Среднее арифметическое крайних чисел. Средняя арифметическая

Что такое среднее арифметическое?

  1. Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых
  2. делить
  3. Число Среднее (Mean), Среднее Арифметическое (Arithmetic Mean) - усредненное значение, характеризующее какую-либо группу наблюдений; вычисляется путем сложения чисел из этого ряда и последующего деления полученной суммы на количество просуммированных чисел. Если одно или несколько чисел, входящих в группу, значительно отличаются от остальных, то это может привести к искажению получаемого среднего арифметического значения. Поэтому в данном случае предпочтительнее пользоваться средним геометрическим значением (geometric mean) (оно вычисляется аналогичным образом, но здесь определяется среднее арифметическое логарифмов величин наблюдений, а затем находится его антилогарифм) или - что применяется чаще всего - находить среднее значение (median) (среднее значение из серии величин, расположенных в порядке возрастания) . Еще одним методом получения среднего значения какой-либо величины из группы наблюдений является определение моды (mode) - показателя (или набора показателей) , оценивающего наиболее частые проявления какой-либо переменной величины; чаще этот метод используется для определения среднего значения в нескольких сериях опытов.
    Например: числа 1 и 99, складываем и делим на два:
    (1+99)/2=50 - среднее арифметическое
    Если взять числа (1,2,3,15,59)/5=16 - среднее арифметическое, и т. д. и т. п.
  4. Среднее арифметическое (в математике и статистике) одна из наиболее распространенных мер центральной тенденции, представляющая собой сумму всех зафиксированных значений, деленную на их количество.
    У этого термина существуют и другие значения, см. среднее значение.
    Среднее арифметическое (в математике и статистике) одна из наиболее распространнных мер центральной тенденции, представляющая собой сумму всех зафиксированных значений, делнную на их количество.

    Предложена (наряду со средним геометрическим и средним гармоническим) еще пифагорейцами 1.

    Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

    Для обозначения среднего арифметического всей совокупности используется греческая буква. Для случайной величины, для которой определено среднее значение, есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним, тогда для любой выборки xi из этой совокупности = E{xi} есть математическое ожидание этой выборки.

    На практике разница между и bar{x} , в том, что является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда bar{x} , (но не) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    bar{x} = frac{1}{n}sum_{i=1}^n x_i = frac{1}{n} (x_1+cdots+x_n).
    Если X случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

    В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

    Заметим, что имеется несколько других средних значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины.

    Примеры править править вики-текст
    Для трх чисел необходимо сложить их и разделить на 3:
    frac{x_1 + x_2 + x_3}{3}.
    Для четырх чисел необходимо сложить их и разделить на 4:
    frac{x_1 + x_2 + x_3 + x_4}{4}.
    Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

    Непрерывная случайная величина править править вики-текст
    Для непрерывно распределнной величины f(x) среднее арифметическое на отрезке a;b определяется через определнный интеграл: Некоторые проблемы применения среднего Отсутствие робастности править Основная статья: Робастность в статистикеХотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию больших отклонений. Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическ

  5. Это складываеш числа и их делиш соклько было вот так 33+66+99= складываеш 33+66+99= 198 и делиш сколько было зачит у нас 3 числа это 33 66 и 99 и надо что у нас получилось поделить вот так: 33+66+99=198:3=66 это средня орефметическое
  6. ну это типа 2+8=10 а среднее 5
  7. Среднее арифметическое набора чисел определяется как их сумма, деленная на их количество. То есть сумма всех чисел набора делится на количество чисел в этом наборе.

    Наиболее простой случай - найти среднее арифметическое двух чисел x1 и x2. Тогда их среднее арифметическое X = (x1+x2)/2. Например, X = (6+2)/2 = 4 - среднее арифметическое чисел 6 и 2.
    2
    Общая формула для нахождения среднего арифметического n чисел будет выглядеть так: X = (x1+x2+...+xn)/n. Ее можно также записать в виде: X = (1/n)xi, где суммирование ведется по индексу i от i = 1 до i = n.

    К примеру, среднее арифметическое трех чисел X = (x1+x2+x3)/3, пяти чисел - (x1+x2+x3+x4+x5)/5.
    3
    Интерес представляет ситуация, когда набор чисел представляет собой члены арифметической прогрессии. Как известно, члены арифметической прогрессии равны a1+(n-1)d, где d - шаг прогрессии, а n - номер члена прогрессии.

