Случайные события и их вероятности кратко. Случайные события

Глава I . СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

1.1. Закономерность и случайность, случайная изменчивость в точных науках, в биологии и медицине

Теория вероятностей – область математики, изучающая закономерности в случайных явлениях. Случайное явление – это явление, которое при неоднократном воспроизведении одного и того же опыта может протекать каждый раз несколько по-иному.

Очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности, но в различных ситуациях мы учитываем их по-разному. Так, в ряде практических задач ими можно пренебречь и рассматривать вместо реального явления его упрощенную схему – «модель», предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом выделяются самые главные, решающие факторы, характеризующие явление. Именно такая схема изучения явлений чаще всего применяется в физике, технике, механике; именно так выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по заданным исходным условиям. А влияние случайных, второстепенных, факторов на результат опыта учитывается здесь случайными ошибками измерений (методику их расчета рассмотрим далее).

Однако описанная классическая схема так называемых точных наук плохо приспособлена для решения многих задач, в которых многочисленные, тесно переплетающиеся между собой случайные факторы играют заметную (часто определяющую) роль. Здесь на первый план выступает случайная природа явления, которой уже нельзя пренебречь. Это явление необходимо изучать именно с точки зрения закономерностей, присущих ему как случайному явлению. В физике примерами таких явлений являются броуновское движение, радиоактивный распад, ряд квантово-механических процессов и др.

Предмет изучения биологов и медиков – живой организм, зарождение, развитие и существование которого определяется очень многими и разнообразными, часто случайными внешними и внутренними факторами. Именно поэтому явления и события живого мира во многом тоже случайны по своей природе.

Элементы неопределенности, сложности, многопричинности, присущие случайным явлениям, обусловливают необходимость создания специальных математических методов для изучения этих явлений. Разработка таких методов, установление специфических закономерностей, свойственных случайным явлениям, –главные задачи теории вероятностей. Характерно, что эти закономерности выполняются лишь при массовости случайных явлений. Причем индивидуальные особенности отдельных случаев как бы взаимно погашаются, а усредненный результат для массы случайных явлений оказывается уже не случайным, а вполне закономерным. В значительной мере данное обстоятельство явилось причиной широкого распространения вероятностных методов исследования в биологии и медицине.

Рассмотрим основные понятия теории вероятностей.

1.2. Вероятность случайного события

Каждая наука, развивающая общую теорию какого-либо круга явлений, базируется на ряде основных понятий. Например, в геометрии – это понятия точки, прямой линии; в механике – понятия силы, массы, скорости и т. д. Основные понятия существуют и в теории вероятностей, одно из них – случайное событие.

Случайное событие – это всякое явление (факт), которое в результате опыта (испытания) может произойти или не произойти.

Случайные события обозначаются буквами А, В, С … и т. д. Приведем несколько примеров случайных событий:

А –выпадение орла (герба) при подбрасывании стандартной монеты;

В – рождение девочки в данной семье;

С – рождение ребенка с заранее заданной массой тела;

D – возникновение эпидемического заболевания в данном регионе в определенный период времени и т. д.

Основной количественной характеристикой случайного события является его вероятность. Пусть А – какое-то случайное событие. Вероятность случайного события А – это математическая величина, которая определяет возможность его появления. Она обозначается Р (А ).

Рассмотрим два основных метода определения данной величины.

Классическое определение вероятности случайного события обычно базируется на результатах анализа умозрительных опытов (испытаний), суть которых определяется условием поставленной задачи. При этом вероятность случайного события Р(А) равна:

где m – число случаев, благоприятствующих появлению события А ; n – общее число равновозможных случаев.

Пример 1. Лабораторная крыса помещена в лабиринт, в котором лишь один из четырех возможных путей ведет к поощрению в виде пищи. Определите вероятность выбора крысой такого пути.

Решение : по условию задачи из четырех равновозможных случаев (n =4) событию А (крыса находит пищу)
благоприятствует только один, т. е. m = 1 Тогда Р (А ) = Р (крыса находит пищу) = = 0,25= 25%.

Пример 2. В урне 20 черных и 80 белых шаров. Из нее наугад вынимается один шар. Определите вероятность того, что этот шар будет черным.

Решение : количество всех шаров в урне – это общее число равновозможных случаев n , т. е. n = 20 + 80 = 100, из них событие А (извлечение черного шара) возможно лишь в 20, т. е. m = 20. Тогда Р (А ) = Р (ч. ш.) = = 0,2 = 20%.

Перечислим свойства вероятности следующие из ее классического определения – формула (1):

1. Вероятность случайного события – величина безразмерная.

2. Вероятность случайного события всегда положительна и меньше единицы, т. е. 0 < P (A ) < 1.

3. Вероятность достоверного события, т. е. события, которое в результате опыта обязательно произойдет (m = n ), равна единице.

4. Вероятность невозможного события (m = 0) равна нулю.

5. Вероятность любого события – величина не отрицательная и не превышающая единицу:
0 £ P (A ) £ 1.

Статистическое определение вероятности случайного события применяется тогда, когда невозможно использоватьклассическое определение (1). Это часто имеет место в биологии и медицине. В таком случае вероятность Р (А ) определяют путем обобщения результатов реально проведенных серий испытаний (опытов).

Введем понятие относительной частоты появления случайного события. Пусть была проведена серия, состоящая из N опытов (число N может быть выбрано заранее); интересующее нас событие А произошло в М из них (M < N ). Отношение числа опытов М , в которых произошло это событие, к общему числу проведенных опытов N называют относительной частотой появления случайного события А в данной серии опытов – Р * (А )

Р* (А ) = .

