Закономерности в спектре излучения атома водорода. Сериальные закономерности в спектре атома водорода

Полосатые и линейчатые спектры

Светящиеся газы показывают линейчатые спектры излучения, которые состоят из отдельных линий. Если свет пропускать через газ, то появляются линейчатые спектры поглощения, при этом атом поглощает спектральные линии, которые сам способен испускать. Первым изучался спектр атома водорода. Во второй половине XIX века проводились множество исследований спектров излучения. Было получено, испускаемый молекулярный спектр представляет собой совокупность широких размытых полос, у которых отсутствуют резкие границы. Такие спектры получили названия полосатых.

Спектр излучения атомов принципиально отличен по виду. Он состоит из четко обозначенных линий. Спектры атомов называют линейчатыми. Для каждого элемента есть определенный испускаемый только им линейчатый спектр. При этом вид спектра излучения не зависит от способа, которым возбужден атом. По такому спектру определяют принадлежность спектра элементу.

Закономерности в линейчатых спектрах

Линии в спектре расположены закономерно. Найти данные закономерности и объяснить их - важная задача физического исследования. Первым эмпирическую формулу, которая описала часть линий излучения для спектра атома водорода, получил Бальмер. Он отметил, что длины волн, девяти линий спектра водорода, которые были известны в то время, могут вычисляться по формуле:

где $\lambda =364,613\ нм,\ n=3,4,\dots ,11.$

Анализ экспериментальных материалов показал, что отдельные линии в спектре можно объединять в группы линий, которые называют сериями. Ридберг записал формулу (1) в виде:

Серию линий спектра получают в соответствии с формулой (8), если одно из целых чисел фиксируется, а другое принимает все целые значения, которые больше числа, которое фиксировано.

Граничные частоты (граничные волновые числа) серий спектра водорода определены как:

Формула (8) подтверждается эмпирически с высокой спектроскопической точностью. Особая роль целых чисел, ставшая очевидной в закономерностях спектров, до конца была осмыслена только в квантовой механике.

Пример 1

Задание: Какова максимальная ($E_{max}$) и минимальная ($E_{min}$) энергии фотона в серии Бальмера?

Решение:

В качестве основы для решения задачи используем сериальную формулу для частот спектра атома водорода:

\[{\nu }_{n2}=R\left(\frac{1}{2^2}-\frac{1}{n^2}\right)\left(n=3,4,5,\dots \right)\left(1.1\right),\]

где $R=3,29\cdot {10}^{15}c^{-1}$- константа Ридберга.

Минимальная энергия фотона может быть вычислена при использовании выражения:

Максимальная энергия находится при $n=\infty $:

Рисунок 1.

Ответ: $E_{min}=\frac{5}{36}hR,\ E_{max}=\frac{1}{4}hR.$

Пример 2

Задание: Определите, какова длина волна, которая соответствует: 1) границе серии Лаймана, 2) границе серии Бальмера.

Решение:

1) В качестве основы для решения задачи используем сериальную формулу для длин волн спектра водорода (серия Лаймана):

\[\frac{1}{{\lambda }_1}=R"\left(\frac{1}{1^2}-\frac{1}{n^2}\right)\left(n=2,3,4,\dots ,\infty \right)\left(2.1\right),\]

где $R"=1,1\cdot {10}^7м^{-1}.$ На границе $n=\infty \ $преобразуем выражение (2.1) в формулу:

\[\frac{1}{{\lambda }_1}=R"\left(\frac{1}{1^2}\right)\to {\lambda }_1=\frac{1}{R"}.\]

Проведем вычисление:

\[{\lambda }_1=\frac{1}{1,1\cdot {10}^7}=0,91\cdot {10}^{-7}\left(м\right).\]

2) В качестве основы для решения второй части задачи используем сериальную формулу для длин волн спектра водорода (серия Бальмера):

\[\frac{1}{{\lambda }_2}=R"\left(\frac{1}{2^2}-\frac{1}{n^2}\right)\left(n=3,4,\dots ,\infty \right)при\ n=\infty \to \frac{1}{{\lambda }_2}=R"\frac{1}{2^2}\left(2.2\right),\]

Получим искомую длину волны:

\[{\lambda }_2=\frac{4}{R"}.\]

Проведем вычисления:

\[{\lambda }_2=\frac{4}{1,1\cdot {10}^7}=364\cdot {10}^{-9}\left(м\right).\]

Ответ: ${\lambda }_1=910нм$, ${\lambda }_2=364\cdot {10}^{-9}$нм.

