Самые известные физики мира. Что происходит с организмом фридайвера на большой глубине

Физика - одна из важнейших наук, изучаемых человеком. Ее присутствие заметно во всех сферах жизни, иногда открытия даже меняют ход истории. Поэтому великие физики так интересны и значимы для людей: их работа актуальна даже по прошествии многих веков после их смерти. Каких ученых стоит знать в первую очередь?

Андре-Мари Ампер

Французский физик появился на свет в семье коммерсанта из Лиона. Библиотека родителей была полна трудов ведущих ученых, писателей и философов. С детства Андре увлекался чтением, что помогло ему обрести глубокие знания. К двенадцати годам мальчик уже изучил основы высшей математики, а в следующем году представил свои работы в Лионскую Академию. Вскоре он начал давать частные уроки, а с 1802-го трудился преподавателем физики и химии, сначала в Лионе, а затем и в Политехнической школе Парижа. Через десять лет его избрали членом Академии наук. Имена великих физиков нередко связаны с понятиями, изучению которых они посвятили жизнь, и Ампер не исключение. Он занимался проблемами электродинамики. Единица силы электрического тока измеряется в амперах. Кроме того, именно ученый ввел многие используемые и сейчас термины. Например, это определения «гальванометр», «напряжение», «электрический ток» и многие другие.

Роберт Бойль

Многие великие физики вели свою работу во времена, когда техника и наука были практически в зачаточном состоянии, и, несмотря на это, добивались успеха. Например, уроженец Ирландии. Он занимался разнообразными физическими и химическими экспериментами, развивая атомистическую теорию. В 1660 году ему удалось открыть закон изменения объема газов в зависимости от давления. Многие великие его времени не имели представления об атомах, а Бойль не только был убежден в их существовании, но и сформировал несколько связанных с ними понятий, например «элементы» или «первичные корпускулы». В 1663 году ему удалось изобрести лакмус, а в 1680-м он первым предложил способ получения фосфора из костей. Бойль являлся членом Лондонского королевского общества и оставил после себя множество научных трудов.

Нильс Бор

Нередко великие физики оказывались значимыми учеными и в других сферах. Например, Нильс Бор также был и химиком. Член Датского королевского общества наук и ведущий ученый двадцатого века, Нильс Бор родился в Копенгагене, где и получил высшее образование. Некоторое время сотрудничал с английскими физиками Томсоном и Резерфордом. Научные работы Бора стали основой для создания квантовой теории. Многие великие физики впоследствии работали в направлениях, изначально созданных Нильсом, например, в некоторых областях теоретической физики и химии. Мало кто знает, но он также был первым ученым, заложившим основы периодический системы элементов. В 1930-х гг. сделал немало важнейших открытий в атомной теории. За достижения был отмечен Нобелевской премией по физике.

Макс Борн

Многие великие ученые-физики были родом из Германии. Например, Макс Борн родился в Бреслау, в семье профессора и пианистки. Он с детства увлекался физикой и математикой и поступил в Геттингенский университет для их изучения. В 1907 году Макс Борн защитил диссертацию, посвященную устойчивости упругих тел. Как и другие великие ученые-физики того времени, например Нильс Бор, Макс сотрудничал со специалистами Кембриджа, а именно с Томсоном. Вдохновляли Борна и идеи Эйнштейна. Макс занимался исследованием кристаллов и разработал несколько аналитических теорий. Кроме того, Борн создал математическую основу квантовой теории. Как и другие физики, Великой Отечественной войны антимилитарист Борн категорически не хотел, и в годы сражений ему пришлось эмигрировать. Впоследствии он выступит с осуждением разработок ядерного оружия. За все свои достижения Макс Борн получил Нобелевскую премию, а также был принят во многие научные академии.