Экспериментально установлено, что если серии испытаний (опытов) проводятся в одинаковых условиях и в каждой из них число N достаточно велико, то относительная частота обнаруживает свойство устойчивости: от серии к серии она меняется мало, приближаясь c увеличением числа опытов к некоторой постоянной величине. Ее и принимают за статистическую вероятность случайного события А :

Р (А) = lim , при N , (2)

Итак, статистической вероятностью Р (А ) случайного события А называют предел, к которому стремится относительная частота появления этого события при неограниченном возрастании числа испытаний (при N → ∞).

Приближенно статистическая вероятность случайного события равна относительной частоте появления этого события при большом числе испытаний:

Р (А ) ≈ Р* (А ) = (при больших N ) (3)

Например, в опытах по бросанию монеты относительная частота выпадения герба при 12000 бросаний оказалась равной 0,5016, а при 24000 бросаний – 0,5005. В соответствии с формулой (1):

P (герб) = = 0,5 = 50%

Пример. При врачебном обследовании 500 человек у 5 из них обнаружили опухоль в легких (о. л.). Определите относительную частоту и вероятность этого заболевания.

Решение : по условию задачи М = 5, N = 500, относительная частота Р *(о. л.) = М /N = 5/500 = 0,01; поскольку N достаточно велико, можно с хорошей точностью считать, что вероятность наличия опухоли в легких равна относительной частоте этого события:

Р (о. л.) = Р *(о. л.) = 0,01 = 1%.

Перечисленные ранее свойства вероятности случайного события сохраняются и при статистическом определении данной величины.

1.3. Виды случайных событий. Основные теоремы теории вероятностей

Все случайные события можно разделить на:

¾ несовместные;

¾ независимые;

¾ зависимые.

Для каждого вида событий характерны свои особенности и теоремы теории вероятностей.

1.3.1. Несовместные случайные события. Теорема сложения вероятностей

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример1. Подброшена монета. При ее падении появление «герба» исключает появление «решки» (надписи, определяющей цену монеты). События «выпал герб» и «выпала решка» несовместные.

Пример 2. Получение студентом на одном экзамене оценки «2», или «3», или «4», или «5» – события несовместные, так как одна из этих оценок исключает другую на том же экзамене.

Для несовместных случайных событий выполняется теорема сложения вероятностей: вероятность появления одного, но все равно какого, из нескольких несовместных событий А1, А2, А3 … А k равна сумме их вероятностей:

Р(А1или А2 … или А k ) = Р(А1) + Р(А2) + …+ Р(А k ). (4)

Пример 3. В урне находится 50 шаров: 20 белых, 20 черных и 10 красных. Найдите вероятность появления белого (событие А ) или красного шара (событие В ), когда шар наугад достают из урны.

Решение: Р (А или В ) = Р (А ) + Р (В );

Р (А ) = 20/50 = 0,4;

Р (В ) = 10/50 = 0,2;

Р (А или В ) = Р (б. ш. или к. ш.) = 0,4 + 0,2 = 0,6 = 60%.

Пример 4. В классе 40 детей. Из них в возрасте от 7 до 7,5 лет 8 мальчиков (А ) и 10 девочек (В ). Найдите вероятность присутствия в классе детей такого возраста.

Решение: Р (А ) = 8/40 = 0,2; Р (В ) = 10/40 = 0,25.

Р(А или В) = 0,2 + 0,25 = 0,45 = 45%

Следующее важное понятиеполная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

Пример 5. Стрелок произвел выстрел по мишени. Обязательно произойдет одно из следующих событий: попадание в «десятку», в «девятку», в «восьмерку»,.. ,в «единицу» или промах. Эти 11 несовместных событий образуют полную группу.

Пример 6. На экзамене в Вузе студент может получить одну из следующих четырех оценок: 2, 3, 4 или 5. Эти четыре несовместных события также образуют полную группу.

Если несовместные события А1, А2 … А k образуют полную группу, то сумма вероятностей этих событий всегда равна единице:

Р (А1 ) + Р (А2 )+ … Р (А k ) = 1, (5)

Это утверждение часто используется при решении многих прикладных задач.

Если два события единственно возможны и несовместны, то их называют противоположными и обозначают А и . Такие события составляют полную группу, поэтому сумма их вероятностей всегда равна единице:

Р (А ) + Р () = 1. (6)

Пример 7. Пусть Р (А ) – вероятность летального исхода при некотором заболевании; она известна и равна 2%. Тогда вероятность благополучного исхода при этом заболевании равна 98% (Р () = 1 – Р (А ) = 0,98), так как Р (А ) + Р () = 1.

1.3.2. Независимые случайные события. Теорема умножения вероятностей

Случайные события называются независимыми, если появление одного из них никак не влияет на вероятность появления других событий.

Пример 1. Если есть две или более урны с цветными шарами, то извлечение какого-либо шара из одной урны никак не повлияет на вероятность извлечения других шаров из оставшихся урн.

Для независимых событий справедлива теорема умножения вероятностей: вероятность совместного (одновременного ) появления нескольких независимых случайных событий равна произведению их вероятностей:

Р(А1и А2 и А3 … и А k ) = Р(А1) ∙Р(А2) ∙…∙Р(А k ). (7)

Совместное (одновременное) появление событий означает, что происходят события и А1, и А2 , и А3 … и А k .

Пример 2. Есть две урны. В одной находится 2 черных и 8 белых шаров, в другой – 6 черных и 4 белых. Пусть событие А –выбор наугад белого шара из первой урны, В – из второй. Какова вероятность выбрать наугад одновременно из этих урн по белому шару, т. е. чему равна Р (А и В )?

Решение: вероятность достать белый шар из первой урны
Р (А ) = = 0,8 из второй – Р (В ) = = 0,4. Вероятность одновременно достать по белому шару из обеих урн –
Р (А и В ) = Р (А Р (В ) = 0,8∙ 0,4 = 0,32 = 32%.

