Законы электромагнетизма. Практическое применение закона электромагнитной индукции фарадея

Магнетизм - это невидимая сила, притягивающая или отталкивающая железо и сталь. Предметы, создающие эту силу, называются магнитами, а область вокруг них, где действует сила, называется магнитным полем . Проходя по проводу, электрический ток (читайте статью « «) создает магнитное поле. Это явление называется электромагнетизмом . С его помощью можно создавать мощные магниты - электромагниты и использовать ток для приведения предметов в движение. Северные полюса магнитов, как и южные, взаимно отталкиваются. Северный полюс одного магнита притягивается к южному полюсу другого. Стрелка компаса — магнит. Она указывает на северный магнитный полюс .

Магнетизм

Слово «магнетизм» происходит от названия местности в Турции. В области Магнезия более 2000 лет назад древние греки обнаружили минорат, притягивающий . Этот минерал представлял со­бой разновидность железной руды и был назван магнетитом . Подвешенный на веревке кусок магнетита вращается, стараясь занять положение «север — юг». Удлиненные куски магнита – магнитного железняка — когда-то использовались как стрелки компаса. Обычно магнит - это металлическое тело, например железное или стальное, обладающее магнитными свойствами и ведущее себя как магнетит. У магнита есть два полюса - южный и северный.

Металлы, способные намагничиваться, называют ферромагнетиками . «Мягкие» ферромагнетики, например железо, лег­ко теряют свои магнитные свойства. Сталь - «жесткий» ферромагнетик; она долго сохраняет магнетизм. Такой магнетизм называют индуцированным . Стальная игла намагничивается, если провести ею по магниту несколько раз. В магнитных веществах содержатся особые группы молекул - домены, т.е. малые магниты. Металл намагничен, если все до­мены направлены в одну сторону. Однако при нагревании или ударе направление доменов меняется случайным образом. Когда ферромагнетик находится в ненамагниченном состоянии, домены в нем направлены случайным образом. При намагничивании домены располагаются так, что их одинаковые полюса становятся направлены в одну сторону.

Магнитное поле - это область вокруг магнита, в которой действуют магнитные силы (подробнее в статье « «). Их величину и направление можно показать с помощью линий магнитной индукции. У Земли также есть магнитное поле. Из-за вращения Земли вокруг своей оси расплавленный металл, содержащийся во внешнем ядре, медленно течет и создает магнитное поле Земли. Многие птицы, в том числе и крачки, ориентируются при своих перелётах по силовым линиям магнитного поля.

Электромагнетизм

Проходящий по проводу электрический ток создает магнитное поле. Это явление называется электромагнетизмом . Провод, намотанный на железный сердечник, при прохождении тока ведет себя как магнитный брусок. Провод в этом случае называют соленоидом . Направление линий магнитного поля зависит от направления тока в проводе. Если ток идет по часовой стрелке, мы смотрим со стороны южного полюса. Если при взгляде с торца ток течет против часовой стрелки, то это северный полюс. Подробнее можно прочитать в статье: . Соленоид используется в электромагнитах. Его магнитное поле можно включать и выключать, управляя током. Соленоиды также применяются в микрофонах и громкоговорителях.

Электромагниты

Электромагнит - это магнит, который можно включать и выключать при помощи электрического тока. Чтобы создать электромагнит, нужно обмотать железный сердечник проводом - соленоидом. Железо - это мягкий ферромагнетик, т.е. оно теряет магнитные свойства, когда ток исчезает. На электромагнетизме основано действие релейных переключателей и электрических звонков. Электромагниты используются в проекте скоростного поезда – они установлены на рельсах и днищах вагонов. Их полюса отталкивают друг друга, и поезд зависает над рельсами. уменьшается, и скорость поезда возрастает.

Электромоторы

При помощи электромагнетизма электромотор превращает электроэнергию в движения. В простом электромоторе имеется плоский проволочный контур - ротор, помещенный между двумя магнитами. Когда по ротору проходит ток, силы электромагнитного поля ротора и магнитных полей магнитов заставляют ротор вращаться. Когда ротор занимает вертикальное положение, коллектор меняет направление тока, что приводит к обращению направления магнитного поля, а значит, и силы, действующей на ротор. Ротор переворачивается. Когда ротор совершает полный оборот, цикл возобновляется. Электромоторы используются в самых разных машинах, от стиральных машин и фенов до игрушечных автомобилей и поездов. Небольшие электромоторы применяются в микрохирургии и в космической технике. Так устроен мощный электромотор — микромотор «Тошиба» диаметр 0,8 мм (слева). Электромагнит создает постоянное магнитное поле. В магнитном поле вращается ротор.