Галилео Галилей

Некоторые великие физики и их открытия связаны со сферой астрономии и естествознания. К примеру, Галилей, итальянский ученый. Обучаясь медицине в университете Пизы, он ознакомился с физикой Аристотеля и принялся читать древних математиков. Увлекшись этими науками, бросил учебу и занялся сочинением «Маленьких весов» - работы, которая помогала определять массу металлических сплавов и описывала центры тяжести фигур. Галилей прославился среди итальянских математиков и получил место на кафедре в Пизе. Через какое-то время он стал придворным философом герцога Медичи. В своих работах он занимался исследованиями принципов равновесия, динамики, падения и движения тел, а также прочности материалов. В 1609 году построил первый телескоп, дающий трехкратное увеличение, а затем - и с тридцатидвухкратным. Его наблюдения дали информацию о поверхности Луны и размерах звезд. Галилей обнаружил спутники Юпитера. Его открытия произвели фурор в научной сфере. Великий физик Галилей был не слишком одобрен церковью, и это определило отношение к нему в обществе. Тем не менее, он продолжил работу, что стало поводом для доноса в инквизицию. Ему пришлось отказаться от своих учений. Но все же через несколько лет трактаты о вращении Земли вокруг Солнца, созданные на основе идей Коперника, были опубликованы: с пояснением, что это лишь гипотеза. Так, важнейший вклад ученого был сохранен для общества.

Исаак Ньютон

Изобретения и высказывания великих физиков часто становятся своего рода метафорами, но легенда про яблоко и закон тяготения известнее всех. Каждому знаком герой этой истории, согласно которой он и открыл закон тяготения. Кроме того, ученый разработал интегральное и дифференциальное исчисление, стал изобретателем зеркального телескопа и написал немало фундаментальных трудов по оптике. Современные физики считают его создателем классической науки. Ньютон родился в бедной семье, обучался в простой школе, а затем в Кембридже, параллельно работая слугой, чтобы оплатить учебу. Уже в ранние годы к нему пришли идеи, которые в будущем станут основой для изобретения систем исчислений и открытия закона тяготения. В 1669 году он стал преподавателем кафедры, а в 1672-м - членом Лондонского королевского общества. В 1687 году был опубликован важнейший труд под названием «Начала». За неоценимые достижения в 1705 году Ньютону даровали дворянство.

Христиан Гюйгенс

Как и многие другие великие люди, физики нередко являлись талантливыми в разных сферах. Например, Христиан Гюйгенс, уроженец Гааги. Его отец был дипломатом, ученым и литератором, сын получил прекрасное образование в юридической сфере, но увлекся математикой. Кроме того, Христиан прекрасно говорил на латыни, умел танцевать и ездить верхом, музицировал на лютне и клавесине. Еще в детстве он сумел самостоятельно построить себе и работал на нем. В университетские годы Гюйгенс переписывался с парижским математиком Мерсенном, что сильно повлияло на юношу. Уже в 1651 году он опубликовал труд о квадратуре круга, эллипса и гиперболы. Его работы позволили ему обрести репутацию прекрасного математика. Затем он заинтересовался и физикой, написал несколько трудов о сталкивающихся телах, которые серьезно повлияли на представления современников. Кроме того, он сделал вклад в оптику, сконструировал телескоп и даже написал работу о расчетах в азартной игре, связанных с теорией вероятности. Все это делает его выдающейся фигурой в истории науки.

Джеймс Максвелл

Великие физики и их открытия заслуживают всяческого интереса. Так, Джеймс-Клерк Максвелл добился впечатляющих результатов, с которым стоит ознакомиться всякому. Он стал основоположником теорий электродинамики. Ученый родился в дворянской семье и получил образование в университетах Эдинбурга и Кембриджа. За достижения был принят в Лондонское королевское общество. Максвелл открыл Кавендишскую лабораторию, которая была оборудована по последнему слову техники для проведения физических экспериментов. В ходе работы Максвелл изучал электромагнетизм, кинетическую теорию газов, вопросы цветного зрения и оптики. Проявил себя и как астроном: именно он установил, что устойчивы и состоят из не связанных частиц. Занимался также изучением динамики и электричества, оказав серьезное влияние на Фарадея. Исчерпывающие трактаты о многих физических явлениях до сих пор считаются актуальными и востребованными в научной среде, делая Максвелла одним из величайших специалистов в данной сфере.

