Условия выполнения закона шарля. Приборы и материалы, необходимые для постановки опыта, принципиальная схема опытной установки

Материал из Википедии - свободной энциклопедии

Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путём зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Неоднозначность терминологии

В русско- и англоязычной научной литературе существуют некоторые различия в наименовании законов, связанных с именем Гей-Люссака. Эти различия представлены в следующей таблице:

Формулировка закона

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина . Математически закон записывают так:

\qquad P\sim{T}

\frac{P}{T}=k

См. также

Напишите отзыв о статье "Закон Шарля"

Примечания

Ссылки

Литература

  • Castka, Joseph F.; Metcalfe, H. Clark; Davis, Raymond E.; Williams, John E. Modern Chemistry. - Holt, Rinehart and Winston, 2002. - ISBN 0-03-056537-5 .
  • Guch, Ian. The Complete Idiot"s Guide to Chemistry. - Alpha, Penguin Group Inc., 2003. - ISBN 1-59257-101-8 .
  • Mascetta, Joseph A. How to Prepare for the SAT II Chemistry. - Barron"s, 1998. - ISBN 0-7641-0331-8 .

Отрывок, характеризующий Закон Шарля

В балагане, в который поступил Пьер и в котором он пробыл четыре недели, было двадцать три человека пленных солдат, три офицера и два чиновника.
Все они потом как в тумане представлялись Пьеру, но Платон Каратаев остался навсегда в душе Пьера самым сильным и дорогим воспоминанием и олицетворением всего русского, доброго и круглого. Когда на другой день, на рассвете, Пьер увидал своего соседа, первое впечатление чего то круглого подтвердилось вполне: вся фигура Платона в его подпоясанной веревкою французской шинели, в фуражке и лаптях, была круглая, голова была совершенно круглая, спина, грудь, плечи, даже руки, которые он носил, как бы всегда собираясь обнять что то, были круглые; приятная улыбка и большие карие нежные глаза были круглые.
Платону Каратаеву должно было быть за пятьдесят лет, судя по его рассказам о походах, в которых он участвовал давнишним солдатом. Он сам не знал и никак не мог определить, сколько ему было лет; но зубы его, ярко белые и крепкие, которые все выкатывались своими двумя полукругами, когда он смеялся (что он часто делал), были все хороши и целы; ни одного седого волоса не было в его бороде и волосах, и все тело его имело вид гибкости и в особенности твердости и сносливости.
Лицо его, несмотря на мелкие круглые морщинки, имело выражение невинности и юности; голос у него был приятный и певучий. Но главная особенность его речи состояла в непосредственности и спорости. Он, видимо, никогда не думал о том, что он сказал и что он скажет; и от этого в быстроте и верности его интонаций была особенная неотразимая убедительность.
Физические силы его и поворотливость были таковы первое время плена, что, казалось, он не понимал, что такое усталость и болезнь. Каждый день утром а вечером он, ложась, говорил: «Положи, господи, камушком, подними калачиком»; поутру, вставая, всегда одинаково пожимая плечами, говорил: «Лег – свернулся, встал – встряхнулся». И действительно, стоило ему лечь, чтобы тотчас же заснуть камнем, и стоило встряхнуться, чтобы тотчас же, без секунды промедления, взяться за какое нибудь дело, как дети, вставши, берутся за игрушки. Он все умел делать, не очень хорошо, но и не дурно. Он пек, парил, шил, строгал, тачал сапоги. Он всегда был занят и только по ночам позволял себе разговоры, которые он любил, и песни. Он пел песни, не так, как поют песенники, знающие, что их слушают, но пел, как поют птицы, очевидно, потому, что звуки эти ему было так же необходимо издавать, как необходимо бывает потянуться или расходиться; и звуки эти всегда бывали тонкие, нежные, почти женские, заунывные, и лицо его при этом бывало очень серьезно.
Попав в плен и обросши бородою, он, видимо, отбросил от себя все напущенное на него, чуждое, солдатское и невольно возвратился к прежнему, крестьянскому, народному складу.
– Солдат в отпуску – рубаха из порток, – говаривал он. Он неохотно говорил про свое солдатское время, хотя не жаловался, и часто повторял, что он всю службу ни разу бит не был. Когда он рассказывал, то преимущественно рассказывал из своих старых и, видимо, дорогих ему воспоминаний «христианского», как он выговаривал, крестьянского быта. Поговорки, которые наполняли его речь, не были те, большей частью неприличные и бойкие поговорки, которые говорят солдаты, но это были те народные изречения, которые кажутся столь незначительными, взятые отдельно, и которые получают вдруг значение глубокой мудрости, когда они сказаны кстати.