Производство электричества

Английский физик Майкл Фарадей (1791 - 1867) обнаружил, что при движении проводника в магнитном поле в про­воднике возникает ток. Фарадей обнаружил появление тока, вращая диск вблизи магнита. Такое устройство называется дисковым генератором. Генератор, или динамо-машина, - это устройство, превращающее энергию в электрическую. Принцип ее действия противоположен принципу действия электромотора.

На электростанциях энергию движения от­дает пар, вращающий турбины. Турбины вращают стержень генера­тора, при этом проволочные контуры вращаются между двумя магнитами. В результате возникает ток, меняющий направление после каждого полуоборота. Такой ток называется переменным .

План лекции

1. Электростатика. Краткий обзор.

2. Магнитное взаимодействие электрических токов.

3. Магнитное поле. Закон Ампера. Индукция магнитного поля.

4. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.

4.1. Магнитное поле прямолинейного тока.

4.2. Магнитное поле на оси кругового тока.

4.3. Магнитное поле движущегося заряда.

  1. Электростатика. Краткий обзор.

Изучению магнитостатики предпошлём краткий обзор основных положений электростатики. Такое введение представляется уместным, потому что при создании теории электромагнетизма использовались методические приёмы, с которыми мы уже встречались в электростатике. Потому-то и нелишне их вспомнить.

1) Основной опытный закон электростатики - закон взаимодействия точечных зарядов - закон Кулона:

Сразу после его открытия возник вопрос: каким образом на расстоянии взаимодействуют точечные заряды?

Сам Кулон придерживался концепции дальнодействия. Однако теория Максвелла и последующие экспериментальные исследования электромагнитных волн показали, что взаимодействие зарядов происходит с участием электрических полей, создаваемых зарядами в окружающем пространстве. Электрические поля - не хитроумное изобретение физиков, но объективная реальность природы.

2) Единственным проявлением электростатического поля является сила, действующая на заряд, помещённый в этот поле. Поэтому ничего нет неожиданного в том, что в качестве основной характеристики поля принят вектор напряжённости, связанный именно с этой силой:

,. (Э2)

3) Объединив определение напряжённости (Э2) и закон Кулона (Э1) найдём напряжённость поля, созданного одним точечным зарядом:

. (Э3)

4) Теперь - очень важный опытный результат: принцип суперпозиции электростатических полей:

. (Э4)

Этот «принцип» позволил рассчитывать электрические поля, созданные зарядами самых разнообразных конфигураций.

Этим можно, пожалуй, ограничить краткий обзор электростатики и перейти к электромагнетизму.

    1. Магнитное взаимодействие электрических токов

Взаимодействие токов было открыто и подробно изучено Ампером в 1820 году.

На рис. 8.1. приведена схема одной из его экспериментальных установок. Здесь прямоугольная рамка 1 имеет возможность легко поворачиваться вокруг вертикальной оси. Надёжный электрический контакт при поворотах рамки обеспечивался ртутью, наливаемой в опорные чашечки. Если к такой рамке поднести другую рамку с током (2), то между ближними сторонами рамок возникает сила взаимодействия. Именно эту силу измерял и анализировал Ампер, считая, что силами взаимодействия удалённых рёбер рамок можно пренебречь.

Рис. 8.1.

Экспериментально Ампер установил, что параллельные токи одинакового направления (рис. 8.2., а ), взаимодействуя, притягиваются, а противоположно направленные токи - отталкиваются (рис. 8.2.,b ). При взаимодействии параллельных токов на единицу длины проводника действует сила, пропорциональная произведению токов и обратно пропорциональная расстоянию между ними (r ):

. (8.1)

Рис. 8.2.

Этот экспериментальный закон взаимодействия двух параллельных токов используется в системе СИ для определения основной электрической единицы - единицы силы тока 1 ампер.