Альберт Эйнштейн

Будущий ученый родился в Германии. С детства Эйнштейн любил математику, философию, увлекался чтением научно-популярных книг. За образованием Альберт отправился в технологический институт, где изучал любимую науку. В 1902 году стал сотрудником патентного бюро. За годы работы там он опубликует несколько успешных научных работ. Первые его труды связаны с термодинамикой и взаимодействием между молекулами. В 1905 году одна из работ была принята как диссертация, и Эйнштейн стал доктором наук. Альберту принадлежали множество революционных идей об энергии электронов, природе света и фотоэффекте. Самой важной стала теория относительности. Выводы Эйнштейна преобразили представления человечества о времени и пространстве. Абсолютно заслуженно он был отмечен Нобелевской премией и признан во всем научном мире.

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.

Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?


Мы уже писали, что , но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, - механику.

Движение, скорость, ускорение.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.


Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.


Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Сила тяготения, импульс и другие полезности.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.


Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?


Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?


Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.

Физика — какая емкость слова!
Физика — для нас не просто звук,
Физика — основа и опора
Всех без исключения наук!

Физика нужна!
Физика важна!
Без нее не сделать нам ни шагу!
Как из березы получить бумагу?
Как мобильный телефон превратить в магнитофон?
Как получить незатухающий костер?
Как сделать умный полотер?
Как увидеть микромир?
Как создать нам новый мир?
Как нано-технологии внедрить?
И параллельные миры заполучить?
Как заглянуть в другие времена?
Как в невесомости взрастить нам семена?
Ответ один: тут физика нужна!
Учи ее, и станешь умным ты,
Достигнешь с ней карьерной высоты!

Физика — богиня!
Физика — царица!
Физике учиться
Мы не должны лениться!

Физику знай — всегда пригодится,
Люди изучали, надо научиться.
Кто такой Джеймс, не Бонд, а Максвелл,
Что он открыл? Был нем?
Много веществ, физических тел,
Вода от водорода отличается чем.
Знаешь молекулы, атомы знай,
В физике частицы веществ изучай.
Знай единицы в системе СИ,
Много читай, немало учи!
Сила упругости, тяжести, вес —
Знанья на голову не свалятся с небес.
Если ты знаешь как скорость искать,
Время и путь надо узнать.
Формулы выведи сам,
Из того, что изучено очень давно.
В физике много узнаешь ты тем,
Задачи решишь без всяких проблем.
Но, если ты просто с доски все списал,
Сам не понял, сам не решал,
Знания золото ты не найдешь,
Если не учишь, то не поймешь!

Кочкина Диана

Физика — сложнейшая наука.
Физика не любит дураков.
Расскажу вам я про двух учеников,
Которые запоминали закон Гука.

Вася, Коля Богачёвы —
Два братишки-близнеца
Приходили после школы.
Два прилежных молодца.

— Надо делать нам уроки! —
Вдруг воскликнул братец Коля —
Да еще, в какие сроки!
Физику поучим что ли?!

Сила упругости —
Это вам не глупости!
А вот уж закон Гука —
Серьёзнейшая штука.

И принялись два брата,
Два верных близнеца
Учить закончик Гука
Почти до утреца.

Минус «К» и дельта «Эль»
О боже, что за мука!
Минус «К» и дельта «Эль» —
Серьёзнейшая штука!

А ещё и дельта «Эль» подкралася внезапно.
Закружилась голова:
Дельты, минус, «К» и «Ло»
Что-то нам невеселО!

Тихоньки стали
Два братишки-близнеца.
И спокойно, крепко спали
Два прилежных молодца.

А наутро, вставши рано,
В школу быстренько пошли.
И, державши спину прямо,
Физику сдавать пришли.

Вот и первый наш звонок.
Начался уже урок.
Вася, Коля Богачёвы
Отвечайте на вопрос.

Расскажите закон Гука.
Для мальчишек погас свет:
Нет у нас закона Гука!
Закон есть, а Гука нет!