Пример 3. Рацион с пониженным содержанием йода вызывает увеличение щитовидной железы у 60% животных большой популяции. Для эксперимента нужны 4 увеличенных железы. Найдите вероятность того, что у 4 случайно выбранных животных будет увеличенная щитовидная железа.

Решение : Случайное событие А – выбор наугад животного с увеличенной щитовидной железой. По условию задачи вероятность этого события Р (А ) = 0,6 = 60%. Тогда вероятность совместного появления четырех независимых событий – выбор наугад 4 животных с увеличенной щитовидной железой – будет равна:

Р (А 1 и А 2 и А 3 и А 4) = 0,6 ∙ 0,6 ∙0,6 ∙ 0,6=(0,6)4 ≈ 0,13 = 13%.

1.3.3. Зависимые события. Теорема умножения вероятностей для зависимых событий

Случайные события А и В называются зависимыми, если появление одного из них, например, А изменяет вероятность появления другого события – В. Поэтому для зависимых событий используются два значения вероятности: безусловная и условная вероятности.

Если А и В зависимые события, то вероятность наступления события В первым (т. е. до события А ) называется безусловной вероятностью этого события и обозначается Р (В ). Вероятность наступления события В при условии, что событие А уже произошло, называется условной вероятностью события В и обозначается Р (В /А ) или РА (В).

Аналогичный смысл имеют безусловная – Р (А ) и условная – Р (А/В ) вероятности для события А.

Теорема умножения вероятностей для двух зависимых событий: вероятность одновременного наступления двух зависимых событий А и В равна произведению безусловной вероятности первого события на условную вероятность второго:

Р (А и В ) = Р (А ) ∙Р (В/А ) , (8)

А , или

Р (А и В ) = Р (В ) ∙Р (А/В), (9)

если первым наступает событие В .

Пример 1. В урне 3 черных шара и 7 белых. Найдите вероятность того, что из этой урны один за другим (причем первый шар не возвращают в урну) будут вынуты 2 белых шара.

Решение : вероятность достать первый белый шар (событие А ) равна 7/10. После того как он вынут, в урне остается 9 шаров, из них 6 белых. Тогда вероятность появления второго белого шара (событие В ) равна Р (В /А ) = 6/9, а вероятность достать подряд два белых шара равна

Р (А и В ) = Р (А )∙Р (В /А ) = = 0,47 = 47%.

Приведенная теорема умножения вероятностей для зависимых событий допускает обобщение на любое количество событий. В частности, для трех событий, связанных друг с другом:

Р (А и В и С ) = Р (А ) ∙ Р (В/А ) ∙ Р (С/АВ ). (10)

Пример 2. В двух детских садах, каждый из которых посещает по 100 детей, произошла вспышка инфекционного заболевания. Доли заболевших составляют соответственно 1/5 и 1/4, причем в первом учреждении 70 %, а во втором – 60 % заболевших – дети младше 3-х лет. Случайным образом выбирают одного ребенка. Определите вероятность того, что:

1) выбранный ребенок относится к первому детскому саду (событие А ) и болен (событие В ).

2) выбран ребенок из второго детского сада (событие С ), болен (событие D ) и старше 3-х лет (событие Е ).

Решение . 1) искомая вероятность –

Р (А и В ) = Р (А ) ∙ Р (В /А ) = = 0,1 = 10%.

2) искомая вероятность:

Р (С и D и Е ) = Р (С ) ∙ Р (D /C ) ∙ Р (Е /CD ) = = 5%.

1.4. Формула Байеса

Если вероятность совместного появления зависимых событий А и В не зависит от того, в каком порядке они происходят, то Р (А и В ) = Р (А ) ∙Р (В/А ) = Р (В ) × Р (А/В ). В этом случае условную вероятность одного из событий можно найти, зная вероятности обоих событий и условную вероятность второго:

Р (В/А ) = (11)

Обобщением данной формулы на случай многих событий является формула Байеса.

Пусть «n » несовместных случайных событий Н1, Н2, …, Н n , образуют полную группу событий. Вероятности этих событий – Р (Н1 ), Р (Н2 ), …, Р (Н n ) известны и так как они образуют полную группу, то = 1.

Некоторое случайное событие А связано с событиями Н1, Н2, …, Н n , причем известны условные вероятности появления события А с каждым из событий Н i , т. е. известны Р (А/Н1 ), Р (А/Н2 ), …, Р (А/Н n ). При этом сумма условных вероятностей Р (А/Н i ) может быть не равна единице т. е. ≠ 1.

Тогда условная вероятность появления события Н i при реализации события А (т. е. при условии, что событие А произошло) определяется формулой Байеса:

Причем для этих условных вероятностей .

Формула Байеса нашла широкое применение не только в математике, но и в медицине. Например, она используется для вычисления вероятностей тех или иных заболеваний. Так, если Н 1,…, Н n – предполагаемые диагнозы для данного пациента, А – некоторый признак, имеющий отношение к ним (симптом, определенный показатель анализа крови, мочи, деталь рентгенограммы и т. д.), а условные вероятности Р (А/Н i ) проявления этого признака при каждом диагнозе Н i (i = 1,2,3,…n ) заранее известны, то формула Байеса (12) позволяет вычислить условные вероятности заболеваний (диагнозов) Р (Н i ) после того как установлено, что характерный признак А присутствует у пациента.

Пример1. При первичном осмотре больного предполагаются 3 диагноза Н 1, Н 2, Н 3. Их вероятности, по мнению врача, распределяются так: Р (Н 1) = 0,5; Р (Н 2) = 0,17; Р (Н 3) = 0,33. Следовательно, предварительно наиболее вероятным кажется первый диагноз. Для его уточнения назначается, например, анализ крови, в котором ожидается увеличение СОЭ (событие А ). Заранее известно (на основании результатов исследований), что вероятности увеличения СОЭ при предполагаемых заболеваниях равны:

Р (А /Н 1) = 0,1; Р (А /Н 2) = 0,2; Р (А /Н 3) = 0,9.