    Пусть a1, a1+d, a1+2d,...a1+(n-1)d - члены арифметической прогрессии. Их среднее арифметическое равно S = (a1+a1+d+a1+2d+...+a1+(n-1)d)/n = (na1+d+2d+...+(n-1)d)/n = a1+(d+2d+...+(n-2)d+(n-1)d)/n = a1+(d+2d+...+dn-d+dn-2d)/n = a1+(n*d*(n-1)/2)/n = a1+dn/2 = (2a1+d(n-1))/2 = (a1+an)/2. Таким образом среднее арифметическое членов арифметической прогрессии равно среднему арифметическому его первого и последнего членов.
    4
    Также справедливо свойство, что каждый член арифметической прогрессии равен среднему арифметическому предыдущего и последующего члена прогрессии: an = (a(n-1)+a(n+1))/2, где a(n-1), an, a(n+1) - идущие друг за другом члены последовательности.

  8. Сумму чисел делишь на их количество
  9. это когда все складываешь и делишь
  10. если не ошибаюсь, это когда сумму чисел складываешь и делишь на количество самих чисел...
  11. это когда у тебя есть несколько чисел, ты их складываешь, а затем делишь на их количество! допустим 25 24 65 76,складываешь: 25+24+65+76:4=среднее арифметическое!
  12. Вячаслав богданов ответил неправильно!!! !
    Ндо своими слвами!
    Среднее арифметическое - это среднее значение между двумя значениями.... Находится как суму чисел деленное на ихуоличество.. . Или просто, если два числа находятся вокруг когото числа (вернее между ними в порядке есть какое то число) , то это число и будет ср. ар. !

    6 + 8... ср ар = 7

  13. делитель гыгыгыгыгыггы
  14. Среднее между максимум и минимум (слогаются все числовые показатели и делятся на их количество
    )
  15. это когда складываешь числа и делишь на количество чисел
Ответ: каждому досталось по 4 груши.

Пример 2. На курсы английского языка в понедельник пришло 15 человек, во вторник - 10, в среду - 12, в четверг - 11, в пятницу - 7, в субботу - 14, в воскресенье - 8. Найти среднюю посещаемость курсов за неделю.
Решение: Найдем среднее арифметическое:

15 + 10 + 12 + 11 + 7 + 14 + 8 = 77 = 11
7 7
Ответ: в среднем на курсы английского языка приходило 11 человек в день.

Пример 3. Гонщик ехала два часа со скоростью 120 км/ч и час со скоростью 90 км/ч. Найдите среднюю скорость автомобиля во время гонки.
Решение: Найдем среднее арифметическое скоростей автомобиля за каждый час пути:

120 + 120 + 90 = 330 = 110
3 3
Ответ: средняя скорость автомобиля во время гонки была 110 км/ч.

Пример 4. Среднее арифметическое 3 чисел равно 6, а среднее арифметическое 7 других чисел равно 3. Чему равно среднее арифметическое этих десяти чисел?
Решение: Так как среднее арифметическое 3-х чисел равно 6 то их сумма равна 6 · 3 = 18, аналогично сумма оставшихся 7-ми чисел равна 7 · 3 = 21.
Значит сумма всех 10-ти чисел будет 18 + 21 = 39, а среднее арифметическое равно

39 = 3.9
10
Ответ: среднее арифметическое 10-ти чисел равно 3.9 .

Тема среднего арифметического и среднего геометрического входит в программу математики 6-7 классов. Так как параграф довольно прост для понимания, его быстро проходят, и к завершению учебного года школьники его забывают. Но знания в базовой статистике нужны для сдачи ЕГЭ, а также для международных экзаменов SAT. Да и для повседневной жизни развитое аналитическое мышление никогда не помешает.

Как вычислить среднее арифметическое и среднее геометрическое чисел

Допустим, имеется ряд чисел: 11, 4, и 3. Средним арифметическим называется сумма всех чисел, поделенная на количество данных чисел. То есть в случае чисел 11, 4, 3, ответ будет 6. Как образом получается 6?

Решение: (11 + 4 + 3) / 3 = 6

В знаменателе должно стоять число, равное количеству чисел, среднее которых нужно найти. Сумма делится на 3, так как слагаемых три.