— Это что ещё за штука?! —
Учитель говорит в ответ, —
Вот за этого, за Гука
Шлю родителям привет!

Открывайте дневники!
Горе вы ученики.
— Нет постойте! Мы учили!
Да немножко подзабыли!

— Двойки ставлю, и конец!
Это вам не шутка!
Учить закончик Гука —
Серьёзнейшая штука!

Мальчики переглянулись.
Но совсем не улыбнулись!
— Коля, надо не грустить.
А получше нам учить!

Ростовская Д.

Физика вовсе не простой предмет,
И как его выучить – дам я совет.
Надо все формулы знать назубок,
И не пропускать без причины урок.
Правильно нужно задачи решать,
Четко, как учат их оформлять.
Теорию нужно всем знать, да чтоб так,
Что рассказать её будет пустяк.
Контрольные надо писать лишь на пять.
Обязательно всем надо физику знать!
Знать про альфа — распады и громкость звука.
Физика, вовсе, скажу вам, не скука.
А опыты… Боже, это так интересно!
Их готова творить я везде, повсеместно.
В общем одно я хочу лишь сказать:
Физику надо учить всем и знать!

Что изучает физика?
Знаете, как говорится в народе?
Физика — царица всех наук о природе!
Физика много разделов включает,
Каждый вопросы свои изучает.
Например, проводов всех «величество»
Изучает раздел «ЭЛЕКТРИЧЕСТВО».
«МЕХАНИКА» все изучает движения,
Действия сил, точки их приложения,
Тепловых процессов динамику
Изучает «ТЕРМОДИНАМИКА».
Отражение света, его преломление,
Прямолинейное распространение,
Как изображение глаз получает —
Все это «ОПТИКА» изучает.
Что собой представляет ядро или атом
Мы из «АТОМНОЙ ФИЗИКИ» узнаем когда-то.
В каждом разделе много полезного,
Познавательного и интересного!

Любите физику, друзья,
Без космоса никак нельзя,
Без света не прожить и дня,
Как в древнем мире без огня.

Учёный сильно удивлён,
В магнитном поле электрон,
И лазер — квантовый прибор,
Идей талантливых простор.

Машина или самолёт,
Большой корабль колет лёд,
И атом служит нам сейчас,
Всё это физика для нас!

Без физики не только свет,
Компьютер или Интернет,
Мы не могли бы получить,
Давайте физику учить!

Львовский Марк

Нас физика, увы, повсюду окружает.
Из дома в школу утром провожает.
Набраться бы ученикам терпения:
Подняться из постели тяготения,

Умыться, применяя силу трения,
В кабине лифта ощутить падение,
На тротуаре – сильное скольжение.
А вот и школа — вечное движение!

Всем физикам – почет и уважение!

Каретникова Н.

Скажи, зачем нам физика?
— Чтобы её сдавать,
И всё равно не знать,
И двойки получать!

А может, чтоб природу,
Нам лучше понимать?

Узнать, как мир устроен,
Что в атоме ядро,
Возможно, в чёрных дырах,
Галактики нутро.

Львовский Марк

Рассматривает физика природу,
Описывая разные объекты
И связи между ними – всё в угоду
Растущему без меры интеллекту.

За грань пытаясь заглянуть прибором,
Теорию шлифуя многократно —
Сличать себя то с Ньютоном, то с Бором
Учёным, без сомнения, приятно.

На самом деле, физика — лирична.
Законы из природы вычленяя
Она – то адекватно-аскетична,
То – гимназисткой юной расцветает.

Вот посмотрите: «странные» частицы,
Из синхрофазотронов вылетают,
Им «модами» распада расщепиться
Законы резонанса позволяют…

А «очарованные» антикварки —
Сплетаются в туманные «триплеты»,
И сохраняя «чарм», в пылу запарки
Аннигилируют порой при этом…

Подумайте: гиганты от Науки,
Исследуя строение Вселенной,
Дают названья вновь открытой «штуке»
Достойные Поэзии нетленной…

Я был неисправимый лирик,
К наукам точным равнодушен.
Прекрасного так много в мире,
Что мне Эйнштейн совсем не нужен.

