С помощью уравнения шредингера можно рассчитать. Уравнение Шредингера

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

(YСтатистическое толкование волн де Бройля (см. § 216) и соотношение неопределен­ностей Гейзенберга (см. § 215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции х ,у, z, t), |Yтак как именно она, или, точнее, величина | 2 , определяет вероятность пребывания частицы в момент времениt в объемеdV, т. е. в области с координатамих иx+dx, у иy+dy, z иz+dz .Taк как искомое уравнение должно учитывать волновые свойства частиц, то оно должно бытьволновым уравнением , подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

где ћ =h ),p/(2т- -оператор ЛапласаDмасса частицы, i - мнимая единица,U (х, у, z, t) - Yпотенциальная функция частицы в силовом поле, в котором она движется,(х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v <<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные |Yдолжны быть непрерывны; 3) функция | 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) , или в комплексной записи . Следовательно, плоская волна деБройля имеет вид

(учтено, что w = E/ћ, k=p/ћ |Y). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсомр (E=p 2 /( 2m)) и подставляя выражения (217.3), получим дифференциальное уравнение



которое совпадает с уравнением (217.1) для случая U= 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергиейU, то полная энергияЕ складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь междуЕ и р (для данного случаяp 2 /(2m )=E–U ), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера . Его также называютуравнением Шредингера, зависящим от времени от времени, иными словами, найти уравнение Шредингера дляY. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимостьстационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функцияU=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функциюy:



Уравнение (217.5) называетсяуравнением Шредингера для стационарныхсостояний . В это уравнение в качестве параметра входит полная энергияЕ частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциямиy . Но регулярные решения имеют место не при любых значениях параметраЕ, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называютсясобствен­ными. Решения же, которые соответствуютсобственным значениям энергии, называют­сясобственными функциями. Собственные значенияЕ могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят онепрерывном , илисплошном ,спектре , во втором -о дискретном спектре .

Модель атома Томсона и Резерфорда.

Представление об атомах как неделимых мельчайших частиц вещества возникло в Античные времена(Демокрит, Эпикур, Лукреций) К началу 18 века атомистическая теория приобретает все большую популярность, так как к этому времени в работах А.Лавуазье, М.В Ломоносова и Д.Дальтона была доказана реальность существования атомов. Однако вопрос о внутреннем строении атомов даже не возникал, так как атомы по проежнему считались не делимыми. Большую роль в развитии атомистической модели сыграл Менделеев разработавший в 1869 году Периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине 19 в экспериментально доказано, что эдекторон являеется одной из основных составных частей любого вещества. Эти выводы а также экспериментальные данные привели к тому что в начале 20 века серьездно встанр вопрос о строении атома. Первая попытка создания на основе накопленных экспериментальных даннных о модели атома принадлежит Томсану. Согласно этой модели атом представляет собой непрерывно заряженный положительным зарядом шар радиусом порядка м внутри которого около своих положений равновесия колеблются электроны суммарный заряд электронов равен положительному заряду шара, поэтому атом нейтрален. Через несколько лет было доказано, что представление о непрерывно распределенном внутри атома положительном заряде ошибочно.

В развитии представлений о строении атома велико значение опытов английского физика Резерфорда по рассеянию альфа частиц в веществе. Альфа частицы возникают при радтоактивных превращения, они являются положительно заряженными частицами с зарядом 2е и массой примерно 7300 раз большей массы электрона. Пучки альфа частиц обладают высокой монохроматичностью. на основании своих исследований Резерфорд в 1911г предложил ядерную (планетарную) модель атома. Согласно этой модели, вокруг положительного заряда, имеющийся заряд Ze (Z- порядковый номер элемента в системе Менделеева е – элементарный заряд размер - и массу практически равную массе атома,в области с линейными размерами порядка м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд равен суммарному заряду электронов, т.е вокруг ядра должно превращаться Z электронов. Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиусом r . При этом кулоноская сила взаимодествия между ядром и электроном сообщает электрону нормальное ускорение. Уравнение описывающее движение электрона в атоме по окружности под действием кулоновской силы = где ε0-электрическая постоянная me-и v-масса и скорость электрона на орбите радиусом r. Уравнение содержит два неизвестных r и v. Следовательно, существует бесчисленное множество значений радиуса и соответсвующих ему значений скорости, удовлетворяющих этому уравнению. Поэтому величины r и v могут меняться непрерывно, т.е может испускаться любая, а не вполне определенная порция энергии. Тогда спектры атомов должны быть сплошными. В действительности же опыт показывает, что атомы имеют линейчатый спектр. Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него. Таким образом, атом Резерфорда оказывается неустойчивой системой, что опять –таки противоречит действительности. Попытки построить модель атома в рамках классической физики не привели к успеху модель томсона была опровергнута опытами Резерфорда, ядерная же модель оказалась неустойчивой электодинамически противоречила опытным данным. Преодоление возникших трудностей потребовало создание качественно новой – квантовой теории атома

