Что такое дырка в полупроводнике. Электроны и дырки в полупроводниках

Одним из самых замечательных и волнующих открытий последних лет явилось применение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупроводников привело к открытию их полезных свойств и ко множеству практических применений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего применяются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в настоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристаллизуются в решетке алмазного типа — в такой кубической структуре, в которой атомы обладают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реальной решетки кремния или германия уравнения были бы другими. Но все существенное может стать ясным уже из результатов для прямоугольной решетки.

Как мы видели в гл. 11, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)] формулой

Разные А — это амплитуды прыжков в направлениях х, у и z , а а, b, с — это постоянные решетки (интервалы между узлами) в этих направлениях.

Для энергий возле дна зоны формулу (12.1) можно приблизительно записать так:

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором определенном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно написать

где α — некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1). Такой график мы будем называть «энергетической диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного определенного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка перепрыгивает от атома а к атому b, в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного электрона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд А х, A y и А z . У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обнаружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только разницей, что в некубических кристаллах масса зависит от направления движения. Итак, дырка напоминает частицу с положи тельным зарядом, движущуюся сквозь кристалл. Заряд частицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сторону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электронов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны начнут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется металлический электрод, перейти на него, оставив кристалл нейтральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если приложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и происходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновременно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны называют отрицательными носителями, а дырки — положительными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон—дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S ), — это энергия Е¯, показанная на фиг.12.2. Это некоторая энергия, превышающая Е¯ мин. Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S ′, — это энергия Е + (фиг. 12.3), которая на какую-то долю выше, чем Е (=E + мин).

А чтобы создать пару в состояниях S и S ′, потребуется просто энергия Е¯ + Е + .

Образование пар — это, как мы увидим позже, очень частый процесс, и многие люди предпочитают помещать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два графика. Преимущества такого графика в том, что энергия E пары =Е¯ + Е + , требуемая для образования пары (электрона в S и дырки в S ), дается попросту расстоянием по вертикали между S и S , как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энергетической шириной, или шириной щели, и равняется

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диаграммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электронов и дырок.

Как создается пара электрон—дырка? Есть несколько способов. Например, световые фотоны (или рентгеновские лучи) могут поглотиться и образовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интенсивности света. Если прижать к торцам кристалла два электрода и приложить «смещающее» напряжение, то электроны и дырки притянутся к электродам. Ток в цепи будет пропорционален силе света. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон — дырка могут образоваться также частицами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон — дырка. Подобные явления сотнями и тысячами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разыгрывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчиков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при комнатных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки могли добираться до электродов, не боясь захвата.Потому и используются кремний и германий, что образцы этих полупроводников разумных размеров (порядка сантиметра) можно получать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон — дырка. Энергией пару может снабдить тепловая энергия кристалла. Тепловые колебания кристалла могут передавать паре свою энергию, вызывая «самопроизвольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, достигающая величины энергетической щели E щели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр (—E щели /xТ), где Т —температура, а x — постоянная Больцмана[см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положительные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть N n (n означает негативных, или отрицательных, носителей), а плотность положительных (позитивных) носителей N р, то вероятность того, что за единицу времени электрон с дыркой встретятся и проаннигилируют, пропорциональна произведению N n N p . При равновесии эта скорость должна равняться скорости, с какой образуются пары. Стало быть, при равновесии произведение N n N p должно равняться произведению некоторой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, N n = N р. Значит, каждое из этих чисел должно с температурой меняться как е - Е щели / 2xТ. Изменение многих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от температуры. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре составляет около 1 / 4о эв. При таких температурах уже есть достаточно дырок и электронов, чтобы обеспечить заметную проводимость, тогда как, скажем, при 30°К (одной десятой комнатной температуры) проводимость незаметна. Ширина щели у алмаза равна 6—7 эв, поэтому при комнатной температуре алмаз — хороший изолятор.

Во многих учебных заведениях и офисах нередкость встретить такой удобный инструмент для работы как доска магнитная маркерная 90 120. Это поистине незаменимый помощник в проведении занятий, тренингов, презентаций. Такая доска позволит достаточно наглядно вывести длинную формулу по физике, построить график или диаграмму.

1.2. Структура полупроводников.

Понятие дырки

Структура полупроводников

Наиболее распространенными полупроводниками являются атомарные полупроводники кремний Si, германийGe, и полупроводниковые соединения типа(арсенид галлияGaAs, фосфид индияInP). Используются также полупроводники типа
и
, гдеи-элементы соответствующих групп таблицы Менделеева.

Полупроводниковые кристаллы имеют структуру типа алмаза. В этой кристаллической структуре каждый атом кристалла окружен 4-мя соседями, находящимися на одинаковом расстоянии от атома. Связь между атомами в кристалле парно электронная или ко
валентная. На рисункахХХХ приведены объемный трехмерный и двухмерный варианты решетки кремния. Тетраэдрическая структура представляет собой вдвинутые друг в друга две гранецентрированных кубических решетки. Смещение решеток относительно друг друга проводится вдоль главной диагонали куба на расстояние, равное одной четверти длины главной диагонали (см. рис.)