Взамен Ньютона и Капицы
Мне Лист и Паганини ближе;
Чудесны на портретах лица
В музеях Рима и Парижа.

Поэтом я могу не быть,
Стать физиком – избави Боже!
Ну, как мне Пушкина забыть,
А с ним и Лермонтова тоже.

Стихи мне музыкой звучат,
Их сборники, как партитуры,
А муза с лирою в лучах, —
Как символ всей литературы.

И пусть пульсируют упруго
Сосуды в сердце и в мозгу,
Вот только квадратуру круга
Постичь я всё же не могу.

Краснокутский Ю.

Кто сказал, что физик не поэт?
Может он стихи писать, как бог.
Кто сказал, что скучен белый свет?
Он расцвечен спектрами дорог.
Любят слушать звёздные хоры
Физики — смешные человеки.
Микро- , макро- и т. д. миры
Поселились в душах их навеки
В ураганах квантов и полей
Слышится дыхание Вселенной.
Физики счастливей всех людей,
С ними даже Время откровенно.
Им видны и смысл, и красота
В дебрях самых сложных уравнений,
А ещё им снится иногда
Звёзд далёких бурное рождение.

Мартыновa Л.

На уроках нас учили,
Больше масса, больше сила,
Масса есть и ускоренье,
Сила их произведенье.

Есть опора и подвес,
Это значит, есть и вес,
Нет опоры и подвеса,
Однозначно, нет и веса!

Есть земное притяженье,
Сила есть и ускоренье,
Свет проходит по прямой,
Только снится нам покой!

Львовский Марк

Отличие физики от всех других наук заключается в том, что она изучает самые основные, фундаментальные законы нашего мира. Изучая, описывает их языком математики.

Например, закон гравитации - фундаментальный закон. Но он не совсем точен, ибо нет связи его с квантовой теорией. Тоже относится и к другим нашим законам - они не точны. Где-то на краю их всегда лежит тайна, всегда есть, над чем поломать голову. Может быть, это - свойство природы, а может быть, и нет, но это свойственно тем законам, которые известны нам сегодня. Может быть, все дело тут в неполноте нашего знания.

Законы просты, их легко сформулировать так, чтобы не оставалось никаких лазеек для двусмысленности и для иного толкования. Они просты и поэтому прекрасны. Просты по форме. Закон действует сложно, но его коренная идея проста. Это и роднит все наши законы. Сами по себе они всегда оказываются простыми, хотя в природе действуют сложным образом.

Физические законы универсальны. Например, гравитация, простирается на огромные расстояния. Если увеличить расстояние в десять миллионов миллионов раз, то мы получим Солнечную систему. Увеличим еще в десять миллионов миллионов раз - и вот вам галактики, которые притягиваются друг к другу по тому же самому закону. Вышивая свой узор, Природа пользуется лишь самыми длинными нитями, и всякий, даже самый маленький образчик его может открыть нам глаза на строение целого.

УТВЕРЖДЕНО
Приказ Министерства образования Республики Беларусь
от 20.12.2012г №931

МЕХАНИКА.

1) Механическое движение. Относительность движения. Характеристики механического движения: путь, перемещение. Скорость. Закон сложения скоростей.

2) Равномерное движение. Графическое представление равномерного движения.

3) Неравномерное движение. Средняя и мгновенная скорости. Ускорение. Прямо¬линейное движение с постоянным ускорением. Графическое представление равно¬ускоренного движения.

4) Движение материальной точки по окружности с постоянной по модулю линей¬ной скоростью. Угловая скорость. Период и частота равномерного вращения. Центростремительное ускорение.

5) Свободное падение тел. Ускорение свободно падающего тела. Движение тела, брошенного горизонтально.

6) Взаимодействие тел. Первый закон Ньютона.

7) Сила. Сложение сил.