Линейчатый спектр водорода

Исследование спектров излучения заряженных газов показали каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спиральных линий. Самым изученым являются спектр наиболее простого атома – атома водорода. Швецарский ученный Бальмер подобрал эмпирическую формулу описывающую все известные в то время спектральные линии атома водорода в видимой области спектра где Rштрих= -постоянная Ридберга. В дальнейшем в спектре атома водорода было обнаружено еще нескольких серий. В ультрафиолетовой области спектра находится серия Лаймана

В инфракрасной области спектра были также обнаружены

Серия Пашена

Серия Брэкета

v=R(1/4^2 -1/n^2) (n=5,6,7…...)

серия Пфунда

v=R(1/5^2 -1/n^2) (n=6,7,8…...)

серия Хемфри

v=R(1/6^2 -1/n^2) (n=7,8,9…...)

Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой называемой обобщенной формулой Бальмера где m имеет в кадой серии постоянное значение m=1,2,3,4,5,6(определяет серию) n, принемает целочисленные значения начиная с m+1 (определяет отдельные линии этой серии)

Постулаты Бора

Первая попытка построить качественно новую – квантовую теорию атома была предпринята в 1913 г датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.

1 постулат (постулат стационарных состояний) в атоме существуют стационарные состояния в которых он не излучает энергии, эти состояния характеризуются определенными дискретными значениями энергии. Стационарные состояния атома соответстуют стационарные орбиты по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн. В стационарном состоянии атома электрпон двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса, удовлетворяющие условию

Где me-масса электрона v- скорость

2 постулат (правило частот) при переходе электрона с одной стационарной орбиты на другую излучается один фотон с энергией

Равной разностьи энергии соответствующих стационарных состояний E_m-соответственно энергии стационарных состояний атома до и после излучения. При - происходит излучение при - его поглощение.набор возможных дискретных частот квантовый переходов и определяет линейчатый спектр атома.

О. Штерн и В Герлах проводят прямые измерения магнитных моментов и обнаружили в 1922г что узкий пучок атомов водорода заведомо находящийся в s состоянии в неоднородном магнитном поле расщипляется на два пучка. В этом состоянии момент импульса электрона равен нулю. Магнитный момент атома связанный с орбитальным движением электрона, пропорционален механическому моменту, поэтому он равен нулю и магнитное поле не должно оказывать влияние на движение атомов водорода в основном состоянии, т.е расщипления не должно быть. однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру, даже в отсутствии магнитного поля.Для объяснения тонкой структуры спектральных линий,а также ряда других трудностей в атомной физике Уленбек и Гаудсмит предложили, что электрон обладает собственным неуничтожимым механическим моментом импульса, не связанным с движение электрона в пространстве спином. Спин электрона –квантовая величина, у нее нет классического аналога, это внутреннее неотъемлемое свойство электрона подобное его массу и заряду. Если электрону приписывается собственный механический момент импульса то ему соответствует собственный магнитный момент Согласно общим выводам квантовой механике, спин квантуется по закону где s- спиновое квантовое число.

Уравнением движения микрочастицы в различных силовых полях является волновое уравнение Шредингера.

Для стационарных состояний уравнение Шредингера будет таким:

M – масса частицы, h – постоянная Планка, E – полная энергия, U – потенциальная энергия.

Уравнение Шредингера является дифференциальным уравнением второго порядка и имеет решение, которое указывает на то, что в атоме водорода полная энергия должна иметь дискретный характер:

Эта энергия находится на соответствующих уровнях n =1,2,3,…по формуле:

Самый нижний уровень E соответствует минимальной возможной энергии. Этот уровень называют основным, все остальные – возбужденными.

По мере роста главного квантового числа n энергетические уровни располагаются теснее, полная энергия уменьшается, и при n =E>0 электрон становится свободным, несвязанным с конкретным ядром, а атом – ионизированным.