1 ампер - это сила такого постоянного тока, течение которого по двум прямолинейным проводникам бесконечной длины и малого сечения, расположенным на расстоянии 1 м друг от друга в вакууме, сопровождается возникновением между проводниками силы, равной 2 10 –7 Н на каждый метр их длины .

Определив таким образом единицу силы тока, найдём значение коэффициента пропорциональности в выражении (8.1):

.

При I 1 =I 2 = 1А иr = 1 м сила, действующая на каждый метр длины проводника
= 210 –7 Н/м. Следовательно:

.

В рационализированной СИ =, где 0 - магнитная постоянная:

 0 = 4= 410 –7
.

Очень короткое время оставалась неясной природа силового взаимодействия электрических токов. В том же 1820 году датский физик Эрстед обнаружил влияние электрического тока на магнитную стрелку (рис. 8.3.). В опыте Эрстеда над магнитной стрелкой, ориентированной по магнитному меридиану Земли, был протянут прямолинейный проводник. При включении тока в проводнике, стрелка поворачивается, устанавливаясь перпендикулярно проводнику с током.

Рис. 8.3.

Этот эксперимент прямо свидетельствует о том, что электрический ток создаёт в окружающем пространстве магнитное поле. Теперь можно предположить, что амперова сила взаимодействия токов имеет электромагнитную природу. Она возникает как результат действия на электрический ток магнитного поля, созданного вторым током.

В магнитостатике, как и в электростатике, мы пришли к полевой теории взаимодействия токов, к концепции близкодействия.

Уравнение теплового баланса терморезистора имеет вид

I2 R =ξ (Qп – Qс ) ·S,

где ξ - коэффициент теплоотдачи, зависящий от скорости движения среды; Qп и Qс - соответственно температура терморезистора; (преобразователя) и среды;

S – площадь поверхности терморезистора.

В случае, если терморезистор имеет форму цилиндра и расположен поперек потока так, что угол между осью цилиндра и вектором скорости потока равен 90° , то коэффициенты теплоотдачи для газов и жидкости определяются по формулам

сλ

сλ

Vd n

сλ

ξг =

ξж =

где V и υ - соответственно скорость и теплопроводность среды, d – диаметр терморезистора;

c и n – коэффициенты, зависящие от числа Рейнольдса Rе = Vd/υ ;

P r = υ d - число Прандтля, зависящее от кинематической вязкости и

теплопроводности среды.

Подобный преобразователь (терморезистор) обычно включается в мостовую измерительную схему. Используя вышепреведенные выражения, можно измерить скорость V.

5.2. Использование в измерительной технике законов электромагнетизма

На явлении электрического отталкивания заряженных тел устроено устройство электроскопа - прибора для обнаружения электрических зарядов. Электроскоп состоит из металлического стержня, к которому

привешен тонкий алюминиевый или бумажный листочек. Стрежень укреплен при помощи эбонитовой или янтарной пробки внутри стеклянной банки, предохраняющей листок от движения воздуха.

Электрометр представляет собой электроскоп, имеющий металлический корпус. Если соединить корпус этого прибора с землей, после чего коснуться его стрежня каким-нибудь заряженным телом, то при этом часть заряда перейдет на стержень и листочки электрометра разойдутся на некоторый угол. Такой прибор измеряет разность потенциалов между проводником и землей.

Осциллографом называется прибор, предназначенный для наблюдения, регистрации и измерения параметров исследуемого сигнала, как правило, напряжения, зависящего от времени. Светолучевые осциллографы используют электромеханическое отклонение светового луча под действием исследуемого напряжения.

Электронно-лучевые осциллографы (ЭЛО) строятся на основе электронно-лучевых трубок. Отклонение электронного луча осуществляется непосредственно электрическим сигналом.

Основным узлом ЭЛО является электронно-лучевая трубка (ЭЛТ), представляющая собой стеклянную вакуумированную колбу (рис.10), внутри которой имеется оксидный катод 1 с подогревателем 2, модулятор 3, аноды 4 и система отклоняющих пластин 5 и 6. Часть ЭЛТ, включающая в себя катод, модулятор и аноды, называется электронной пушкой.