8) Инертность тел. Масса. Плотность вещества.

9) Второй закон Ньютона.

10) Третий закон Ньютона.

11) Закон всемирного тяготения. Сила тяжести.

12) Силы упругости. Закон Гука.

13) Силы трения. Коэффициент трения.

14) Импульс. Закон сохранения импульса. Реактивное движение.

15) Механическая работа. Мощность.

16) Кинетическая энергия. Теорема об изменении кинетической энергии.

17) Потенциальная энергия. Потенциальная энергия гравитационных и упругих взаимодействий.

18) Закон сохранения механической энергии.

19) Колебательное движение. Амплитуда, период, частота и фаза колебаний. Уравнение гармонических колебаний. Пружинный и математический маятники. Превращения энергии при колебательных движениях.

20) Распространение колебаний в упругой среде. Волны. Скорость распространения волны, частота и длина волны, связь между ними.

21) Давление. Закон Паскаля. Гидростатическое давление. Сообщающиеся сосуды.

22) Атмосферное давление. Опыт Торричелли.

23) Закон Архимеда. Плавание тел.

знать/понимать:

физические явления: механическое движение: равномерное, равноускоренное движение; равномерное вращательное движение;

смысл физических понятий: путь, перемещение, скорость, средняя скорость пути и перемещения, мгновенная скорость, ускорение; угловая и линейная скорости, период и частота равномерного вращения, центростремительное ускорение, масса, плотность, сила (тяжести, упругости, трения), давление, атмосферное давление, импульс тела, импульс силы, гравитационное поле, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия; период, амплитуда, частота, фаза колебаний, длина волны, скорость распространения волны;

I, II, III законов Ньютона, всемирного тяготения, Гука, сохранения механической энергии, сохранения импульса, Архимеда, Паскаля

уметь решать задачи:

на применение кинематических законов поступательного движения, закона сложения скоростей, на определение периода, частоты, на связь угловой и линейной скоростей, на определение центростремительного ускорения при равномерном вращательном движении, на применение законов Ньютона, Гука, всемирного тяготения, сохранения импульса и механической энергии, Архимеда; на расчет работы и мощности, на движение тел под действием силы тяжести, упругости, трения; на определение периода, частоты и фазы колебаний, периода колебаний математического и пружинного маятников, скорости распространения и длины волны;

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ И ТЕРМОДИНАМИКИ.

1) Основные положения молекулярно-кинетической теории.

2) Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Закон Дальтона.

3) Температура - мера средней кинетической энергии теплового движения частиц. Шкала температур Цельсия. Абсолютная шкала температур - шкала Кельвина.

4) Уравнение состояния идеального газа (уравнение Клапейрона-Менделеева). Изотермический, изобарный и изохорный процессы в идеальном газе.

5) Внутренняя энергия термодинамической системы. Работа и количество теплоты как меры изменения внутренней энергии. Удельная теплоемкость.

6) Внутренняя энергия одноатомного идеального газа.

7) Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам в идеальном газе.

8) Циклические процессы. Физические основы работы тепловых двигателей. Коэффициент полезного действия теплового двигателя и его максимальное значение.

9) Плавление и кристаллизация. Удельная теплота плавления.

10) Испарение и конденсация. Кипение жидкости. Удельная теплота парообразования.

11) Насыщенный пар. Влажность.

12) Горение. Удельная теплота сгорания топлива.

знать/понимать:

физические явления: переход вещества из одного агрегатного состояния в другое;

смысл физических понятий: внутренняя энергия, внутренняя энергия одноатомного идеального газа, температура, количество теплоты, удельная теплоемкость, удельная теплота сгорания, удельная теплота плавления, удельная теплота парообразования;

смысл физических законов, принципов, правил, постулатов: закона Дальтона, первого закона термодинамики, газовых законов;

уметь решать задачи:

на расчет количества вещества, средней квадратичной скорости и средней кинетической энергии теплового движения молекул, параметров состояния идеального газа (давления, объема, температуры) с использованием основного уравнения молекулярно-кинетической теории и уравнения Клапейрона-Менделеева; на применение закона Дальтона; на расчет работы, количества теплоты, изменения внутренней энергии одноатомного идеального газа при изотермическом, изохорном, изобарном процессах с использованием первого закона термодинамики, на применение уравнения теплового баланса при переходе вещества из одного агрегатного состояния в другое; на определение коэффициента полезного действия тепловых двигателей;

ЭЛЕКТРОДИНАМИКА.

