Туннельный эффект квантовая механика. Ф6

Рассказываем о книгах разного жанра, которые можно почитать для души. Эти произведения точно не оставят вас равнодушными.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Ну когда же еще, если не зимой, задаваться вопросом, что почитать для души? Когда телевизор и социальные сети надоели, пора взять в руки книгу. А мы вам расскажем, что можно прочесть.

Р. Брэдбери «Вино из одуванчиков» . Зимние холодные вечера заставляют нас вспоминать о ласковом лете. Свежий воздух, пение птиц, теплая речка, золотистый солнечный свет — именно в такую атмосферу вас окунет это произведение. Вместе с главным героем — 12-ти летним мальчиком — вы проживете беззаботное лето, полное открытий, печальных и радостных событий, приятных впечатлений.

Т. Пратчетт «Кот без прикрас» . Никакой политики, никакой драмы, только их величества Коты. Эта книга — небольшая энциклопедия, рассказывающая о жизни и сути кошачьих в легкой манере. «Кот без прикрас» позволит вам скоротать вечерок в теплой уютной атмосфере, а может быть вы даже узнаете много интересного об усатых питомцах.

А. Экзюпери «Маленький принц» . Это аллегорическая повесть-сказка, которая, несмотря на жанр, посвящается взрослым. Вместе с чудесным Маленьким Принцем вы отправитесь в путешествие по планетам и научитесь смотреть на привычные вещи под другим углом.

Это произведение из современной литературы.Этот роман рассказывает о девочке Лизель, живущей в эпоху Второй мировой войны. Интересно, что повествование ведется от лица Смерти, и в книге Зусака это персонаж-мужчина.



Кен Кизи «Над кукушкиным гнездом» . В эту подборку мы постарались включить произведения разных жанров, и какую книгу прочитать, выбирать вам. «Над кукушкиным гнездом» — это серьезное произведение, персонажи которого находятся в психиатрической клинике. Здесь царит тишина больничных коридоров и скучных процедур, но все меняется с появлением Патрика Макмерфи. этот непослушный хулан переворачивает в клинике все с ног на голову, не давая товарищам по несчастью покорно преклоняться перед внешним миром.

Б. Пастернак «Доктор Живаго» . Эту книгу тоже можно почитать для души, но она довольно грустная. Роман показывает, как исторические событияданном случае Гражданская война и революция) влияют на судьбу обычного человека, волей случая оказывающегося в их центре.

Стивен Кинг «Рита Хейуорт и спасение из Шоушенка». Это история о том, как главный герой, ошибочно осужденный за убийство жены и ее любовника, попадает в тюрьму Шоушенк, где процветают коррупция и насилие. Книгу считают одной из лучших в творчестве Кинга.

М. Хансен, Д. Кэнфилд, Э. Ньюмарк «Куриный бульон для души. 101 лучшая история» . Если вы еще никогда не сталкивались с серией книг «Куриный бульон для души», то советуем обратить на нее внимание. В серию входит несколько книг, каждая из которых представляет собой сборник историй о разных людях. Вы узнаете о мальчике из простой семьи, который познакомился с тремя президентами, об актрисе, которая стала счастлива благодаря раку, о девочке, которая продала более сорока тысяч печенья ради маминой мечты. Здесь собраны поразительные истории простых людей, в жизни которых произошло что-то невероятное, и от них вы точно не сможете оторваться.

Не секрет, что женщины любят читать для души. Большинство представительниц прекрасной половины человечества любят читать о любви. Любовные романы также рассчитаны на определенный круг читателей, но если хочется читать более качественные и интересные произведения, тогда стоит обратить внимание на следующие книги:

  • Майя Кучерская «Тетя Мотя» — классический роман о любви, измене и переживаниях;
  • Харуки Мураками «Норвежский лес» — роман о дружбе, любви и совести;
  • Чингиз Айтматов «Джамиля» — роман о любви с шикарными описаниями степей и гор;
  • Януш Вишневский «Одиночество в сети» — роман о современном мире и положении в нем одного человека.
  • Джон Фаулз «Любовница французского лейтенанта» . Много хорошего написано в этом романе. Автор ведет читателя к тому, что совесть — это индивидуальный выбор каждого человека.