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: ν=1/λ=R(1/n 2 – 1/m 2). n=n+1, n+2,.. λ=1,2,3,… (сериальная ф-ла) R=1,092*10м -1 пост-я Ридберга. В общем случае записывают 1/λ=Rz 2 (1/n 2 – 1/m 2).

Энергия фотона преш-го с уровня n на m: hv =E m -E n =(hz 2 me 4 /(4πε 0) 2 2ħ 2)(1/n 2 -1/m 2).

Серия Лаймона – ν=1/λ=R(1/1 – 1/n 2), n=2,3,4…,в УФ области.

Серия Бальмера – ν=1/λ=R(1/2 2 – 1/n 2), n=3,4,5… видимая область и близкая УФ. Серия Пашена – ν=1/λ=R(1/3 2 – 1/n 2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

Постулаты Бора. Модель атома Бора.

Первую попытку сформулировать законы, которым подчиняется движение электронов в атоме предпринял Бор на основе представлений о том, что атом является устойчивой системой и что энергия, которую может излучать или поглощать атом, квантовая. 1) Для того, чтобы исключить 1-й недостаток модели Резенфорда, он предположил, что из всего многообразия орбит, которые вытекают из уравнения (1), в природе реализуются не все, а лишь некоторые устойчивые орбиты, которые он назвал стационарными, и, находясь на которых атом не излучает и не поглощает энергии. Стационарным орбитам отвечают устойчивые состояния атома, причем энергии, к-му обладает атом в этих состояниях, образуют дискретный ряд значений: E1, E2, E3…,En. Двигаясь по стационарной орбите электрон приобретает момент импульса, кратный приведенной постоянной кванта

h (в); m (индекс е) * v (инд. е) r = n h (в) (1), h (в) = n/2π, n=1,2,3… Т.е. при переходе с орбиты на орбиту меняется порциями, кратными h (в).

(1) – боровское правило контования или правило отбора стационарных орбит.

2) Для устранения 2-го противоречия модели Резенфорда, Бор предположил, что излучение или поглощение энергии атомом происходит при переходе атома из одного стационарного состояния в другое. При каждом таком переходе излучается квант энергии, равный разности энергий тел стационарных состояний, между которыми происходит квантовый скачок электрона, hν=En – Em (2) (n>m, излучение, n

2 постулата: 1) Атом обладает устойчивыми или стационарными состояниями, причем энергия атомов в этом состоянии образует дискретный ряд значений (постулат стационарных значений) E1, E2, E3…En. 2) Всякому излучению или поглощению энергии должен соответствовать переход атома из одного стационарного состояния в другое. При каждом таком переходе испускается монохроматическое излучение, частота которого определяется ν=(En – Em)/h(в) (правило частот Бора).

Модель атома Бора.

1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками - с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.

Спектральный анализ излучения, испускаемого атомами, дает обширную информацию об их строении и свойствах. Обычно наблюдают испускание света горячими одноатомными газами (или парами низкой плотности) или при электрическом разряде в газах.

Спектр излучения атомов состоит из отдельных дискретных линий, которые характеризуются длиной волны или частотой v = c/X. Наряду со спектрами излучения существуют спектры поглощения, которые наблюдают при пропускании излучения со сплошным спектром («белый» свет) через холодные пары. Линии поглощения характеризуются той же длиной волны, что и линии излучения. Поэтому говорят, что линии излучения и поглощения атомов взаимно обращаемы (Кирхгоф, 1859).