Полное описание состояния электрона в атоме, помимо энергии, связано с четырьмя характеристиками, которые называются квантовыми числами. К ним относятся: главное квантовое число п, орбитальное квантовое число l, магнитное квантовое число m1, магнитное спиновое квантовое число ms.

трона в пространстве, то есть волновая функция в пространстве характеризуется тремя системами. Каждая из них имеет свои квантовые числа: п, l, ml.

Каждой микрочастице, в том числе и электрону, также свойственно собственное внутреннее сложное движение. Это движение может характеризоваться четвертым квантовым числом ms. Поговорим об этом подробнее.

A. Главное квантовое число п, согласно формуле, определяет энергетические уровни электрона в атоме и может принимать значения п = 1, 2, 3…

Б. Орбитальное квантовое число /. Из решения уравнения Шредингера следует, что момент импульса электрона (его механический орбитальный момент) квантуется, то есть принимает дискретные значения, определяемые формулой

где Ll – момент импульса электрона на орбите, l – орбитальное квантовое число, которое при заданном п принимает значение i = 0, 1, 2… (n – 1) и определяет момент импульса электрона в атоме.B. Магнитное квантовое число ml.

Из решения уравнения Шредингера следует также, что вектор Ll (момент импульса электрона) ориентируется в пространстве под влиянием внешнего магнитного поля. При этом вектор развернется так, что его проекция на направление внешнего магнитного поля будет

где ml называется магнитным квантовым числом, которое может принимать значения ml = 0, ±1, ±2,±1, то есть всего (2l + 1) значений.

Учитывая сказанное, можно сделать заключение о том, что атом водорода может иметь одно и то же значение энергии, находясь в нескольких различных состояниях (n – одно и то же, а l и ml– разные).

При движении электрона в атоме электрон заметно проявляет волновые свойства. Поэтому квантовая электроника вообще отказывается от классических представлений об электронных орбитах. Речь идет об определении вероятного места нахождения электрона на орбите, то есть местонахождение электрона может быть представлено условным «облаком». Электрон при своем движении как бы «размазан» по всему объему этого «облака». Квантовые числа n и l характеризуют размер и форму электронного «облака», а квантовое число ml– ориентацию этого «облака» в пространстве.

В 1925 г. американские физики Уленбек и Гаудсмит доказали, что электрон также обладает собственным моментом импульса (спином), хотя мы не считаем электрон сложной микрочастицей. Позднее выяснилось, что спином обладают протоны, нейтроны, фотоны и другие элементарные частицы

Опыты Штерна, Герлаха и других физиков привели к необходимости характеризовать электрон (и микрочастицы вообще) добавочной внутренней степенью свободы. Отсюда для полного описания состояния электрона в атоме необходимо задавать четыре квантовых числа: главное – п, орбитальное – l, магнитное – ml, магнитное спиновое число – ms.

В квантовой физике установлено, что так называемая симметрия или асимметрия волновых функций определяется спином частицы. В зависимости от характера симметрии частиц все элементарные частицы и построенные из них атомы и молекулы делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются асимметричными волновыми функциями и подчиняются статистике Ферми-Дирака. Эти частицы называются фермионами. Частицы с целочисленным спином, в том числе и с нулевым, такие как фотон (Ls =1) или л-мезон (Ls = 0), описываются симметричными волновыми функциями и подчиняются статистике Бозе– Эйнштейна. Эти частицы называются бозонами. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, также являются фермионами (суммарный спин – полуцелый), а составленные из четного – бозонами (суммарный спин – целочисленный).

Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналогов в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства – массу, электрический заряд, спин и другие внутренние характеристики (например квантовые числа). Такие частицы называют тождественными.

Необходимые свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики – принципе неразличимости тождественных частиц, согласно которому невозможно экспериментально различить тождественные частицы.

В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам. Если частицы в какой-то момент времени пронумеровать, то в следующие моменты времени можно проследить за траекторией любой из них. Классические частицы, таким образом, обладают индивидуальностью, поэтому классическая механика систем из одинаковых частиц принципиально не отличается от классической механики систем из различных частиц.

В квантовой механике положение иное. Из соотношения неопределенности вытекает, что для микрочастиц вообще неприменимо понятие траектории; состояние микрочастицы описывается волновой функцией, позволяющей лишь вычислять вероятность нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно говорить лишь о вероятности нахождения в данной области одной из тождественных частиц. Таким образом, в квантовой механике тождественные частицы полностью теряют свою индивидуальность и становятся неразличимыми. Следует подчеркнуть, что принцип неразличимости тождественных частиц не является просто следствием вероятной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, как указывалось выше, является фундаментальным.