Может, мы тратим жизнь не на то, что нужно? Или ценим нестоящие вещи? Жизнь умирающей Лилиан учит читателей тому, как важно ценить время.

Анна Франк «Убежище. Дневник в письмах» . Книга представляет дневник маленькой девочки, которая вела его в Амстердаме, прячась с семьей от нацистов. Это трагедия ХХ века, которая нашла свое отображение в заметках пятнадцатилетней девочки.

Владимир Набоков «Лолита». К данному произведению можно относиться с презрением или с восхищением. Третьего не дано. Роман, который всколыхнул общество и стал популярным по обе стороны океана.

Читатель сам выбирает, какую литературу ему читать, отечественную или зарубежную. Из зарубежной литературы можно выбрать очень интересные книги. «Гордость и предубеждение» Джейн Остин вызывает восхищение у читателей по всему миру. Это роман о любви, который стоит уровнем выше всех остальных романов данной категории.

Эмили Бронте «Грозовой перевал» . Роман перенесет в Англию, где девушка влюбилась в своего двоюродного брата. Этот роман до сих пор остается загадкой.

Эрих Мария Ремарк «Триумфальная арка» . Текст данной книги расходится на цитаты. История любви, которая развивается в оккупированном фашистами Париже, не может оставить читателя равнодушным. Париж, двое влюбленных и обреченность — вот главные направления книги.

Виктор Гюго «Собор Парижской Богоматери» . Роман также рекомендуется к прочтению, ведь эта книга выдержала века и не утратила своей популярности. История о том, что может препятствовать любви.

Маргарет Митчелл «Унесенные ветром». Роман остается востребованным произведением спустя десятилетия. Если вы ищете женщину, на которую можно равняться, тогда этот роман для вас. Главная героиня Скарлетт О’Хара достойна того, чтобы ее наследовали женщины с диаметрально противоположными социальными взглядами. терновнике» . Семейная сага австралийской писательницы. Это история о семье Клири, об их печалях и радостях, о падениях и взлетах, но главное чувство, пронизывающее весь роман — это истинная и чистая любовь.

Франсуаза Саган «Здравствуй, грусть» . Это роман о переживаниях юной девушки Сесиль. Она провела какое-то время в монастыре, а вернувшись к отцу, погружается в богемную жизнь без правил. Пока однажды в их жизни не появляется подруга матери, умная и красивая женщина со своими моральными ценностями.

Михаил Шишкин «Письмовник» . Книга представляет собой переписку двух влюбленных. Герой пишет с войны, на которой он участвует в походе против китайцев. Девушка пишет с «гражданки». Вскоре читатель понимает, что влюбленные переписываются, но не слышат друг друга, и они живут в разном времени...

Есть много интересного про любовь у русских классиков. Например, «Анна Каренина» Льва Толстого была экранизирована много раз. По ее сюжету ставились спектакли. История о страсти, любви, которая обладает разрушительной силой, заставляет жить переживаниями главных героев.

  • Перевод

Начну с двух простых вопросов с достаточно интуитивными ответами. Возьмём чашу и шарик (рис. 1). Если мне нужно, чтобы:

Шарик оставался неподвижным после того, как я помещу его в чашу, и
он оставался примерно в том же положении при перемещении чаши,

То куда мне его положить?

Рис. 1

Конечно, мне нужно положить его в центр, на самое дно. Почему? Интуитивно ясно, что если я положу его куда-то ещё, он скатится до дна, и будет болтаться туда и сюда. В итоге трение уменьшит высоту болтаний и затормозит его внизу.

В принципе можно попробовать уравновесить шарик на краю чаши. Но если я немного потрясу её, шарик потеряет равновесие у падёт. Так что это место не удовлетворяет второму критерию в моём вопросе.