В полученном анализе зафиксировано увеличение СОЭ (событие А произошло). Тогда расчет по формуле Байеса (12) дает значения вероятностей предполагаемых заболеваний при увеличенном значении СОЭ: Р (Н 1/А ) = 0,13; Р (Н 2/А ) = 0,09;
Р (Н 3/А ) = 0,78. Эти цифры показывают, что с учетом лабораторных данных наиболее реален не первый, а третий диагноз, вероятность которого теперь оказалась достаточно большой.

Приведенный пример – простейшая иллюстрация того, как с помощью формулы Байеса можно формализовать логику врача при постановке диагноза и благодаря этому создать методы компьютерной диагностики.

Пример 2. Определите вероятность, оценивающую степень риска перинатальной* смертности ребенка у женщин с анатомически узким тазом.

Решение : пусть событие Н 1 – благополучные роды. По данным клинических отчетов, Р (Н 1) = 0,975 = 97,5 %, тогда, если Н2 – факт перинатальной смертности, то Р (Н 2) = 1 – 0,975 = 0,025 = 2,5 %.

Обозначим А – факт наличия узкого таза у роженицы. Из проведенных исследований известны: а) Р (А /Н 1) – вероятность узкого таза при благоприятных родах, Р (А /Н 1) = 0,029, б) Р (А /Н 2) – вероятность узкого таза при перинатальной смертности,
Р (А /Н 2) = 0,051. Тогда искомая вероятность перинатальной смертности при узком тазе у роженицы рассчитывается по формуле Байса (12) и равна:


Таким образом, риск перинатальной смертности при анатомически узком тазе значительно выше (почти вдвое) среднего риска (4,4 % против 2,5 %).

Подобные расчеты, обычно выполняемые с помощью компьютера, лежат в основе методов формирования групп пациентов повышенного риска, связанного с наличием того или иного отягощающего фактора.

Формула Байеса очень полезна для оценки многих других медико-биологических ситуаций, что станет очевидным при решении приведенных в пособии задач.

1.5. О случайных событиях с вероятностями близкими к 0 или к 1

При решении многих практических задач приходится иметь дело с событиями, вероятность которых очень мала, т. е. близка к нулю. На основании опыта в отношении таких событий принят следующий принцип. Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании оно не наступит, иначе говоря, возможностью его появления можно пренебречь. Ответ на вопрос, насколько малой должна быть эта вероятность, определяется существом решаемых задач, тем, насколько важен для нас результат предсказания. Например, если вероятность того, что парашют при прыжке не раскроется равна 0,01, то применение таких парашютов недопустимо. Однако равная той же 0,01 вероятность того, что поезд дальнего следования прибудет с опозданием, делает нас практически уверенными в том, что он прибудет вовремя.

Достаточно малую вероятность, при которой (в данной конкретной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,01 (однопроцентный уровень значимости) или 0,05 (пятипроцентный уровень значимости), намного реже он берется равным 0,001.

Введение уровня значимости позволяет утверждать, что если некоторое событие А практически невозможно, то противоположное событие - практически достоверно, т. е. для него Р () » 1.

Глава II . СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

2.1. Случайные величины, их виды

В математике величина – это общее название различных количественных характеристик предметов и явлений. Длина, площадь, температура, давление и т. д. – примеры разных величин.

Величина, которая принимает различные числовые значения под влиянием случайных обстоятельств, называется случайной величиной . Примеры случайных величин: число больных на приеме у врача; точные размеры внутренних органов людей и т. д.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает только определенные отделенные друг от друга значения, которые можно установить и перечислить.

Примерами дискретной случайной величиной являются:

– число студентов в аудитории – может быть только целым положительным числом: 0,1,2,3,4….. 20…..;

– цифра, которая появляется на верхней грани при бросании игральной кости – может принимать лишь целые значения от 1 до 6;

– относительная частота попадания в цель при 10 выстрелах – ее значения: 0; 0,1; 0,2; 0,3 …1

– число событий, происходящих за одинаковые промежутки времени: частота пульса, число вызовов скорой помощи за час, количество операций в месяц с летальным исходом и т. д.

Случайная величина называется непрерывной, если она может принимать любые значения внутри определенного интервала, который иногда имеет резко выраженные границы, а иногда – нет *. К непрерывным случайным величинам относятся, например, масса тела и рост взрослых людей, масса тела и объем мозга, количественное содержание ферментов у здоровых людей, размеры форменных элементов крови, р Н крови и т. п.

Понятие случайной величины играет определяющую роль в современной теории вероятностей, разработавшей специальные приемы перехода от случайных событий к случайным величинам.

Если случайная величина зависит от времени, то можно говорить о случайном процессе.

2.2. Закон распределения дискретной случайной величины

Чтобы дать полную характеристику дискретной случайной величины необходимо указать все ее возможные значения и их вероятности.

Соответствие между возможными значениями дискретной случайной величины и их вероятностями называется законом распределения этой величины.

Обозначим возможные значения случайной величины Х через х i , а соответствующие им вероятности – через р i *. Тогда закон распределения дискретной случайной величины можно задать тремя способами: в виде таблицы, графика или формулы.

В таблице, которая называется рядом распределения, перечисляются все возможные значения дискретной случайной величины Х и соответствующие этим значениям вероятности Р (Х ):

Х

…..

…..

P (X )

…..

…..

При этом сумма всех вероятностей р i должна быть равна единице (условие нормировки):

р i = p 1 + p 2 + ... + pn = 1. (13)

Графически закон представляется ломаной линией, которую принято называть многоугольником распределения (рис.1). Здесь по горизонтальной оси откладывают все возможные значения случайной величины х i , , а по вертикальной оси – соответствующие им вероятности р i

Аналитически закон выражается формулой. Например, если вероятность попадания в цель при одном выстреле равна р, то вероятность поражения цели 1 раз при n выстрелах дается формулой Р (n ) = n qn -1 × p , где q = 1 – р – вероятность промаха при одном выстреле.