Принимая во внимание физический смысл величины, принцип неразличимости тождественных частиц можно записать в следующем виде: , (8.1.1)

где и – соответственно, совокупность пространственных и силовых координат первой и второй частиц. Из выражения (8.1.1) вытекает, что возможны два случая:

т.е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет – антисимметричной. Изменение знака волновой функции не означает изменения состояния, т.к. физический смысл имеет лишь квадрат модуля волновой функции.

В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это не является доказательством того, что свойства симметрии или антисимметрии – признак данного типа микрочастиц.

Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса: частицы с полуцелым спином (например электроны, нейтроны и протоны) описываются антисимметричными волновыми функциями и подчиняются статистике Ферми–Дирака; эти частицы называются фермионами. Частицы с нулевым, или целочисленным, спином (например фотоны, мезоны) описываются симметричными функциями (волновыми) и подчиняются статистике Бозе–Эйнштейна; эти частицы называются бозонами.

Сложные частицы (например атомные ядра), составленные из нечетного числа фермионов, являются фермионами (суммарный спин – полуцелый), а из четного – бозонами (суммарный спин – целый).

Зависимость характера симметрии волновых функций системы тождественных частиц от спина частиц теоретически обоснована швейцарским физиком В. Паули, что явилось еще одним доказательством того, что спины являются фундаментальной характеристикой микрочастиц.

Взучив свойства элементов, расположенных в ряд по возрастанию значений их атомных масс, великий русский ученый Д.И. Менделеев в 1869 г. вывел закон периодичности:

свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от величины атомных весов элементов.

Согласно этому закону изменение свойств химических элементов по мере возрастания их атомных масс имеет периодический характер, т.е. через определенное число элементов (разное для различных периодов) свойства элементов повторяются в той же последовательности, хотя и с некоторыми качественными и количественными различиями. Лишь в трех случаях Менделеев нарушил порядок следования элементов - поставил аргон впереди калия, кобальт впереди никеля, а теллур впереди иода. Этого требовало сходство свойств химических элементов.

Графическим отображением периодического закона является таблица элементов Д.И. Менделеева. Каждому элементу в ней отвечает порядковый, номер. В таблице весь ряд элементов разбит на отдельные отрезки, внутри которых начинаются и заканчиваются циклы периодического изменения свойств. Вертикальные отрезки называются группами, а горизонтальные периодами.

Первые три периода, содержащие 2, 8 и 8 элементов называются малыми, остальные, содержащие 18, 18 и 32 элемента большими. Большие периоды подразделяются на ряды, малые же периоды совпадают с соответствующими рядами.

В каждой группе элементы больших периодов подразделяются на две подгруппы - главную и побочную. К главной подгруппе относятся сходные элементы, включающие элементы малых и больших периодов. К побочной подгруппе относятся сходные элементы, включающие только элементы больших периодов. Максимально возможная валентность элементов в группе равна номеру группы. Хотя некоторые элементы и не проявляют максимальной валентности, например, кислород, фтор, неон, с другой стороны валентность золота - элемента побочной подгруппы I группы может превышать единицу, она достигает трех.

Открытие Периодического закона побудило физиков искать его объяснение с позиций теории строения атомов и наоборот Периодический закон стал средством проверки истинности предлагаемых моделей строения атомов.

Основываясь на открытии Дж. Томсоном в 1897 г. электрона, английский физик Э. Резерфорд в 1911 г. предположил, что атом состоит из положительно заряженного ядра и вращающихся вокруг него по круговым орбитам электронов. При этом положительный заряд ядра нейтрализуется суммарным отрицательным зарядом электронов, что делает атом в целом электронейтральным. Резерфорд экспериментально доказал, что заряд ядра численно равен порядковому номеру элемента в периодической системе.

Только тогда удалось объяснить причину нарушения порядка следования элементов в таблице Менделева (аргон впереди калия, кобальт впереди никеля, а теллур впереди иода). Перечисленные элементы оказались расставлены в соответствии с изменением зарядов их ядер. Таким образом, оказалось, что основной величиной, от которой зависят свойства элемента является заряд ядра. Отсюда следует и современная формулировка периодического закона Менделеева:

Свойства химических элементов, а также формы и свойства соедине ний элементов находятся в периодической зависимости от заряда их ядер.