Назовём положение, в котором шарик остаётся неподвижным, и от которого он не сильно отклоняется при небольших движениях чаши или шарика, «стабильным положением шарика». Дно чаши - такое стабильное положение.

Другой вопрос. Если у меня есть две чаши, как на рис. 2, где будут стабильные положения для шарика? Это тоже просто: таких мест два, а именно, на дне каждой из чаш.


Рис. 2

Наконец, ещё один вопрос с интуитивно понятным ответом. Если я размещу шарик на дне чаши 1, а потом выйду из комнаты, закрою её, гарантирую, что никто туда не зайдёт, проверю, что в этом месте не было землетрясений и других потрясений, то каковы шансы, что через десять лет, когда я вновь открою комнату, я обнаружу шарик на дне чаши 2? Конечно, нулевые. Чтобы шарик переместился со дна чаши 1 на дно чаши 2, кто-то или что-то должны взять шарик и переместить его с места на место, над краем чаши 1, в сторону чаши 2 и затем над краем чаши 2. Очевидно, что шарик останется на дне чаши 1.

Очевидно и по сути верно. И всё же, в квантовом мире, в котором мы живём, ни один объект не остаётся по-настоящему неподвижным, и его положение точно неизвестно. Так что ни один из этих ответов не верен на 100%.

Туннелирование



Рис. 3

Если я размещу элементарную частицу вроде электрона в магнитной ловушке (рис. 3) работающей, как чаша, стремящейся подтолкнуть электрон к центру точно так же, как гравитация и стены чаши толкают шарик к центру чаши на рис. 1, тогда каково будет стабильное положение электрона? Как и следовало интуитивно ожидать, среднее положение электрона будет стационарным, только если разместить его в центре ловушки.

Но квантовая механика добавляет один нюанс. Электрон не может оставаться неподвижным; его положение подвержено «квантовому дрожанию». Из-за этого его положение и движение постоянно меняется, или даже обладает некоей долей неопределённости (это работает знаменитый «принцип неопределённости»). Только среднее положение электрона находится в центре ловушки; если посмотреть на электрон, то он окажется где-нибудь в другом месте ловушки, рядом с центром, но не совсем там. Электрон неподвижен только в таком смысле: он обычно двигается, но его движение случайное, и поскольку он находится в ловушке, в среднем он никуда не сдвигается.

Это немного странно, но всего лишь отражает тот факт, что электрон представляет собой не то, что вы думаете, и не ведёт себя так, как любой из виденных вами объектов.

Это, кстати, также гарантирует, что электрон нельзя уравновесить на краю ловушки, в отличие от шарика на краю чаши (как внизу на рис. 1). Положение электрона не определено точно, поэтому его нельзя точно уравновесить; поэтому, даже без встряхиваний ловушки, электрон потеряет равновесие и почти сразу сорвётся.

Но что более странно, так это тот случай, когда у меня будет две ловушки, отделённые друг от друга, и я размещу электрон в одной из них. Да, центр одной из ловушек - хорошее, стабильное положение для электрона. Это так - в том смысле, что электрон может оставаться там и не убежит, если потрясти ловушку.

Однако, если разместить электрон в ловушке №1, и уйти, закрыть комнату и т.п., существует определённая вероятность того (рис. 4), что, когда я вернусь электрон будет находиться в ловушке №2.


Рис. 4

Как он это сделал? Если представлять себе электроны в виде шариков, вы этого не поймёте. Но электроны не похожи на шарики (или, по крайней мере, на ваше интуитивное представление о шариках), и их квантовое дрожание даёт им крайне небольшой, но ненулевой шанс «прохода сквозь стены» - кажущаяся невероятной возможность переместиться на другую сторону. Это называется туннелированием - но не надо думать, что электрон прокапывает дырку в стене. И вы никогда не сможете поймать его в стене - так сказать, с поличным. Просто стена не полностью непроницаема для таких вещей, как электрон; электроны нельзя так легко поймать в ловушку.