В спектроскопии более удобно использовать не длину волны излучения, а обратную величину v = l/X , которую называют спектроскопическим волновым числом , или просто волновым числом (Стони, 1871). Эта величина показывает, сколько длин волн укладывается на единице длины.

С помощью экспериментальных данных швейцарский физик Ритц в 1908 г. нашел эмпирическое правило, называемое комбинационным принципом , согласно которому существует система спектральных термов , или просто термов , Т п и Т , разность между которыми определяет спектроскопическое волновое число некоторой спектральной линии:

Термы считаются положительными. Их значение должно уменьшаться с увеличением номера п (и л,). Так как число линий излучения бесконечно, то бесконечно и число термов. Зафиксируем целое число п. Если считать число л, переменным со значениями л+ 1, л + 2, л + 3,..., то, согласно формуле (1.8), возникает ряд чисел, которым отвечает система спектральных линий, называемая спектральной серией. Спектральная серия - это совокупность спектральных линий, расположенных в определенной закономерной последовательности, и интенсивность которых также изменяется по определенному закону. При л,-о терм Т ->0. Соответствующее волновое число v n = Т п называют границей данной серии. При приближении к границе спектральные линии сгущаются, т. е. разность длин волн между ними стремится к нулю. Интенсивность линий также уменьшается. За границей серии следует сплошной спектр. Совокупность всех спектральных серий образует спектр рассматриваемого атома.

Комбинационный принцип (1.8) имеет также другую форму. Если у яя =Т-Т и у яя =Т-Т - волновые числа двух спек-

ЛЛ| П Л| ПП 2 П *

тральных линий одной и той же серии некоторого атома, то разность этих волновых чисел (при л, > л 2):

представляет собой волновое число спектральной линии какой-то другой серии того же атома. Вместе с тем не всякие возможные комбинационные линии реально наблюдаются в эксперименте.

Комбинационный принцип в свое время был совершенно непонятным и считался забавной игрой чисел. Лишь Нильс Бор в 1913 г. увидел в этой «игре» проявление глубоких внутренних закономерностей атома. Для большинства атомов аналитические выражения для термов неизвестны. Приближенные формулы подбирали с помощью анализа экспериментальных данных. Для атома водорода такие формулы оказались точными. В 1885 г. Бальмер показал, что длины волн наблюдаемых в спектре атома водорода четырех видимых линий -


H Q , Нр, Н у, H ft (рис. 1.6), которые впервые измерил Ангстрем (1868), с большой степенью точности можно вычислить по формуле

где число л = 3,4, 5, 6,.... Постоянная В= 3645,6-10 8 см была определена эмпирически. Для волнового числа из (1.10) следует формула

где R - эмпирическая постоянная Ридберга (1890), R = 4/B. Для атома водорода постоянная Ридберга равна

Из формулы (1.11) видно, что терм для атома водорода имеет простое выражение:

Следовательно, для волновых чисел спектральных серий атома водорода справедлива обобщенная формула Балтера :

Эта формула правильно описывает спектральные серии атома водорода, обнаруженные в эксперименте:

серия Балтера (л = 2, л,= 3, 4, 5, ...) - в видимой и ближней ультрафиолетовой частях спектра X = (6562...3646)* 10" 8 см:

серия Лаймана (1914) (л = 1, л, = 2, 3, 4, ...) - в ультрафиолетовой части спектра А = (1216...913)-10“ 8 см:


серия Пашена (1908) (л = 3, л, =4, 5, 6,...) - в инфракрасной части спектра Х= 1,88...0,82 мкм:

серия Брэккета (1922) (л = 4, л,=5, 6, 7, ...) - в далекой инфракрасной части спектра Х.=4,05... 1,46 мкм:

серия Пфунда (1924) (л = 5, л, =6, 7, 8,...) - в далекой инфракрасной части спектра Х=7,5...2,28 мкм:

серия Хамфри (1952) (л = 6, л, = 7, 8,...) - в далекой инфракрасной части спектра Х= 12,5...3,3 мкм:

Граница каждой серии определяется при л, головной линией данной серии.