1) Электрический заряд. Закон сохранения электрического заряда.

2) Взаимодействие точечных зарядов. Закон Кулона.

3) Электростатическое поле. Напряженность электростатического поля. Поле точечного заряда. Однородное электростатическое поле. Графическое изображение электростатических полей.

4) Потенциальный характер электростатического поля. Потенциал электростатического поля точечного заряда. Разность потенциалов. Напряжение. Связь между напряжением и напряженностью однородного электростатического поля.

5) Принцип суперпозиции электростатических полей.

6) Диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества.

7) Электроемкость. Конденсаторы.

8) Энергия электростатического поля конденсатора.

9) Электрический ток. Условия существования электрического тока. Источники электрического тока. Сила и направление электрического тока.

10) Закон Ома для однородного участка электрической цепи. Электрическое сопротивление. Удельное сопротивление. Последовательное и параллельное соединение проводников.

11) Электродвижущая сила источника тока. Закон Ома для полной электрической цепи.

12) Работа и мощность электрического тока. Закон Джоуля-Ленца. Коэффициент полезного действия источника тока.

13) Постоянные магниты. Взаимодействие магнитов. Магнитное поле.

14) Действие магнитного поля на проводник с током. Закон Ампера. Индукция магнитного поля. Графическое изображение магнитных полей. Принцип суперпозиции магнитных полей.

15) Движение заряженных частиц в магнитном поле. Сила Лоренца.

16) Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца.

17) Явление самоиндукции. Индуктивность.

18) Энергия магнитного поля.

19) Колебательный контур. Свободные электромагнитные колебания в контуре. Формула Томсона. Превращения энергии в идеальном колебательном контуре.

20) Переменный электрический ток. Действующие значения силы тока и напряжения.

21) Электромагнитные волны и их свойства. Скорость распространения электромагнитных волн. Шкала электромагнитных волн.

знать/понимать:

физические явления: электрические взаимодействия; тепловое действие тока; магнитные взаимодействия; электромагнитная индукция, самоиндукция; электромагнитные волны;

смысл физических понятий: электромагнитное поле; проводник, диэлектрик, электрический заряд, точечный электрический заряд, элементарный заряд, напряженность электрического поля, потенциал электрического поля, разность потенциалов, электрическое напряжение; электроемкость, диэлектрическая проницаемость вещества, энергия электрического и магнитного полей; источник тока, сила электрического тока, электрическое сопротивление, удельное электрическое сопротивление, электродвижущая сила источника тока; индукция магнитного поля, магнитный поток, электродвижущая сила индукции и самоиндукции, индуктивность; амплитудное и действующее значения напряжения и силы переменного тока;

смысл физических законов, принципов, правил, постулатов: законов сохранения электрического заряда, Кулона, принципа суперпозиции электрических и магнитных полей; законов Ома для однородного участка цепи, для полной цепи, Джоуля - Ленца; Ампера; электромагнитной индукции Фарадея, правила Ленца;

уметь решать задачи:

на применение закона сохранения заряда и закона Кулона; на расчет напряженности и потенциала электростатического поля; на применение принципа суперпозиции для напряженности и потенциала электростатического поля; на определение напряжения, работы сил электрического поля, связи напряжения и напряженности однородного электростатического поля, электроемкости конденсатора, энергии электростатического поля конденсатора;

на расчет электрических цепей с использованием формулы для электрического сопротивления, закона Ома для однородного участка цепи и полной цепи и закономерностей последовательного и параллельного соединения резисторов; на расчет работы и мощности электрического тока, на применение закона Джоуля-Ленца; на определение коэффициента полезного действия источника тока;