2.3. Закон распределения непрерывной случайной величины. Плотность распределения вероятности

Для непрерывных случайных величин невозможно применить закон распределения в формах, приведенных выше, поскольку такая величина имеет бесчисленное («несчетное») множество возможных значений, сплошь заполняющих некоторый интервал. Поэтому составить таблицу, в которой были бы перечислены все ее возможные значения, или построить многоугольник распределения нельзя. Кроме того, вероятность какого-либо ее конкретного значения очень мала (близка к 0)*. Вместе с тем различные области (интервалы) возможных значений непрерывной случайной величины не равновероятны. Таким образом, и в данном случае действует некий закон распределения, хотя и не в прежнем смысле.

Рассмотрим непрерывную случайную величину Х , возможные значения которой сплошь заполняют некий интервал , b )**. Закон распределения вероятностей такой величины должен позволить найти вероятность попадания ее значения в любой заданный интервал (х1, х2 ), лежащий внутри (а, b ), рис.2.

Эту вероятность обозначают Р (х1 < Х < х2 ), или
Р (х1 £ Х £ х2 ).

Рассмотрим сначала очень малый интервал значений Х – от х до (х + D х ); см. рис.2. Малая вероятность d Р того, что случайная величина Х примет какое-то значение из интервала (х, х + D х ), будет пропорциональна величине данного интервала D х: d Р ~ D х , или, введя коэффициент пропорциональности f , который сам может зависеть от х , получим:

d Р = f (х ) × Dх = f (x ) × dx (14)

Введенная здесь функция f (х ) называется плотностью распределения вероятностей случайной величины Х, или, короче, плотностью вероятности , плотностью распределения . Уравнение (13) – дифференциальное уравнение, решение которого дает вероятность попадания величины Х в интервал (х1 , х2) :

Р (х1 < Х < х2 ) = f (х ) d х. (15)

Графически вероятность Р (х1 < Х < х2 ) равна площади криволинейной трапеции, ограниченной осью абсцисс, кривой f (х ) и прямыми Х = х1 и Х = х2 (рис.3). Это следует из геометрического смысла определенного интеграла (15) Кривая f (х ) при этом называется кривой распределения.

Из (15) следует, что если известна функция f (х ), то, изменяя пределы интегрирования, можно найти вероятность для любых интересующих нас интервалов. Поэтому именно задание функции f (х ) полностью определяет закон распределения для непрерывных случайных величин.

Для плотности вероятности f (х ) должно выполняться условие нормировки в виде:

f (х ) d х = 1, (16)

если известно, что все значения Х лежат в интервале (а, b ), или в виде:

f (х ) d х = 1 , (17)

если границы интервала для значений Х точно неопределенны. Условия нормировки плотности вероятности (16) или (17) являются следствием того, что значения случайной величины Х достоверно лежат в пределах (а, b ) или (-¥, +¥). Из (16) и (17) следует, что площадь фигуры, ограниченной кривой распределения и осью абсцисс, всегда равна 1.

2.4. Основные числовые характеристики случайных величин

Результаты, изложенные в параграфах 2.2 и 2.3, показывают, что полную характеристику дискретной и непрерывной случайных величин можно получить, зная законы их распределения. Однако во многих практически значимых ситуациях пользуются так называемыми числовыми характеристиками случайных величин, главное назначение этих характеристик – выразить в сжатой форме наиболее существенные особенности распределения случайных величин. Важно, что данные параметры представляют собой конкретные (постоянные) значения, которые можно оценивать с помощью полученных в опытах данных. Этими оценками занимается «Описательная статистика».

В теории вероятностей и математической статистике используется достаточно много различных характеристик, но мы рассмотрим только наиболее употребляемые. Причем лишь для части из них приведем формулы, по которым рассчитываются их значения, в остальных случаях вычисления оставим компьютеру.

Рассмотрим характеристики положения – математическое ожидание, моду, медиану.

Они характеризуют положение случайной величины на числовой оси, т. е. указывают некоторое ориентировочное значение, около которого группируются все возможные значения случайной величины. Среди них важнейшую роль играет математическое ожидание М (Х ).

1. Случайные события

Теория вероятностей - это раздел математики изучающий закономерности массовых случайных событий.

Случайным называется событие, наступление которого нельзя гарантировать. Случайность того или иного события определяется множеством причин, которые существуют объективно, но учесть их все, а также степень их влияния на изучаемое событие, невозможно. К таким случайным событиям относятся: выпадание того или иного числа при бросании игральной кости, выигрыш в лотереи, коли­чество больных, записавшихся на прием к врачу и т.п.

И хотя в каждом конкретном случае трудно предсказать исход испытания, при достаточно большом числе наблюдений можно установить наличие некоторой закономерности. Подбрасывая монету, можно заметить, что число выпадания орла и решки примерно одинаково, а при бросании игральной кости различные грани также появляются, примерно одинаково. Это говорит о том, что случайным явлениям присущи свои закономерности, но они проявляются лишь при большом количестве испытаний. Правильность этого подтверждает закон больших чисел, который лежит в основе теории вероятностей.

Рассмотрим основные термины и понятия теории вероятностей.

Испытанием называется совокупность условий, при которых может произойти данное случайное событие.

Событие - это факт, который при осуществлении определенных условий может произойти или нет. События обозначают большими буквами латинского алфавита А, В, С...

Например, событие А - рождение мальчика, событие В – выигрыш в лотерее, событие С - выпадение цифры 4 при бросании игральной кости.