1. Найти граничные длины волн спектральных серий атома водорода.

Ответ. Х т = n 1 /R . ф /

2. Определить головные линии спектральной серии.

Ответ. Х^ =л 2 (л + 1) 2 /я(2л + 1).

3. Определить предельные длины волн, между которыми расположены спектральные линии серии Бальмера.

О т в е т. Х ф = 3647-10" 8 см, Х^ = 6565-10’ 8 см.

4. Определить классический спектр атома водорода.

Решение. Электрон вместе с ядром можно рассматривать как электрический диполь, радиус-вектор которого периодически изменяется. Проекции радиуса-вектора электрона на декартовы оси также являются периодическими функциями, которые, в общем, можно представить в виде рядов

Фурье: *(/)= ^2 , y(t)= Я^е^ , где A s , B s - константы;

со - частота обращения электрона вокруг ядра, определяемая третьим законом Кеплера. Средняя за период 7’=2л/о) интенсивность излучения диполя

определяется формулой: I =----(х 2 +у 2 где х 2 =- Гdtx 2 . Отсюда еле-

6Л? 0 С 3 V > TJ

дует: / = ---{(/I 2 + 5 2)ш 4 + (л 2 + В )(2В)(3ш) 4 +...} Зле 0 с 3

Таким образом, спектр содержит частоту о и ее гармоники 2о), Зсо,... и представляет собой рядравноотстоящих линий. Это противоречит эксперименту.

Одна из важнейших особенностей строения атомных спектров - это их сериальная структура. Сериальные закономерности представляют собой яркое проявление квантовых свойств излучающих атомных систем. Линии спектра атомов газа могут быть объединены в определенные, закономерно построенные группы - так называемые серии. Длины волн всех линий, принадлежащих к одной и той же серии, связаны между собой. Сериаль­ные закономерности в наиболее простой форме проявляются в спектре одноэлектронного атома водорода, для которого они и были впервые получе­ны.

Рассмотрим атом водорода и сходные с ним ионы (модель так называе­мого водородоподобного атома) , то есть предположим, что имеется атом­ная система, состоящая из ядра с зарядом z и одного электрона (z - поряд­ковый номер элемента в периодической системе).

Кулоновская сила / взаимодействия между ядром и электроном играет роль центростремительной силы, равной для круговой орбиты

где т - масса электрона, r - радиус орбиты. В электрическом поле ядра электрон обладает потенциальной энергией

(6)

Полная энергия электрона равна сумме потенциальной и кинетической энергий. С учетом (5) и (6) и знаков в этих выражениях, имеем:

(7)

Согласно представлениям классической электромагнитной теории, вращающийся по орбите электрон возбуждает вокруг себя переменное электромагнитное поле, распространяющееся в пространстве со скоростью света. Иначе говоря, ускоренно движущийся электрон при своем вращении вокруг ядра должен излучать и вследствие этого терять часть энергии. Та­ким образом, согласно классической механике, энергия электрона всё вре­мя уменьшается. Из формулы (7) следует, что меньшему значению энергии соответствует меньший радиус. В результате электрон должен упасть на ядро.

Из формулы (5) следует, что с уменьшением радиуса орбиты скорость движения электрона возрастает, то есть период обращения уменьшается. Это должно привести к непрерывному увеличению частоты излучаемых электромагнитных волн и атом должен излучать непрерывный (сплошной) спектр. Однако в действительности атом - устойчивая система и может из­лучать лишь линейчатый спектр. Выход из создавшегося противоречивого положения был предложен Бором.

Основываясь на гипотезе Планка о квантовом характере излучения и поглощения света, Бор сформулировал законы, описывающие состояние и движение электронов в атоме в виде определенных постулатов, которые дают объяснение экспериментальным данным. Постулаты эти таковы:

1. Электрон в атоме может вращаться только по строго определен­ным орбитам, радиусы которых определяются из условия:

(8)

где р - момент количества движения электрона; п - число, принимающее положительные целые значения 1, 2, 3, ... и определяющее принадлеж­ность к той или иной орбите; h - постоянная Планка. Все другие орбиты «запрещены».