Французский физик Шарль открыл закон (в 1787 г.), который выражает зависимость изменения давления газа от температуры при постоянном объеме.

Опыт показывает, что при нагревании газа при постоянном объеме давление газа увеличивается. Скалярная величина, измеряемая изменением единицы давления газа, взятого при 0 0 С, от изменения его температуры на 1 0 С, называется термическим коэффициентом давления γ.

Согласно определению, термический коэффициент давления?

где р 0 - давление газа при 0°С, р - давление газа после нагревания на . Проделаем такой опыт (рис. 13, а). Сосуд А поместим в воду со льдом при открытых кранах 1 и 2. Когда сосуд:: и содержащийся в нем воздух охладятся до 0°С , закроем кран 2. Начальное состояние воздуха в сосуде: t° = 0°C, р 0 = 1 ат. Не меняя объема воздуха, поместим сосуд в горячую воду. Воздух в сосуде нагревается, его давление увеличивается и при температуре t° 1 = 40°C оно становится p 1 = 1,15 ат. Термический коэффициент давления

Более точными опытами, определив термический коэффициент давления для различных газов, Шарль открыл, что при постоянном объеме все газы имеют один и тот же термический коэффициент давления

Из формулы термического коэффициента давления


Заменим t° = T-273° . Тогда

Заменив получим


следовательно, р = р 0 γТ.

Если давление газа при температуре T 1 обозначить р 1 , а при температуре Т 2 - р 2 , то р 1 = γр 0 Т 1 и р 2 = γр 0 Т 2 . Сравнив давления, получим формулу закона Шарля:


Для данной массы газа при постоянном объеме давление газа изменяется прямо пропорционально изменению абсолютной температуры газа. Это и есть формулировка закона Шарля. Процесс изменения состояния газа при постоянном объеме называется изохорическим. Формула закона Шарля является уравнением?изохорического состояния газа. Чем выше температура газа, тем больше средняя кинетическая энергия молекул, а следовательно, больше и их скорость. В связи с этим увеличивается число ударов молекул о стенки сосуда, т. е. давление. На рис. 13, б изображен график закона Шарля.

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов.

Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путём зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Изохорический или изохорный процесс (от др.-греч. ἴσος - «равный» и χώρος - «место») - термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры . Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: {\displaystyle T} (температура), {\displaystyle V} (объем) и {\displaystyle P} (давление).

Наиболее часто первые исследования изохорного процесса связывают с Гильомом Амптоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме [Комм 1] внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающий столб. Зависимость между температурой и давлением была установлена в виде:

{\displaystyle {\frac {p_{1}}{p_{2}}}={\frac {1+\alpha t_{1}}{1+\alpha t_{2}}}}

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинакового расширяются при изменении температуры, если начальная и конечная температура одинакова . Данный закон получил название закона Гей-Люссака, так как Гей-Люссак, вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон . Впоследствии он же объединил свой закон с законом Бойля - Мариотта , что позволило описывать в том числе и изохорный процесс.



Изменение давления газа при изменении его температуры происходит так, что отношение P/T остается постоянным:

Поэтому экспериментальная проверка этого закона не может дать иного результата.

В изохорном процессе (V = const) газ работы не совершает, A = 0.

АДИАБАТИЧЕСКИЙ ПРОЦЕСС

Адиабати́ческий , или адиаба́тный проце́сс (от др.-греч. ἀδιάβατος - «непроходимый») - термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке .

Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна . Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётсяравновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только обратимые адиабатические процессы .

Обратимый адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на термодинамической диаграмме, называется адиабатой Пуассона . Примером необратимого адиабатического процесса может быть распространение ударной волны в газе. Такой процесс описывается ударной адиабатой . Адиабатическими можно считать процессы в целом ряде явлений природы. Также такие процессы получили ряд применений в технике.

Существование атмосферного давления было показано рядом экспериментов в XVII веке. Одним из первых доказательств гипотезы стали магдебургские полушария, сконструированные немецким инженером Герике. Из сферы, образованной полушариями, выкачивался воздух, после чего их было трудно разъединить в силу внешнего давления воздуха. Другой эксперимент в рамках исследования природы атмосферного давления поставил Роберт Бойль. Он состоял в том, что если запаять изогнутую стеклянную трубку с короткого конца, а в длинное колено постоянно подливать ртуть, она не поднимется до верха короткого колена, поскольку воздух в трубке, сжимаясь, будет уравновешивать давление ртути на него. К 1662 году данные опыты позволили прийти к формулировке закона Бойля - Мариотта .

