силы мускулов лошади. Поэтому даже тогда, когда ноги лошади не скользят, все же она иногда не может сдвинуть с места тяжелые сани. При движении (когда началось скольжение) сила трения несколько уменьшается; поэтому часто достаточно только помочь лошади сдвинуть сани с места, чтобы потом она могла их везти.

66.1. Объясните роль сил трения при передаче движения от одного шкива к другому посредством приводного ремня.



Понравилась статья? Поделитесь с друзьями!