На самом деле, всё ещё безумнее: поскольку это правда для электрона, это правда и для шарика в вазе. Шарик может оказаться в вазе 2, если подождать достаточно долго. Но вероятность этого чрезвычайно мала. Так мала, что даже если подождать миллиард лет, или даже миллиарды миллиардов миллиардов лет, этого будет недостаточно. С практической точки зрения этого «никогда» не произойдёт.

Наш мир - квантовый, и все объекты состоят из элементарных частиц и подчиняются правилам квантовой физики. Квантовое дрожание присутствует постоянно. Но большая часть объектов, масса которых велика по сравнению с массой элементарных частиц - шарик, к примеру, или даже пылинка - это квантовое дрожание слишком мелкое, чтобы его обнаружить, за исключением особо разработанных экспериментов. И следующая из этого возможность туннелировать сквозь стены тоже не наблюдается в обычной жизни.

Иначе говоря: любой объект может туннелировать сквозь стену, но вероятность этого обычно резко уменьшается, если:

У объекта большая масса,
стена толстая (большое расстояние между двумя сторонами),
стену трудно преодолеть (чтобы пробить стену, нужно много энергии).

В принципе шарик может преодолеть край чаши, но на практике это может оказаться невозможным. Электрону может быть легко сбежать из ловушки, если ловушки расположены близко и не очень глубокие, но может быть и очень сложно, если они расположены далеко и очень глубокие.

А точно туннелирование происходит?



Рис. 5

А может, это туннелирование - просто теория? Точно нет. Оно фундаментально для химии, происходит во многих материалах, играет роль в биологии, и это принцип, используемый в наших самых хитрых и мощных микроскопах.

Для краткости давайте я остановлюсь на микроскопе. На рис. 5 представлено изображение атомов, сделанное при помощи сканирующего туннельного микроскопа . У такого микроскопа есть узкая игла, чей кончик двигается в непосредственной близости к изучаемому материалу (см. рис. 6). Материал и иголка, разумеется, состоят из атомов; а на задворках атомов находятся электроны. Грубо говоря, электроны находятся в ловушке внутри изучаемого материала или на кончике микроскопа. Но чем ближе кончик к поверхности, тем более вероятен туннельный переход электронов между ними. Простое устройство (между материалом и иглой поддерживается разница потенциалов) гарантирует, что электроны предпочтут перескакивать с поверхности на иглу, и этот поток - электрический ток, поддающийся измерению. Игла двигается над поверхностью, и поверхность оказывается то ближе, то дальше от кончика, и ток меняется - становится сильнее с уменьшением расстояния и слабее с увеличением. Отслеживая ток (или, наоборот, двигая иглу вверх и вниз для поддержания постоянного тока) при сканировании поверхности, микроскоп делает вывод о форме этой поверхности, и часто детализации хватает для того, чтобы разглядеть отдельные атомы.


Рис. 6

Туннелирование играет и множество других ролей в природе и современных технологиях.

Туннелирование между ловушками разной глубины

На рис. 4 я подразумевал, что у обеих ловушек одинаковая глубина - точно так же, как у обеих чаш на рис. 2 одинаковая форма. Это означает, что электрон, находясь в любой из ловушек, с одинаковой вероятностью перескочит в другую.

Теперь допустим, что одна ловушка для электрона на рис. 4 глубже другой - точно так же, как если бы одна чаша на рис. 2 была глубже другой (см. рис. 7). Хотя электрон может туннелировать в любом направлении, ему будет гораздо проще туннелировать из более мелкой в более глубокую ловушку, чем наоборот. Соответственно, если мы подождём достаточно долго, чтобы у электрона было достаточно времени туннелировать в любом направлении и вернуться, а затем начнём проводить измерения с целью определить его местонахождение, мы чаще всего будем находить его в глубокой ловушке. (На самом деле и тут есть свои нюансы, всё зависит ещё и от формы ловушки). При этом разница глубин не обязательно должна быть крупной для того, чтобы туннелирование из более глубокой в более мелкую ловушку стало чрезвычайно редким.