на определение силы Ампера, силы Лоренца; на применение принципа суперпозиции для магнитных полей; на расчет характеристик движения заряженной частицы в однородном магнитном поле перпендикулярно линиям магнитной индукции; на расчет магнитного потока; на применение правила Ленца, определение электродвижущей силы индукции; на расчет электродвижущей силы, возникающей в прямолинейном проводнике, равномерно движущемся в однородном магнитном поле, энергии магнитного поля, электродвижущей силы самоиндукции и индуктивности катушки;

на определение периода, частоты и энергии свободных электромагнитных колебаний в колебательном контуре; на расчет действующих значений напряжения и силы переменного тока; на применение формул, связывающих длину волны с частотой и скоростью;

ОПТИКА

1) Источники света. Прямолинейность распространения света. Скорость распространения света.

2) Отражение света. Закон отражения света. Зеркала. Построение изображений в плоском зеркале.

3) Закон преломления света. Показатель преломления. Полное отражение.

4) Призма. Ход лучей в призме.

5) Линзы. Фокусное расстояние и оптическая сила тонкой линзы. Построение изображений в тонких линзах. Формула тонкой линзы.

6) Интерференция света.

7) Дифракция света. Дифракционная решетка.

8) Дисперсия света. Спектр.

знать/понимать:

физические явления: прямолинейность распространения света, отражение и преломление света, дифракция и интерференция света, поглощение и дисперсия света;

смысл физических понятий: световой луч, показатель преломления; фокусное расстояние и оптическая сила тонкой линзы; оптическая разность хода, постоянная дифракционной решетки;

смысл физических законов, принципов, правил, постулатов: законов отражения и преломления света;

уметь решать задачи:

на применение законов отражения и преломления света, формулы тонкой линзы; на использование условий максимума и минимума интерференции, формулы дифракционной решетки;

ОСНОВЫ СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

1) Постулаты специальной теории относительности.

2) Закон взаимосвязи массы и энергии.

знать/понимать:

смысл физических законов, принципов, правил, постулатов: постулатов Эйнштейна; законов взаимосвязи массы и энергии;

уметь решать задачи:

на применение закона взаимосвязи массы и энергии;

ОСНОВЫ КВАНТОВОЙ ФИЗИКИ

1) Фотоэлектрический эффект. Экспериментальные законы внешнего фотоэффекта.

2) Фотон. Уравнение Эйнштейна для фотоэффекта.

3) Ядерная (планетарная) модель атома. Квантовые постулаты Бора.

4) Излучение и поглощение света атомом. Спектры.

знать/понимать:

физические явления: фотоэффект;

смысл физических понятий: внешний фотоэффект, фотон, энергия и импульс фотона, красная граница фотоэффекта, работа выхода;

смысл физических законов, принципов, правил, постулатов: внешнего фотоэффекта;

уметь решать задачи:

на вычисление частоты и длины волны при переходе электрона в атоме из одного энергетического состояния в другое; на применение формул, связывающих энергию и импульс фотона с частотой соответствующей волны; уравнения Эйнштейна для внешнего фотоэффекта;

АТОМНОЕ ЯДРО И ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

1) Протонно-нейтронная модель строения ядра атома.

2) Энергия связи атомного ядра.

3) Ядерные реакции. Радиоактивность. Закон радиоактивного распада.

4) Элементарные частицы.

знать/понимать:

физические явления: радиоактивность, деление ядер;

смысл физических понятий: ядерная модель атома, энергия связи ядра, дефект масс, энергетический выход ядерной реакции, период полураспада; элементарные частицы;

смысл физических законов, принципов, правил, постулатов: радиоактивного распада, постулатов Бора, правил смещения при?-, ?-распадах;

уметь решать задачи:

на определение продуктов ядерных реакций; на расчет энергии связи, энергетического выхода ядерных реакций; на применение закона радиоактивного распада и правил смещения при?-, ?--распадах.



Понравилась статья? Поделитесь с друзьями!