В 1779 году в «Пирометрии» Ламберта был описан опыт повышения и понижения температуры в приёмнике воздушного насосапри движении поршня. Впоследствии данный эффект был подтверждён Дарвином (1788) и Пикте (1798). В 1802 году Дальтонопубликовал доклад, в котором, в числе прочего, указал, что сгущение газов сопровождается выделением тепла, а разрежение - охлаждением. Рабочий оружейного завода зажёг трут в дуле духового ружья путём сжатия воздуха, о чём сообщил в 1803 году лионский физик Моле .

Теоретическим обобщением накопившихся экспериментальных знаний занялся физик Пуассон. Так как при адиабатическом процессе температура непостоянна, то закон Бойля - Мариотта требует поправки, которую Пуассон обозначил как коэффициентk и выразил через соотношение теплоёмкостей. Экспериментально данный коэффициент определялся Вальтером и Гей-Люссаком (эксперимент описан в 1807 году) и затем, более точно Дезормом и Клеманом в 1819 году. Практическое использование адиабатического процесса предложил С. Карно в работе «Движущая сила огня» в 1824 году.

Если термодинамический процесс в общем случае представляет собой три процесса - теплообмен, совершение системой (или над системой) работы и изменение её внутренней энергии , то адиабатический процесс в силу отсутствия теплообмена (dQ=0{\displaystyle \Delta Q=0}) системы со средой сводится только к последним двум процессам . Поэтому, первое начало термодинамики в этом случае приобретает вид dU=-A

{\displaystyle \Delta U=-A,}

Где dU {\displaystyle \Delta U} - изменение внутренней энергии тела, dA{\displaystyle A} - работа, совершаемая системой.

Изменения энтропии {\displaystyle S}dS системы в обратимом адиабатическом процессе вследствие передачи тепла через границы системы не происходит : dS=dQ/T=0

{\displaystyle \mathrm {d} S=\delta Q/T=0.}

Здесь {\displaystyle T}T - температура системы, {\displaystyle \delta Q}dQ - теплота, полученная системой. Благодаря этому адиабатический процесс может быть составной частью обратимого цикла.

Открытие адиабатического процесса практически сразу нашло применение в дальнейших исследованиях. Создание теоретической модели цикла Карно позволило установить пределы развития реальных тепловых машин (сам С. Карно показал, что двигатель с более высоким КПД позволил бы создать вечный двигатель ). Однако цикл Карно трудно осуществим для некоторых реальных процессов, так как входящие в его состав изотермы требуют определённой скорости теплообмена . Поэтому были разработаны принципы циклов, частично сходных с циклом Карно (например, цикл Отто, цикл сжижения газа), которые были бы применимы в конкретных практических задачах.

Дальнейшие исследования показали также, что некоторые процессы в природе (например, распространение звука в газе) можно с достаточной степенью приближения описывать адиабатическим процессом и выявлять их закономерности . Химическая реакция внутри объёма газа в случае отсутствия теплообмена с окружающей средой также по определению будет адиабатическим процессом. Таким процессом является, например, адиабатическое горение. Для атмосферы Земли также считается адиабатическим процесс совершения газом работы на увеличение его потенциальной энергии. Исходя из этого, можно определить адиабатический градиент температуры для атмосферы Земли . Теория адиабатического процесса употребляется и для других астрономических объектов с атмосферой. В частности, для Солнца наличие макроскопических конвекционных движений теоретически определяют путём сравнения адиабатического градиента и градиента лучевого равновесия . Адиабатическими можно считать процессы, происходящие с применением адиабатных оболочек.

Цикл Карно является идеальным термодинамическим циклом. Тепловая машина Карно , работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно .

Максимальное КПД достигается при обратимом цикле . Для того, чтобы цикл был обратимым, из него должна быть исключена передача тепла при наличии разности температур. Чтобы доказать этот факт, предположим, что передача тепла при разности температур имеет место. Данная передача происходит от более горячего тела к более холодному. Если предположить процесс обратимым, то это означало бы возможность передачи тепла обратно от более холодного тела к более нагретому, что невозможно, следовательно процесс необратим . Соответственно, преобразование тепла в работу может происходить только изотермически [Комм 3] . При этом обратный переход двигателя в начальную точку только путём изотермического процесса невозможен, так как в этом случае вся полученная работа будет затрачена на восстановление исходного положения. Так как выше было показано, что адиабатический процесс может быть обратимым - то этот вид адиабатического процесса подходит для использования в цикле Карно.