Рис. 10 Электронно-лучевая трубка

Если к отклоняющим пластинам приложить напряжение, то электронный луч отклонится, как показано на рис. 11.

К вертикально отклоняющим пластинам обычно подводится исследуемое напряжение Uy , а к горизонтально отклоняющим – развертывающее напряжение (в данном случае линейно изменяющееся периодическое с периодом Тр ).

Рис. 11. Получение изображения на экране ЭЛТ

Приборы магнитоэлектрической системы (амперметры, вольтметры и омметры) годны для использования в цепях постоянного тока, а при применении детекторов – и в целях переменного тока. Принцип действия измерительного механизма магнитоэлектрическойсистемы использует эффект взаимодействия поля постоянного магнита с катушкой (рамкой), по которой протекает ток. На рис. 12 показана типовая конструкция (с подвижной катушкой).

Рис. 12. Типовая конструкция с подвижной катушкой Постоянный магнит 1, магнитопровод с полюсными наконечниками 2 и

неподвижный сердечник 3 составляют магнитную систему механизма. В зазоре между полюсными наконечниками и сердечником создается сильное равномерное радиальное магнитное поле, в котором находится подвижная прямоугольная катушка (рамка) 4, намотанная медным или алюминиевым проводом на каркасе. Катушка закреплена между полуосями 5 и 6. Спиральные пружины 7 и 8 предназначены для создания противодействующего момента и, одновременно, для подачи измеряемого тока.

Рамка жестко соединена со стрелкой 9. Для балансировки подвижной части имеются передвижные грузики на усиках 10.

Уравнение преобразования:

α = I(ВnS / W),

где В – магнитная индукция в зазоре;

α - угол поворота подвижной части; S – площадь рамки;

n – число витков катушки;

W – удельный противодействующий момент. 51

Приборы электромагнитной, электродинамической, ферродинамической и электростатической систем широко используются в качестве типовых электромеханических амперметров, вольтметров, ваттметров и частотомеров.

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек, по которым протекает ток.

Устройство подобного измерительного механизма показано на рис. 13.

Рис. 13. Электромеханический преобразователь электродинамической системы

Внутри неподвижной катушки 1 может вращаться подвижная катушка 2, ток к которой подается через пружинки.

Поворот катушки осуществляется вращающим моментом, вызванным взаимодействием магнитных полей катушек 1 и 2. Противодействующий момент создается специальными пружинками (не указаны на рис.13).

Уравнение преобразования это механизма:

α = W 1 ∂ ∂ M α I 1 I 2 ,

где W – удельный противодействующий момент;

α - угол поворота подвижной части; M – взаимная индуктивность катушек.

Данный механизм может быть использован для измерения постоянных

и переменных токов, напряжений и мощности.

Ферродинамические измерительные механизмы, по существу,

являются разновидностью электродинамических приборов, от которых они отличаются только по конструкции, поскольку катушка имеет магнитомягкий сердечник (магнитопровод), между полосками которого размещается подвижная катушка. Наличие сердечника значительно увеличивает магнитное поле неподвижной катушки, а следовательно, и чувствительность.

В электростатических приборах осуществляется принцип взаимодействия электрически заряженных проводников.

Одна из распространенных конструкций подробного измерительного механизма приведена на рис. 14.

Рис.14. Преобразователь электростатической системы Подвижная алюминиевая пластина 1, закрепленная вместе со стрелкой

на оси 3, может перемещаться, взаимодействуя с двумя электрически соединенными неподвижными пластинами 2. Входные зажимы (не показаны), к которым подводится измеряемое напряжение, соединены с подвижной и неподвижными пластинами.

Под действием электростатических сил подвижная пластина втягивается в пространство между неподвижным пластинами. Движение

прекращается, когда противодействующий момент закрученной пластины становится равным вращающему моменту.

Уравнение преобразования подобного механизма имеет вид

α = 2 1 W ∂ d C α U 2 ,

где U – измеряемое напряжение;

W – удельный противодействующий момент; C – емкость между пластинами.

Подобные преобразователи используются для разработки вольтметров постоянного и переменного токов.

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля, создаваемого током в неподвижной катушке с подвижным ферромагнитным сердечником. Одна из наиболее распространенных конструкций представлена на рис. 15.