События бывают достоверные, невозможные и случайные.

Достоверное событие - это событие, которое в результате испытания непременно должно произойти.

Например, если на игральной кости на всех шести гранях. нанести цифру 1, тогда выпадение цифры 1, при бросании кости, есть событие достоверное.

Невозможное событие - это событие, которое в результате испытания не может произойти.

Например, в ранее рассмотренном примере - это выпадение любой цифры, кроме 1.

Случайное событие - это событие, которое при испытаниях может произойти или не произойти. Те или иные события реализуются с различной возможностью.

Например, завтра днем ожидается дождь. В этом примере наступление дня является испытанием, а выпадение дождя - случайное событие.

События называются несовместными, если в результате данного испытания появление одного из них исключает появление другого.

Например, при бросании монеты выпадение одновременно орла и решки есть события несовместные.

События называются совместными, если в результате данного испытания появление одного из них не исключает появление другого.


Например, при игре в карты появление валета и масти пик - события совместные.

События называются равновозможными, если нет оснований считать, что одно из них происходит чаше, чем другое!

Например, выпадение любой грани игрального кубика есть равновозможные события.

События образуют полную группу событий, если в результате испытания обязательно произойдет хотя бы одно из них и любые два из них несовместны.

Например, при 10 выстрелах в мишень возможно от 0 до 10 попаданий. При бросании игрального кубика может выпасть цифра от 1 до 6. Эти события образуют полную группу.

События, входящие в полную группу попарно несовместных и равновозможных событий, называются исходами, или элементарными событиями. Согласно определению достоверного события, можно считать, что событие, состоящее в появлении одного, неважно какого, из событий полной группы, есть событие достоверное.

Например, при бросании одного игрального кубика выпадает число меньше семи. Это пример достоверного события.

Частным случаем событий, образующих полную группу, являются противоположные события.

Два несовместных события А и (читается «не А») называются противоположными, если в результате испытания одно из них должно обязательно произойти.

Например, если стипендия начисляется только при получении на экзамене хороших и отличных оценок, то события «стипендия» и «неудовлетворительная или удовлетворительная оценка» - противоположные.

Событие А называется благоприятствующим событию В, если появление события А влечет за собой появление события В.

Например, при бросании игрального кубика появлению нечетного числа благоприятствуют события, связанные с выпадением чисел 1,3 и 5.

2. Операции над событиями

Операции над событиями аналогичны операциям над множествами.

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из них в результате испытания.

Сумма событий может быть обозначена знаками «+», «È», «или».

На рисунке 1 представлена геометрическая интерпретация с помощью диаграмм Эйлера-Венна. Сумме событий А + В будет соответствовать вся заштрихованная область.

рис.1

Область пересечения событий А и В соответствует совместным событиям, которые могут произойти одновременно. Аналогично для событий А, В и С имеются совместные события А и В; А и С; В и С; А и В и С, которые могут про изойти одновременно.

Например, в урне находятся белые, красные и синие шары. Возможны следующие события: А - вынут белый шар; В - вынут красный шар; С - вынут синий шар. Событие В + С означает, что произошло событие - вынут цветной шар или вынут не белый шар.

Произведением нескольких событий называется событие которое состоит в совместном наступлении всех этих событий в результате испытания.

Произведение событий может быть обозначено знаками «х», «∩», «и».

Геометрическая интерпретация произведения событий представлена на рис. 2.

рис.2

Произведением событий А и В будет заштрихованная область пересечения площадей А и В. А для трех событий А и В и С - общая площадь, одновременно входящая во все три события.

Например, пусть из колоды карт наугад извлекается карта. Событие А - вынута карта пиковой масти; В - вынут валет. Тогда событие А×В означает событие - вынут валет пик.

Разностью двух событий А-В называется событие, состоящее из исходов, входящих в А, но не входящих в В.

На рис. 3 представлена иллюстрация разности событий с помощью диаграмм Эйлера-Венна.

рис.3

Разностью двух событий А-В является заштрихованная область А без той части, которая входит в событие В. Разность между произведением событий А и В и событием С будет совместная площадь события А и события В без совместной с нею площадью события С.

Например, пусть при бросании игрального кубика событие А - появление четных чисел (2,4,6), а событие В - чисел-кратных 3, т.е. (3, 6). Тогда событие А-В появление чисел (2,4).

3. Определение вероятности события

Случайные события реализуются с различной возможностью. Одни происходят чаще, другие - реже. Для количественной оценки возможностей реализации события вводится понятие вероятности события.

Вероятность события - это число, характеризующее степень возможности появления события при многократном повторении испытаний.

Вероятность обозначается буквой Р (от англ. probability - вероятность). Вероятность является одним из основных понятий теории вероятностей. Существует несколько определений этого понятия.

Классическое определение вероятности заключается в следующем. Если известны все возможные исходы испытания и нет оснований считать, что одно случайное событие появлялось бы чаще других, т.е. события равновозможны и несовместны, то имеется возможность аналитического определения вероятности события.

Вероятностью Р(А) события А называется отношение числа благоприятствующих исходов т к общему числу равновозможных несовместных исходов п:

Свойства вероятности:

1. Вероятность случайного события А находится между 0 и 1.

2. Вероятность достоверного события равна 1.

.

3. Вероятность невозможного события равна 0.

.

В своей практической деятельности мы часто встречаемся с явлениями, исход которых невозможно предсказать, результат которых зависит от случая. Теория вероятностей – это раздел математики, в котором изучаются случайные явления (события) и выявляются закономерности при массовом их повторении. Основное понятие теории вероятностей - вероятность события (относительная частота события) - объективная мера возможности осуществления данного события.