Сделаем рисунок

В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

или, если учесть формулу (1.1)

К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

Согласно первому граничному условию имеем:

Таким образом, получим решение нашей задачи:

Как известно, . Поэтому найденное решение можно переписать в виде:

Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

Наименьший возможный импульс движущегося электрона равен

Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно — неизвестно. Поскольку наименьшее значение p равно , то получаем:

Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически — в этом все объяснение.

Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

где n = 1, 2,…, и называется квантовым числом.

Таким образом, мы получили энергетические уровни.

Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

где – оператор Гамильтона – аналог классической функции Гамильтона

в которой и заменены операторами импульса x , y , z и координаты , , :

х → = х, y → = y, z → = z,

(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где – гамильтониан системы.

Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

Следовательно,

θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U():

−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

ψ() = Eψ(). (4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(,t) = ψ()exp(−iEt/ћ) (4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она ~ |ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2 . Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

где k = (2mE/ћ 2) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии E n соответствует волновая функция ψ n (x), которая с учетом условия нормировки

имеет вид

(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E < ћ 2 π 2 /(2mL 2). Состояния частицы ψ n в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3 . Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

Допустимые значения полной энергии определяются формулой

E n = ћω 0 (n + 1/2), n = 0, 1, 2, (4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

4.4 . Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

где радиальная функция R nl (r) и угловая функция Y lm (θ,φ), называемая сферической, удовлетворяют уравнениям

2 Y lm (θ,φ) = ћ 2 l (l +1)Y lm (θ,φ) (4.16)
Y lm (θ,φ) = ћ 2 l (l +1)Y lm (θ,φ)
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Y lm (θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции R nl (r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции R nl (r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r 0 = ћ 2 /m e e 2 ≈ 0.529·10 8 cм.

4.5 . Орбитальный момент количества движения

Собственные значения L 2 и L z являются решением уравнений

2 Y lm (θ,φ) = L 2 Y lm (θ,φ) и z Y lm (θ,φ) = L z Y lm (θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
L z = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0 s-состояние
l = 1 p-состояние
l = 2 d-состояние
l = 3 f-состояние
l = 4 g-состояние
l = 5 h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Y lm (θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 - 34 Дж·сек.

Пространственное квантование . Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6 . Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

2 = ћ 2 s(s + 1) (4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение . Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

s z ћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ,..., ±1/2ћ или 0.

Число s z − это квантовое число проекции спина. Максимальная величина s z совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения s z = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7 . Полный момент количества движения

Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

Квадрат полного момента имеет значение:

2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1,..., |l − s|

Проекция на выделенную ось J z также принимает дискретные значения:

J z = ћj z ; = -j, -j + 1,..., j − 1, j.

Число значений проекции J z равно 2j + 1. Если для и определены единственные значения проекций на ось z l z и s z , то j z также определена однозначно: j z = l z + s z .

4.8 . Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

n Радиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, j Полный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
L, l Орбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
m Магнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, s Спиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
s z Квантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения s z ћ, где s z = ± s, ± (s -1), …, ±1/2 или 0.
P или π Пространственная четность. Характеризует поведение системы при пространственной инверсии → - (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков - отрицательные.
I Изоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n (1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

где U 0 , а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, j z , однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ -). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z, t), так как именно она, или, точнее, величина || 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х +d х, у и y+dy, z и z+dz . Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h =h/(2 ), m - масса частицы -

оператор Лапласа (=д 2 / д x 2 2 / д y 2

+д 2 /д z 2), i - мнимая единица, U (х, у, z, t)

Потенциальная функция частицы в силовом поле, в котором она движется,

(х, у, z, t) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д /д x, д /д y, д /д z, д /д t должны быть непрерывны;

3) функция || 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

(x,t)=Acos(t-kx), или в комплексной записи

(х, t) =Aе i ( t-kx) .

Следовательно, плоская волна де Бройля имеет вид

=Ae -(i/h)(Et-px) (217.2)

(учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только| | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсом р(Е=р 2 /(2 m )) и подставляя выраже-

ния (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р для данного случая р 2 /(2 m )=Е -U, придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (х, у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем е - i  t =е -i(E/h0t , так что

(х, у, z , t) =(х, у, z) e -i(E/h)t ,

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель e -i(E/h)t и соответствующих преобразований придем к уравнению, определяющему функцию :

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.



Понравилась статья? Поделитесь с друзьями!