Теперь надо разобраться со средним геометрическим. Допустим, есть ряд чисел: 4, 2 и 8.

Средним геометрическим чисел называется произведение всех данных чисел, находящееся под корнем со степенью, равной количеству данных чисел.То есть в случае чисел 4, 2 и 8 ответом будет 4. Вот каким образом это получилось:

Решение: ∛(4 × 2 × 8) = 4

В обоих вариантах получились целые ответы, так как для примера были взяты специальные числа. Так происходит отнюдь не всегда. В большинстве случаев ответ приходится округлять или оставлять под корнем. Например, для чисел 11, 7 и 20 среднее арифметическое ≈ 12,67, а среднее геометрическое - ∛1540. А для чисел 6 и 5 ответы, соответственно, будут 5,5 и √30.

Может ли так произойти, что среднее арифметическое станет равным среднему геометрическому?

Конечно, может. Но только в двух случаях. Если имеется ряд чисел, состоящий только либо из единиц, либо из нулей. Примечательно также то, что ответ не зависит от их количества.

Доказательство с единицами: (1 + 1 + 1) / 3 = 3 / 3 = 1 (среднее арифметическое).

∛(1 × 1 × 1) = ∛1 = 1(среднее геометрическое).

Доказательство с нулями: (0 + 0) / 2=0 (среднее арифметическое).

√(0 × 0) = 0 (среднее геометрическое).

Другого варианта нет и быть не может.

) и выборочное среднее (выборки).

Энциклопедичный YouTube

  • 1 / 5

    Обозначим множество данных X = (x 1 , x 2 , …, x n ), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

    Для обозначения среднего арифметического всей совокупности используется греческая буква μ . Для случайной величины , для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки x i из этой совокупности μ = E{x i } есть математическое ожидание этой выборки.

    На практике разница между μ и x ¯ {\displaystyle {\bar {x}}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\displaystyle {\bar {x}}} (но не μ) можно трактовать как случайную переменную , имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

    Обе эти величины вычисляются одним и тем же способом:

    x ¯ = 1 n ∑ i = 1 n x i = 1 n (x 1 + ⋯ + x n) . {\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).}

    Примеры

    • Для трёх чисел необходимо сложить их и разделить на 3:
    x 1 + x 2 + x 3 3 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}}{3}}.} x 1 + x 2 + x 3 + x 4 4 . {\displaystyle {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.}

    Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

    Непрерывная случайная величина

    f (x) ¯ [ a ; b ] = 1 b − a ∫ a b f (x) d x {\displaystyle {\overline {f(x)}}_{}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx}

    Некоторые проблемы применения среднего

    Отсутствие робастности

    Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

    Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы , из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон , подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса . Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

    Сложный процент

    Если числа перемножать , а не складывать , нужно использовать среднее геометрическое , а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

    Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только около 8,16653826392 % ≈ 8,2 %.

    Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % - это 30 % от меньшего, чем цена в начале первого года, числа: если акции в начале стоили $30 и упали на 10 %, они в начале второго года стоят $27. Если акции выросли на 30 %, они в конце второго года стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года всего на $5.1, средний рост в 8,2 % даёт конечный результат $35.1:

    [$30 (1 - 0.1) (1 + 0.3) = $30 (1 + 0.082) (1 + 0.082) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое значение: [$30 (1 + 0.1) (1 + 0.1) = $36.3].

    Сложный процент в конце 2 года: 90 % * 130 % = 117 % , то есть общий прирост 17 %, а среднегодовой сложный процент 117 % ≈ 108.2 % {\displaystyle {\sqrt {117\%}}\approx 108.2\%} , то есть среднегодовой прирост 8,2 %.. Это число неверно по двум причинам.

    Среднее значение для циклической переменной, рассчитанное по приведённой формуле, будет искусственно сдвинуто относительно настоящего среднего к середине числового диапазона. Из-за этого среднее рассчитывается другим способом, а именно, в качестве среднего значения выбирается число с наименьшей дисперсией (центральная точка). Также вместо вычитания используется модульное расстояние (то есть, расстояние по окружности). Например, модульное расстояние между 1° и 359° равно 2°, а не 358° (на окружности между 359° и 360°==0° - один градус, между 0° и 1° - тоже 1°, в сумме - 2°).



Понравилась статья? Поделитесь с друзьями!