События принято обозначать заглавными буквами латинского алфавита: А, В, С, D. Перечислим основные виды случайных событий :

  • события называются несовместными , если никакие два из них не могут произойти в данном испытании (опыте) вместе. Например, при подбрасывании монеты появление цифры исключает одновременное появление герба;
  • два события называются совместными , если появление одного из них не исключает появление другого события в том же испытании (опыте);
  • событие называется достоверным , если оно происходит в данном испытании обязательно. Например, выигрыш по билету беспроигрышной лотереи есть событие достоверное;
  • событие называется невозможным , если оно в данном испытании не может произойти. Например, при бросании игральной кости невозможно получить 7 очков;
  • два события называются противоположными (А и А̄), если в данном испытании они несовместны и одно из них обязательно происходит. Вероятности противоположных событий в сумме дают 1;
  • событие В называется независимым от события А, если появление события А не изменяет вероятности события В: Р А (В)= Р(В). В противном случае событие В называется зависимым от события А;

Полной системой событий А 1 , А 2 , А 3 , …, Аn называется совокупность несовместных событий, наступление хотя бы одного из которых обязательно при данном испытании (опыте).

Каждому событию A ставится в соответствие некоторая мера P(A), которая называется вероятностью этого события и которая удовлетворяет следующим аксиомам:

  • для любого события 0 ≤ P(A) ≤ 1;
  • вероятность невозможного события равна нулю, P(А)=0;
  • вероятность достоверного события равна единице, Р(А)=1.

Существует классический и геометрический способы подсчета вероятности события.

При классическом способе подсчета вероятность события А вычисляется по формуле: Р(А)=m/n , где:

  • все элементарные исходы равновозможны, т.е. ни один из них не является более возможным, чем другой;
  • m – число элементарных исходов испытания, благоприятствующих появлению события А;
  • n – общее число всех возможных элементарных исходов испытания.

Для подсчета n и m часто применяются понятия и формулы комбинаторики :

  • n-факториал – это произведение всех натуральных чисел от единицы до n включительно: n! = 1*2*3*…*(n-1)*n . Например: 4!=1*2*3*4=24, 1!=1, 0!=1
  • перестановка из n элементов – комбинация из n элементов, которые отличаются друг от друга только порядком элементов. Число всех возможных перестановок вычисляют по формуле: P n = n!
  • перестановка с повторениями – пусть даны n 1 элементов первого типа, n 2 - второго типа, ..., n k - k-го типа, всего n элементов. Способы разместить их по различным местам называются перестановками с повторениями. Число всех перестановок с повторениями вычисляют по формуле: Pn(n 1 ,n 2 ,…,n k) = n! / n 1 !n 2 !...n k !
  • размещения – комбинации из n элементов по m (mА n m = n!/(n-m)! , где
    n – число всех имеющихся элементов, m- число элементов в каждой комбинации.
    При n=m размещение становится перестановкой. Если не принимать во внимание порядок элементов в размещении, а учитывать только его состав, то получается сочетание.
  • сочетания – все возможные комбинации из n элементов по m (mС n m = n! / m!(n-m)! = А n m / P m

Геометрический способ подсчета вероятности применяется, когда элементарные исходы эксперимента могут быть интерпретированы как точки отрезка, фигуры или тела.

Пусть отрезок l составляет часть отрезка L. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка, то вероятность попадания точки на отрезок l определяется равенством: Р = Длина l / Длина L .

Вероятность попадания точки в плоскую фигуру g, составляющую часть плоской фигуры G: Р = Площадь g/Площадь G .

Вероятность попадания точки в пространственную фигуру υ, которая составляет часть фигуры V: Р = Объем υ /Объем V .

Примеры решения задач по теме «Элементы комбинаторики. События и их вероятности»

Задача 1

В 11-м классе 30 человек. 18 человек изучают английский язык, 16 – немецкий, 9 – оба языка. Сколько человек изучают а) только английский язык, б) только немецкий язык, в) не изучают ни одного языка?

Решение.
а) поскольку 18 человек изучают английский, из них 9 изучают и английский и немецкий, то 18–9=9 человек изучают только английский язык;
б) поскольку 16 человек изучают немецкий, из них 9 изучают и немецкий и английский, то 16–9=7 человек изучают только немецкий язык;
в) поскольку в классе 30 человек, из них 9 изучают только английский, 7 – только немецкий, 9 – оба языка, то 30 – (9+7+9) = 5 человек не изучают ни одного языка.

Задача 2

Сколькими способами можно переставить буквы в слове «фикус»?

Решение. В данном случае необходимо найти число перестановок из 5 букв, а поскольку в слове «фикус» все буквы разные, то число перестановок определяем по формуле: P 5 =5!=1*2*3*4*5=120.

Задача 3

Сколькими способами можно переставить буквы в слове «ответ»?

Решение. Необходимо найти число перестановок из 5 букв, но в отличие от задачи 2, здесь имеются повторяющиеся буквы – буква «т» повторяется дважды. Поэтому число способов определим по формуле перестановок с повторениями: P 5 (1, 2, 1, 1) = 5! / 2! = 60.

Задача 4

В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по производной. Найдите вероятность того, что в случайно выбранном на экзамене билете учащемуся не достанется вопрос по производной.

Решение. В данном случае число благоприятных исходов равно (25-10)=15, общее число событий – 25.
Вероятность события А = {учащемуся не достанется вопрос по производной} находим как отношение: Р(А)=15/25=0,6.

Задача 5

В ящике имеется 15 деталей, среди которых 8 окрашенных. Сборщик наудачу извлекает три детали. Найти вероятность того, что извлеченные детали окажутся окрашенными.

Решение. Событие А = {извлечены три окрашенных детали}.

Общее число всех возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 3 детали из 15:
n = С 15 3 =15! / 3!(15-3)!=15! / (3!*12!) = 13*7*5=455.
Число благоприятных исходов равно числу способов, которыми можно извлечь 3 детали из 8 окрашенных:
m = С 8 3 =8! / 3!(8-3)!= 8! / (3!*5!)=7*8=56.