Рис. 15. Преобразователь электромагнитной системы:

I – катушка, 2 – сердечник, 3 – спиральная пружина, создающая противодействующий момент, 4 – воздушный успокоитель

Под действием магнитного поля сердечник втягивается внутрь

Словом «индукция» в русском языке обозначает процессы возбуждения, наведения, создания чего-либо. В электротехнике этот термин применяется уже более двух столетий.

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным - индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

Производство электроэнергии

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Трансформация электроэнергии

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

У них для улучшения прохождения магнитного потока изолированные обмотки надеты на общий сердечник, обладающий минимальным магнитным сопротивлением. Его изготавливают из специальных сортов стали и формируют наборными тонкими листами в виде секций определенной формы, называют магнитопроводом.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника - величину пропускаемой мощности, рабочий ток.

Работа индуктивностей

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются .

Конструктивная особенность магнитопровода у дросселя - разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Индукционные печи

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

Первый закон электромагнетизма описывает поток электрического поля:

где ε 0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы докажем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сферически симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значению Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутреннему заряду, значит, поле должно убывать, как квадрат расстояния; так получается поле «обратных квадратов».

Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то окажется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив второй закон, утверждающий, что

И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:

А дляповерхности S , ограниченной кривой С:

Появившаяся в уравнении (1.9) постоянная с 2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа ε 0 поставлена для того, чтобы возникли привычные единицы силы электрического тока.

Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики. Как вы помните, законы Ньютона написать было очень просто, но из них зато вытекало множество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.

Мы можем проиллюстрировать некоторые законы электродинамики серией несложных опытов, которые смогут нам показать хотя бы качественно взаимоотношения электрического и магнитного полей. С первым членом в уравнении (1.1) вы знакомитесь, расчесывая себе волосы, так что о нем мы говорить не будем. Второй член в уравнении (1.1) можно продемонстрировать, пропустив ток по проволоке, висящей над магнитным бруском, как показано на фиг. 1.6. При включении тока проволока сдвигается из-за того, что на нее действует сила F = qvXB . Когда по проводу идет ток, заряды внутри него движутся, т. е. имеют скорость v, и на них действует магнитное поле магнита, в результате чего провод отходит в сторону.

Когда провод сдвигается влево, можно ожидать, что сам магнит испытает толчок вправо. (Иначе все это устройство можно было бы водрузить на платформу и получить реактивную систему, в которой импульс не сохранялся бы!) Хотя сила чересчур мала, чтобы можно было заметить движение магнитной палочки, однако движение более чувствительного устройства, скажем стрелки компаса, вполне заметно.

Каким же образом ток в проводе толкает магнит? Ток, текущий по проводу, создает вокруг него свое собственное магнитное поле, которое и действует на магнит. В соответствии с последним членом в уравнении (1.9) ток должен приводить к цир куляции вектора В; в нашем случае линии поля В замкнуты вокруг провода, как показано на фиг. 1.7. Именно это поле В и ответственно за силу, действующую на магнит.

Уравнение (1.9) сообщает нам, что при данной величине тока, текущего по проводу, циркуляция поля В одинакова для любой кривой, окружающей провод. У тех кривых (окружностей, например), которые лежат далеко от провода, длина оказывается больше, так что касательная компонента В должна убывать. Вы видите, что следует ожидать линейного убывания В с удалением от длинного прямого провода.

Мы сказали, что ток, текущий по проводу, образует вокруг него магнитное поле и что если имеется магнитное поле, то оно действует с некоторой силой на провод, по которому идет ток. Значит, следует думать, что если магнитное поле будет создано током, текущим в одном проводе, то оно будет действовать с некоторой силой и на другой провод, по которому тоже идет ток. Это можно показать, применив два свободно подвешенных провода (фиг. 1.8). Когда направление токов одинаково, провода притягиваются, а когда направления противоположны — отталкиваются.