Короче, туннелирование в целом будет происходить в обоих направлениях, но вероятность перехода из мелкой ловушки в глубокую гораздо больше.


Рис. 7

Именно эта особенность используется в сканирующем туннельном микроскопе, чтобы гарантировать, что электроны будут переходить только в одном направлении. По сути кончик иглы микроскопа оказывается более глубокой ловушкой, чем изучаемая поверхность, поэтому электроны предпочитают туннелировать из поверхности на иглу, а не наоборот. Но микроскоп будет работать и в противоположном случае. Ловушки делаются глубже или мельче при помощи источника питания, создающего разность потенциалов между иглой и поверхностью, что создаёт разницу в энергиях у электронов на игле и электронов на поверхности. Поскольку заставить электроны чаще туннелировать в одном направлении, чем в другом, оказывается довольно просто, это туннелирование становится практически полезным для использования в электронике.

ТУННЕЛЬНЫЙ ЭФФЕКТ (туннелирование) - квантовый переход системы через область движения, запрещённую классич. механикой. Типичный пример такого процесса- прохождение частицы через потенциальный барьер , когда её энергия меньше высоты барьера. Импульс частицы р в этом случае, определяемый из соотношения где U(x) - потенц. энергия частицы (т - масса), был бы в области внутри барьера, мнимой величиной. В квантовой механике благодаря неопределённостей соотношению между импульсом и координатой подбарьерное движение оказывается возможным. Волновая ф-ция частицы в этой области экспоненциально затухает, и в квазиклассич. случае (см. Квазиклассическое приближение )её амплитуда в точке выхода из-под барьера мала.

Одна из постановок задач о прохождении потенц. барьера соответствует случаю, когда на барьер падает стационарный поток частиц и требуется найти величину прошедшего потока. Для таких задач вводится коэф. прозрачности барьера (коэф. туннельного перехода) D , равный отношению интенсивностей прошедшего и падающего потоков. Из обратимости по времени следует, что коэф. прозрачности для переходов в "прямом" и обратном направлениях одинаковы. В одномерном случае коэф. прозрачности может быть записан в виде


интегрирование проводится по классически недоступной области, х 1,2 - точки поворота, определяемые из условия В точках поворота в пределе классич. механики импульс частицы обращается в нуль. Коэф. D 0 требует для своего определения точного решения кван-тово-механич. задачи.

При выполнении условия квазиклассичности


на всём протяжении барьера, за исключением непосредств. окрестностей точек поворота x 1,2 коэф. D 0 слабо отличается от единицы. Существ. отличие D 0 от единицы может быть, напр., в тех случаях, когда кривая потенц. энергии с одной из сторон барьера идёт настолько круто, что квазиклассич. приближение там неприменимо, или когда энергия близка к высоте барьера (т. е. выражение, стоящее в экспоненте, мало). Для прямоугольного барьера высотой U о и шириной а коэф. прозрачности определяется ф-лой
где

Основание барьера соответствует нулевой энергии. В квазиклассич. случае D мал по сравнению с единицей.

Др. постановка задачи о прохождении частицы через барьер состоит в следующем. Пусть частица в нач. момент времени находится в состоянии, близком к т. н. стационарному состоянию, к-рое получилось бы при непроницаемом барьере (напр., при барьере, приподнятом вдали от потенциальной ямы на высоту, большую энергии вылетающей частицы). Такое состояние наз. квазистационарным. Аналогично стационарным состояниям зависимость волновой ф-ции частицы от времени даётся в этом случае множителем В качестве энергии здесь фигурирует комплексная величина Е , мнимая часть к-рой определяет вероятность распада квазистационарного состояния в единицу времени за счёт Т. э.:

В квазиклассич. приближении вероятность, даваемая ф-лой (3), содержит экспоненц. множитель того же типа, что и в-ф-ле (1). В случае сферически симметричного потенц. барьера вероятность распада квазистационарного состояния с орбит. l определяется ф-лой


Здесь r 1,2 -радиальные точки поворота, подынтегральное выражение в к-рых равно нулю. Множитель w 0 зависит от характера движения в классически разрешённой части потенциала, напр. он пропорц. классич. частоте частицы между стенками барьера.