Вероятность события А находим как отношение: Р(А) = m/n= 56/455≈0,12

Задача 6

Среди 17 студентов группы, из которых 8 – девушки, разыгрывается 7 билетов в театр. Какова вероятность того, что среди обладателей билетов окажутся 4 девушки и 3 юношей?

Решение. Событие А = {среди обладателей билетов ровно 4 девушки} .

Общее число возможных элементарных исходов розыгрыша равно числу способов, которыми можно выбрать 7 человек из всех студентов группы, т. е. из 17: n = С 17 7 =17! / 7!(17-7)!= 17! / (7!*10!)=19448.

Число благоприятных исходов (среди 7 обладателей билетов 4 девушки и 3 юношей) найдем, учитывая, что 4-х девушек их 8 можно выбрать С 8 4 способами, а 3-х юношей из 9 можно выбрать С 9 3 способами. Следовательно, m = С 8 4 *С 9 3 = 8!9! / 4!(8-4)!3!(9-3)! = 5880.

Вероятность события А находим как отношение: Р(А) = m/n= 5880/19448≈0,3

Предмет теории вероятностей . Случайные события и их классификация. Классическое определение вероятности . Общие принципы комбинаторики.

Вероятность относится к числу таких понятий, которыми мы охотно пользуемся в повседневной жизни, совсем не задумываясь об этом. Например, даже наша речь носит отпечаток стихийно-вероятностного подхода к окружающей нас действительности. Мы часто употребляем слова "вероятно ", "маловероятно ", "невероят­но" . Уже в этих словах имеется попытка оценить возможность появления того или иного события, т.е. попытка дать количественную оценку этой возможности. Идея выражать числами степень возможности появления тех или иных событий возникла после того, как люди попытались обобщить достаточно большое число наблюдений за явлениями, в которых проявляется свойство устойчивости, т.е. способность повторяться довольно часто.

Например, нельзя заранее определить результат одного подбрасывания монеты. Но если подбрасывать монету достаточно большое число раз, то почти наверняка можно утверждать, что примерно половину раз она упадет на "орла", а половину на "решку". Число подобных примеров, в которых интуитивное представление о численном значении вероятности того или иного события, можно привести очень много. Однако все подобные примеры сопровождаются неопределенными понятиями типа "честное" подбрасывание, "правильная" монета и т.п. Теория вероятностей стала наукой лишь тогда, когда были выявлены основные понятия теории вероятностей, четко сформулировано само понятие вероятности, построена вероятностная аксиоматическая модель.

Любая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, плоскости, линии, поверхности; в математическом анализе – функции, предела, дифференциала, интеграла; в механике – силы, массы, скорости, ускорения. Естественно, что такие понятия есть и в теории вероятностей. Одним из таких основных понятий является понятие случайного события .

1. Случайные события и их вероятности

1.1. Случайные события и их классификация

Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием ). Заметим, что в проведении опыта необязательно должен участвовать сам исследователь. Опыт можно поставить мысленно, или он может протекать независимо от него; в последнем случае исследователь выступает в качестве наблюдателя.

Событие называется достоверным , если оно непременно должно произойти при выполнении определенных условий. Так, достоверным является выпадение не более шести очков при бросании обычной игральной кости; утверждение, что вода является находится в жидком состоянии при +20 0 С в нормальных условиях, и т.п. Событие называется невозможным , если оно заведомо не наступит при выполнении определенных условий. Так, невозможным событием является утверждение, что можно извлечь более четырех тузов из обычной колоды карт; или утверждение Мюнхгаузена, что он мог поднять себя за волосы, и т.п. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. Например, выпадение «орла» при бросании монеты; попадание в цель при одном выстреле по мишени и т.п.

В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами . При этом исход того или иного эксперимента должен зависеть от ряда случайных факторов, т.е. любой исход должен являться случайным событием; в противном случае, такими событиями должны заниматься другие науки. Особо следует отметить, что в теории вероятностей рассматриваются только такие эксперименты, которые можно повторить (воспроизвести) при неизменном комплексе условий произвольное число раз (по крайней мере теоретически). То есть, теория вероятностей изучает лишь такие события, в отношении которых имеет смысл не только утверждение об их случайности, но и возможна объективная оценка доли случаев их появления. В связи с этим, подчеркнем, что теория вероятностей не занимается изучением уникальных событий, как бы они ни были интересными сами по себе. Например, утверждение, что в данном месте в данное время произойдет землетрясение, относится к числу случайных событий. Однако подобные события уникальны, поскольку их нельзя воспроизвести.

Другой пример, событие, состоящее в том, что данный механизм проработает больше года, является случайным, но уникальным. Конечно, каждый механизм индивидуален по своим качествам, но этих механизмов может изготовляться очень много, причем изготовленных в одних и тех же условиях. Испытания многих сходных объектов дает ту информацию, которая позволяет оценить долю числа появления рассматриваемого случайного события. Таким образом, в теории вероятностей имеют дело с повторением испытаний двух типов : 1) повторение испытаний для одного и того же объекта ; 2) испытание многих сходных объектов .

В дальнейшем для краткости слово «случайный» будем опускать. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

События A и B называются несовместными , если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет "орел" или "решка". Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными . Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.

Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет; в противном случае такие события называются зависимыми . Например, вероятность события того. что во второй раз из урны, содержащей белые и черные шары, будет вынут белый шар, не зависит от того, какой шар был вынут в первый раз, если он был возвращен обратно. Однако если первый шар не был возвращен обратно, то результат второго извлечения уже будет зависеть от первого, ибо состав шаров в урне уже изменится в зависимости от результата первого извлечения.

Вопрос . Зависимы или нет несовместные события?



Понравилась статья? Поделитесь с друзьями!