Короче говоря, электрические токи, как и магниты, создают магнитные поля. Но тогда что же такое магнит? Раз магнитные поля создаются движущимися зарядами, то не может ли оказаться, что магнитное поле, созданное куском железа, на самом деле есть результат действия токов? Видимо, так оно и есть. В наших опытах можно заменить магнитную палочку катушкой с навитой проволокой, как показано на фиг. 1.9. Когда ток проходит по катушке (как и по прямому проводу над нею), наблюдается точно такое же движение проводника, как и прежде, когда вместо катушки стоял магнит. Все выглядит так, как если бы внутри куска железа непрерывно циркулировал ток. Действительно, свойства магнитов можно понять как непрерывный ток внутри атомов железа. Сила, действующая на магнит на фиг. 1.7, объясняется вторым членом в уравнении (1.1).

Откуда же берутся эти токи? Один источник — это движение электронов по атомным орбитам. У железа это не так, но у некоторых материалов происхождение магнетизма именно таково. Кроме вращения вокруг ядра атома, электрон вращается еще вокруг своей собственной оси (что-то похожее на вращение Земли); вот от этого-то вращения и возникает ток, создающий магнитное поле железа. (Мы сказали «что-то похожее на вращение Земли», потому что на самом деле в квантовой механике вопрос столь глубок, что не укладывается достаточно хорошо в классические представления.) В большинстве веществ часть электронов вертится в одну сторону, другая — в другую, так что магнетизм исчезает, а в железе (по таинственной причине, о которой мы поговорим позже) многие электроны вращаются так, что их оси смотрят в одну сторону и это служит источником магнетизма.

Поскольку поля магнитов порождаются токами, то в уравнения (1.8) и (1.9) нет нужды вставлять добавочные члены, учитывающие существование магнитов. В этих уравнениях речь идет о всех токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отметить, что, согласно уравнению (1.8), магнитных зарядов, подобных электрическим зарядам, стоящим в правой части уравнения (1.6), не существует. Они никогда не были обнаружены.

Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий пример. Представьте конденсатор, составленный из двух плоских пластин. Он заряжается током, притекающим к одной из пластин и оттекающим от другой, как показано на фиг. 1.10. Проведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S 1), которая пересечет провод. В соответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с 2). Но что будет, если мы натянем на кривую другую поверхность S 2 в форме чашки, донышко которой расположено между пластинами конденсатора и не касается провода? Через такую поверхность никакой ток, конечно, не проходит. Но ведь простое изменение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в правой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S 1 и S 2 возникает одинаковый эффект. Для S 2 циркуляция вектора В выражается через степень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное уравнение.

С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсоединим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохождение тока по проводу. Стоит лишь в поле магнита качнуть проволоку, как по ней сразу пойдет ток. Это новое следствие уравнения (1.1): электроны в проводе почувствуют действие силы F=qv X B. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вертикально направленным полем В магнита приводит к силе, действующей на электроны вдоль провода, и электроны отправляются к гальванометру.

Положим, однако, что мы оставили проволочку в покое и принялись перемещать магнит. Мы чувствуем, что никакой разницы быть не должно, ведь относительное движение то же самое, и впрямь ток по гальванометру идет. Но как же магнитное поле действует на покоящиеся заряды? В соответствии с уравнением (1.1) должно возникнуть электрическое поле. Движущийся магнит должен создавать электрическое поле. На вопрос — как это происходит, отвечает количественно уравнение (1.7). Это уравнение описывает множество практически очень важных явлений, происходящих в электрических генераторах и трансформаторах.

Наиболее замечательное следствие наших уравнений — это то, что, сочетая уравнения (1.7) и (1.9), можно понять, отчего электромагнитные явления распространяются на дальние расстояния. Причина этого, грубо говоря, примерно такова: предположим, что где-то имеется магнитное поле, которое возрастает по величине, скажем, оттого, что внезапно пустили ток по проводу. Тогда из уравнения (1.7) следует, что должна возникнуть циркуляция электрического поля. Когда электрическое поле начинает постепенно возрастать для возникновения циркуляции, тогда, согласно уравнению (1.9), должна возникать и магнитная циркуляция. Но возрастание этого магнитного поля создаст новую циркуляцию электрического поля и т. д. Таким способом поля распространяются сквозь пространство, не нуждаясь ни в зарядах, ни в токах нигде, кроме источника полей. Именно таким способом мы видим друг друга! Все это спрятано в уравнениях электромагнитного поля.



Понравилась статья? Поделитесь с друзьями!