Т. э. позволяет понять механизм a-распада тяжёлых ядер. Между-частицей и дочерним ядром действует элек-тростатич. отталкивание, определяемое ф-лой На малых расстояниях порядка размера а ядра таковы, что эфф. потенциал можно считать отрицательным: В результате вероятность а -распада даётся соотношением

Здесь -энергия вылетающей a-частицы.

Т. э. обусловливает возможность протекания термоядерных реакций на Солнце и звёздах при темп-ре в десятки и сотни млн. градусов (см. Эволюция звёзд ),а также в земных условиях в виде термоядерных взрывов или УТС.

В симметричном потенциале, состоящем из двух одинаковых ям, разделённых слабопроницаемым барьером, Т. э. приводит к состояний в ямах, что приводит к слабому двойному расщеплению дискретных уровней энергии (т. н. инверсионное расщепление; см. Молекулярные спектры) . Для бесконечного периодичного в пространстве набора ям каждый уровень превращается в зону энергий. Таков механизм образования узких электронных энергетич. зон в кристаллах с сильной связью электронов с узлами решётки.

Если к полупроводниковому кристаллу приложено элек-трич. поле, то зоны разрешённых энергий электронов становятся наклонными в пространстве. Тем самым уровень пост. энергии электрона пересекает все зоны. В этих условиях становится возможным переход электрона из одной энергетич. зоны в другую за счёт Т. э. Классически недоступной областью при этом является зона запрещённых энергий. Это явление наз. пробоем Зинера. Квазиклассич. приближение отвечает здесь малой величине напряжённости электрич. поля. В этом пределе вероятность пробоя Зинера определяется в осн. экспонентой, в показателе к-рой стоит большая отрицат. величина, пропорциональная отношению ширины запрещённой энергетич. зоны к энергии, набираемой электроном в приложенном поле на расстоянии, равном размеру элементарной ячейки.

Похожий эффект проявляется в туннельных диодах , в к-рых зоны наклонены благодаря полупроводникам р - и n -типа по обе стороны от границы их соприкосновения. Туннелирование осуществляется благодаря тому, что в зоне, куда переходит носитель , имеется конечная плотность незанятых состояний.

Благодаря Т. э. возможен электрич. ток между двумя металлами, разделёнными тонкой диэлектрич. перегородкой. Эти металлы могут находиться как в нормальном, так и в сверхпроводящем состоянии. В последнем случае может иметь место Джозефсона эффект .

Т. э. обязаны такие явления, происходящие в сильных электрич. полях, как автоионизация атомов (см. Ионизация полем автоэлектронная эмиссия из металлов. В обоих случаях электрич. поле образует барьер конечной прозрачности. Чем сильнее электрич. поле, тем прозрачнее барьер и тем сильнее электронный ток из металла. На этом принципе основан сканирующий туннельный микроскоп - прибор, измеряющий туннельный ток из разных точек исследуемой поверхности и дающий информацию о характере её неоднородности.

Т. э. возможен не только в квантовых системах, состоящих из одной частицы. Так, напр., низкотемпературное движение в кристаллах может быть связано с туннелированием конечной части дислокации, состоящей из многих частиц. В такого рода задачах линейную дислокацию можно представить как упругую струну, лежащую первоначально вдоль оси у в одном из локальных минимумов потенциала V(x, у) . Этот потенциал не зависит от у , а его рельеф вдоль оси х представляет собой последовательность локальных минимумов, каждый из к-рых находится ниже другого на величину, зависящую от приложенного к кристаллу механич. . Движение дислокации под действием этого напряжения сводится к туннелированию в соседний минимум определ. отрезка дислокации с последующим подтягиванием туда оставшейся её части. Такого же рода туннельный механизм может отвечать за движение волн зарядовой плотности в Пайерлса (см. Пайерлса переход ).