Таким образом, Бор постулировал, что момент количества движения электрона в атоме, а значит и его энергия, может принимать только строго определенные дискретные значения, то есть величина момента импульса электрона квантована.


1. Закономерности в атомных спектрах. Изолированные атомы в виде разреженного газа или паров металлов испускают спектр, состоящий из отдельных спектральных линий (линейчатый спектр). Изучение атомных спектров послужило ключом к познанию строения атомов. Линии в спектрах расположены не беспорядочно, а сериями. Расстояние между линиями в серии закономерно уменьшается по мере перехода от длинных волн к коротким.





Швейцарский физик Й. Бальмер в 1885 году установил, что длины волн серии в видимой части спектра водорода могут быть представлены формулой (формула Бальмера): 0 = const, n = 3, 4, 5,… R = 1,09·10 7 м -1 – постоянная Ридберга, n = 3, 4, 5,… В физике постоянной Ридберга называют и другую величину равную R = R ·с. R = 3,29·10 15 c -1 или










1895 г. - открытие Х-лучей Рентгеном 1896 г. - открытие радиоактивности Беккерелем 1897 г. - открытие электрона (Дж.Томсон определил величину отношения q/m) Вывод: Атом имеет сложное строение и состоит из положительных (протоны) и отрицательных (электроны) частиц








В 1903 году Дж. Дж. Томсон, предложил модель атома: сфера, равномерно заполненная положительным электричеством, внутри которой находятся электроны. Суммарный заряд сферы равен заряду электронов. Атом в целом нейтрален. Теория такого атома давала, что спектр должен быть сложным, но никоим образом не линейчатым, что противоречило экспериментам.




В 1899 г. открыл альфа - и бета-лучи. Вместе с Ф. Содди в 1903 г. разработал теорию радиоактивного распада и установил закон радиоактивных превращений. В 1903 году доказал, что альфа-лучи состоят из положительно заряженных частиц. В 1908 г. ему была присуждена Нобелевская премия. Резерфорд Эрнест (1871–1937) английский физик, основоположник ядерной физики. Исследования посвящены атомной и ядерной физике, радиоактивности.


2. Ядерная модель атома (модель Резерфорда). Скорость – частиц = 10 7 м/с = 10 4 км/сек. – частица имеет положительный заряд равный +2 е. Схема опыта Резерфорда Рассеянные частицы ударялись об экран из сернистого цинка, вызывая сцинтилляции – вспышки света.


Большинство α-частиц рассеивалось на углы порядка 3° Отдельные α-частицы отклонялись на большие углы, до 150º (одна из нескольких тысяч) Такое отклонение возможно лишь при взаимодействии практически точечного положительного заряда – ядра атома – с близко пролетающей α-частицей.


Малая вероятность отклонения на большие углы свидетельствует о малых размерах ядра: 99,95% массы атома сосредоточено в ядре м м






М Радиус ядра R (10 14 ÷)м и зависит от числа нуклонов в ядре.




F F


Однако, планетарная модель была в явном противоречии с классической электродинамикой: электрон, двигаясь по окружности, т.е. с нормальным ускорением, должен был излучать энергию, следовательно, замедлять скорость и упасть на ядро. Модель Резерфорда не могла объяснить, почему атом устойчив Планетарная модель атома


БОР Нильс Хендрик Давид (1885–1962) датский физик-теоретик, один из создателей современной физики. Сформулировал идею о дискретности энергетических состояний атомов, построил атомную модель, открыв условия устойчивости атомов. Создал первую квантовую модель атома, основанную на двух постулатах, которые прямо противоречили классическим представлениям и законам. 3. Элементарная теория Бора


1. Атом следует описывать как «пирамиду» стационарных энергетических состояний. Пребывая в одном из стационарных состояний, атом не излучает энергию. 2. При переходах между стационарными состояниями атом поглощает или излучает квант энергии. При поглощении энергии атом переходит в более энергетическое состояние.