Всего при цикле Карно происходят два адиабатических процесса :

1. Адиабатическое (изоэнтропическое) расширение (на рисунке - процесс 2→3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

2. Адиабатическое (изоэнтропическое) сжатие (на рисунке - процесс 4→1). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.


ПОЛИТРОПНЫЙ ПРОЦЕСС

Политропным называют процесс, который описывается уравнением

Уравнение состояния одного моля идеального газа

Дифференцируем уравнение (3.38):

Правую часть равенства (3.40) подставим в (3.36). Тогда

Политропный процесс является обобщением всех изопроцессов.

Замечание: 1. Изобарический процесс, Р=сonst. В этом случае уравнение политропы PV n = const принимает вид PV 0 = const, т.к. показатель политропы n=0, C n =C p .

2. Изотермический процесс, Т=сonst. При n=1 уравнение политропы переходит в уравнение изотермы, т.е. PV=сonst. Теплоемкость при постоянной температуре согласно (3.42) C n =C T =±¥.

3. Изохорический процесс, V=сonst. При n=±¥ уравнение политропы переходит в уравнение изохоры.

Теплоемкость при постоянном объеме .

4. Адиабатический процесс, Q=сonst. При n=g уравнение политропы переходит в уравнение адиабаты, а теплоемкость C n =C Q =0.

Найдем работу политропного процесса.

Рассмотрим два адиабатических состояния:

Работа политропного процесса

.

При постоянном давлении объем газа пропорционален его температуре.

Один из пионеров воздухоплавания Жак Александр Сезар Шарль пришел в науку в результате своего увлечения строительством монгольфьеров — больших воздушных шаров, заполненных разогретым воздухом, — которые тогда только-только появились. Я беседовал с современными пилотами воздушных шаров, и они утверждают, что их конструкция с использованием открытой газовой горелки, разработанная Шарлем более двух столетий назад, не претерпела принципиальных изменений и используется до наших дней. Ничего удивительного в том, что научные интересы Шарля лежали в области исследования свойств газов, стало быть, нет. Закон, носящий его имя, Шарль сформулировал в 1787 году после ряда опытов с кислородом, азотом, водородом и углекислым газом.

Чтобы понять смысл закона Шарля, представьте себе газ как скопление быстро движущихся и соударяющихся молекул. Давление газа определяется ударами молекул о стенки сосуда: чем больше ударов, тем выше давление. Например, молекулы воздуха в комнате, где вы находитесь, оказывают на поверхность вашего тела давление 101 325 паскалей (или 1 бар, если речь идет о метеорологии).

Чтобы понять закон Шарля, представьте себе воздух внутри воздушного шарика. При постоянной температуре воздух в шарике будет расширяться или сжиматься, пока давление, производимое его молекулами, не достигнет 101 325 паскалей и не сравняется с атмосферным давлением. Иными словами, пока на каждый удар молекулы воздуха извне, направленный внутрь шарика, не будет приходиться аналогичный удар молекулы воздуха, направленный изнутри шарика вовне. Если понизить температуру воздуха в шарике (например, положив его в большой холодильник), молекулы внутри шарика станут двигаться медленнее, менее энергично ударяя изнутри о стенки шарика. Молекулы наружного воздуха тогда будут сильнее давить на шарик, сжимая его, в результате объем газа внутри шарика будет уменьшаться. Это будет происходить до тех пор, пока увеличение плотности газа не компенсирует понизившуюся температуру, и тогда опять установится равновесие.

Закон Шарля, наряду с другими газовыми законами, лег в основу уравнения состояния идеального газа , описывающего соотношение давления, объема и температуры газа с количеством вещества..

Jacques Alexandre César Charles, 1746-1823

Французский физик, химик, инженер и воздухоплаватель. Родился в Божанси (Beaugency). В молодости служил чиновником в Министерстве финансов в Париже. Заинтересовавшись воздухоплаванием, разработал монгольфьеры современной конструкции, подъемная сила которых обусловлена расширением нагретого горелкой воздуха внутри шара. Он же одним из первых стал наполнять воздушные шары водородом (который во много раз легче воздуха и обеспечивает значительно большую подъемную силу, нежели горячий воздух), установив благодаря этому рекорды высоты подъема (более 3 000 м) и дальности полета (43 км). Именно занятия воздухоплаванием заставили Шарля заинтересоваться исследованиями свойств газов.



Понравилась статья? Поделитесь с друзьями!