Для расчётов эффектов туннелирования таких многоразмерных квантовых систем удобно использовать квазиклассич. представление волновой ф-ции в виде где S -классич. действие системы. Для Т. э. существенна мнимая часть S , определяющая затухание волновой ф-ции в классически недоступной области. Для её вычисления используется метод комплексных траекторий.

Квантовая частица, преодолевающая потенц. барьер, может быть связана с термостатом. В классич. механике это соответствует движению с трением. Тем самым, для описания туннелирования необходимо привлечение теории, получившей назв. диссипативной . Такого рода соображения необходимо использовать для объяснения конечного времени жизни токовых состояний контактов Джозефсона. В этом случае происходит туннелирование эфф. квантовой частицы через барьер, а роль термостата играют нормальные электроны.

Лит.: Ландау Л. Д., Лифшиц Е. М., Квантовая механика, 4 изд., М., 1989; Займан Дж., Принципы теории твердого тела, пер. с англ., 2 изд., М., 1974; Базь А. И., Зельдович Я. Б., Переломов А. М., Рассеяние, реакции и распады в нерелятивистской квантовой механике, 2 изд., М., 1971; Туннельные явления в твердых телах, пер. с англ., М., 1973; Лихарев К. К., Введение в динамику джозефсоновских переходов, М., 1985. Б. И. Ивлев .

> Квантовое туннелирование

Изучите квантовый туннельный эффект . Узнайте, при каких условиях возникает эффект туннельного зрения, формула Шредингера, теория вероятности, орбитали атомов.

Если объекту не хватает энергии, чтобы пробиться сквозь барьер, то он способен туннелироваться через воображаемое пространство с другой стороны.

Задача обучения

  • Выявить факторы, влияющие на вероятность туннелирования.

Основные пункты

  • Квантовое туннелирование используют для любых объектов перед барьером. Но в макроскопических целях вероятность возникновения небольшая.
  • Туннельный эффект возникает из-за мнимой компонентной формулы Шредингера. Так как она присутствует в волновой функции любого объекта, то может существовать в воображаемом пространстве.
  • Туннелирование сокращается с ростом массы тела и увеличением разрыва между энергиями объекта и барьера.

Термин

  • Туннелирование – квантово-механическое прохождение частички сквозь энергетический барьер.

Как возникает туннельный эффект? Вообразите, что вы бросаете мяч, но он исчезает мгновенно, так и не коснувшись стены, и появляется с другой стороны. Стена здесь останется целой. Удивительно, но существует конечная вероятность того, что это событие осуществится. Явление именуют квантовым туннельным эффектом.

На макроскопическом уровне возможность туннелирования остается незначительной, но она постоянно наблюдается в наномасштабах. Давайте посмотрим на атом с р-орбиталью. Между двумя долями расположена узловая плоскость. Есть вероятность, что в любой ее точке можно найти электрон. Однако электроны переходят от одной доли к другой путем квантового туннелирования. Им просто нельзя находиться в узловой области, и они путешествуют по воображаемому пространству.

Красная и синяя доли показывают объемы, где присутствует 90% вероятность обнаружения электрона в любой временной промежуток, если орбитальная зона занята

Временное пространство не выступает реальным, но оно активно участвует в формуле Шредингера:

Вся материя располагает волновым компонентом и может существовать в мнимом пространстве. Понять разницу вероятности туннелирования поможет комбинация массы, энергии и высоты энергии объекта.

Когда объект подходит к барьеру, волновая функция меняется от синусоидальной до экспоненциально сокращающейся. Формула Шредингера:

Вероятность туннелирования становится меньше при росте массы объекта и возрастания разрыва между энергиями. Волновая функция никогда не приближается к 0, поэтому туннелирование так часто встречается в наномасштабах.



Понравилась статья? Поделитесь с друзьями!