ЕnЕnЕnЕn E m > E n Поглощение энергии E n Поглощение энергии"> E n Поглощение энергии"> E n Поглощение энергии" title="ЕnЕnЕnЕn E m > E n Поглощение энергии"> title="ЕnЕnЕnЕn E m > E n Поглощение энергии">


ЕnЕnЕnЕn E m > E n Излучение энергии E n Излучение энергии"> E n Излучение энергии"> E n Излучение энергии" title="ЕnЕnЕnЕn E m > E n Излучение энергии"> title="ЕnЕnЕnЕn E m > E n Излучение энергии">


Постулаты Бора 1. Электроны движутся только по определенным (стационарным) орбитам. При этом не происходит излучения энергии. Условие для стационарных орбит: из всех орбит электрона возможны только те, для которых момент импульса электрона, равен целому кратному постоянной Планка: n = 1, 2, 3,… главное квантовое число. m e v r = nħ


2. Излучение или поглощение энергии в виде кванта энергии h происходит лишь при переходе электрона из одного стационарного состояния в другое. Энергия светового кванта равна разности энергий тех стационарных состояний, между которыми совершается квантовый скачок электрона: hv = E m – E n - Правило частот Бора m, n – номера состояний. ЕnЕn EmEm Поглощение энергии ЕnЕn EmEm Излучение энергии


Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ => Радиус стационарных орбит: m e υr = nħ"> => Радиус стационарных орбит: m e υr = nħ"> => Радиус стационарных орбит: m e υr = nħ" title="Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ"> title="Уравнение движения электрона =>=> Радиус стационарных орбит: m e υr = nħ">












N , нм




Бор теоретически вычислил отношение массы протона к массе электрона m p /m e = 1847, это находится в соответствии с экспериментом. Все это было важным подтверждением основных идей, содержащихся в теории Бора. Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 – 1925 г.г.) были сделаны важные открытия, навсегда вошедшие в сокровищницу мировой науки.


Однако наряду с успехами в теории Бора с самого начала обнаружились существенные недостатки. Внутренняя противоречивость теории: механическое соединение классической физики с квантовыми постулатами. Теория не могла объяснить вопрос об интенсивностях спектральных линий. Серьезной неудачей являлась абсолютная невозможность применить теорию для объяснения спектров гелия (He) (два электрона на орбите, и уже теория Бора не справляется).


Стало ясно, что теория Бора является лишь переходным этапом на пути создания более общей и правильной теории. Такой теорией и являлась квантовая (волновая) механика. Дальнейшее развитие квантовой механики привело к отказу от механической картины движения электрона в поле ядра.


4. Опыт Франка и Герца Существование дискретных энергетических уровней атома и доказательство правильности теории Бора подтверждается опытом Франка и Герца. Немецкие ученые Джеймс Франк и Густав Герц, за экспериментальные исследования дискретности энергетического уровня получили Нобелевскую премию в 1925 г.






Такой ход кривой объясняется тем, что вследствие дискретности энергетических уровней атомы ртути могут воспринимать энергию бомбардирующих электронов только порциями: либо Е 1, Е 2, Е 3 … - энергии 1-го, 2-го и т.д. стационарных состояний. при увеличении U вплоть до 4,86В ток I возрастает монотонно, при U = 4,86В ток максимален, затем резко уменьшается и возрастает вновь. дальнейшие максимумы тока наблюдаются при U = 2·4.86 B, 3·4.86 B...


При U


Атомы ртути, получившие при соударении с электронами энергию ΔЕ 1 и перешедшие в возбужденное состояние, спустя время ~ с должны вернуться в основное состояние, излучая, согласно второму постулату Бора фотон с частотой (правило частот): При этом длина волны светового кванта: - что соответствует ультрафиолетовому излучению. Опыт действительно обнаруживает ультрафиолетовую линию с





Понравилась статья? Поделитесь с друзьями!