Сложные полупроводниковые соединения, такие как GaAs,InP,PbSи другие двойные или тройные соединения также имеют решетку типа алмаза. Но в этих соединениях один атом одного элемента окружен четырьмя атомами другого. Связь между атомами – ковалентная.

Понятие дырки

При переходе электрона в зону проводимости из заполненной (валентной) зоны в валентной зоне остается незаполненное место, которое легко может занять какой-либо электрон из той же зоны. В результате образовавшаяся вакансия приобретает возможность перемещаться в пределах валентной зоны. Ее поведение во многом напоминает поведение частицы с положительным зарядом.

Как отмечалось, полупроводники отличаются от металлов и диэлектриков тем, что их зона проводимости при температуре отличной от абсолютного нуля “почти пуста”, а валентная зона “почти заполнена”. Но это означает, что при рассмотрении проводимости в полупроводниках необходимо учитывать движение носителей тока и в зоне проводимости, и в валентной зоне.

Чтобы упростить рассмотрение переноса носителей в “почти заполненной” валентной зоне вводится понятие “дырки”. Однако нужно всегда помнить, что существует только один тип носителей тока в полупроводниках – это электроны. Дырки – это квазичастицы, введение которых позволяет только упростить представление движения электронов в валентной зоне. Дырка – это отсутствие электрона. Свойства дырок аналогичны свойствам электронов, поскольку они занимают одно и тоже энергетическое состояние. Но дырка несет положительный заряд.

На рисунке приведена энергетическая диаграмма полупроводника, помещенного во внешнее электрическое поле с напряженностью . Градиент энергетических уровней зонной диаграммы полупроводника в однородном электрическом поле будет постоянным, и он определяется величиной электрического поля (позже мы подробнее рассмотрим энергетические диаграммы полупроводников в условиях действия электрических полей).

Электроны зоны проводимости движутся противоположно направлению внешнего электрического поля, т.е. в сторону спада уровня. Электроны валентной зоны движутся в том же направлении. Общую плотность тока электронов валентной зоны можно записать в виде

где - объем полупроводника,- заряд электрона,-скоростьi - того электрона валентной зоны. Суммирование проводится по всем электронам валентной зоны. Это выражение можно записать иначе, выразив его через количество состояний валентной зоны, не занятых электронами.

Но плотность тока, создаваемая всеми электронами заполненной валентной зоны, равна нулю. Поэтому в последней формуле остается только одно последнее слагаемое, которое можно записать как

Это соотношение можно трактовать следующим образом. Ток создается положительными носителями, связанными с незаполненными состояниями валентной зоны. Эти носители и называют дырками. Напоминаем, что нет реальных носителей – дырок. Это просто модель, удобная для представления тока, создаваемого электронами валентной зоны. Причиной ввода понятия дырка является то, что это позволяет упростить описание ансамбля из очень большого числа электронов в почти заполненной валентной зоне. Часто оказывается более удобным следить за имеющимися вакансиями, рассматривая их как некоторые гипотетические частицы - дырки (простым гидромеханическим аналогом дырки может служить пузырек в стакане с газированным напитком). Не являющиеся реальными объектами природы дырки часто обладают весьма экзотическими свойствами. Так их эффективная масса не обязательно должна выражаться положительным числом, а зачастую оказывается тензорной величиной. Наряду с фононами дырки представляют собой квазичастицы, вводимые в теорию на основе аналогий с формулами, описывающими поведение реальных объектов. Подобно положительным частицам дырки ускоряются электрическим полем и вносят свой вклад в проводимость полупроводниковых кристаллов.

Попутно отметим, что электроны проводимости, строго говоря, так же являются квазичастицами. С точки зрения квантовой механики все электроны кристалла являются принципиально неразличимыми, что делает бессмысленными попытки ответа на вопрос, какой именно электрон перешел в зону проводимости. Электрический ток в кристалле обусловлен весьма сложным поведением всех без исключения имеющихся в нем электронов. Однако описывающие это поведение уравнения обнаруживают близкое сходство с уравнениями движения лишь очень небольшого числа заряженных частиц - электронов и дырок.

Шуренков В.В.

Полупроводниковые кристаллы образуются из атомов, расположенных в определенном порядке. Согласно современным представлениям атомы состоят из положительно заряженных ядер вокруг которых распложены заполненные электронами оболочки. При этом каждому электрону соответствует строго определенный уровень, на котором не может находиться более двух электронов с разными значениями спина, характеризующего вращение электрона. Согласно законам квантовой механики, электроны могут находиться только в строго определенных энергетических состояниях. Изменение энергии электрона возможно при поглощении или испускании кванта электромагнитного излучения с энергией, равной разности значений энергий на начальном и конечном уровне.

При сближении двух атомов, например водорода, их орбитали начинают перекрываться и возможно возникновение связи между ними. Существует правило, согласно которому число орбиталей у молекулы равно сумме чисел орбиталей у атомов, при этом взаимодействие атомов приводит к тому, что уровни у молекулы расщепляются, при этом чем меньше расстояние между атомами, тем сильнее это расщепление.

На рис. 1.6. показана схема расщепления уровней для пяти атомов при уменьшении расстояния между ними. Как видно из графиков при образовании между атомами связей валентные электроны формируют разрешенные для электронов зоны, причем число состояний в этих зонах тем больше, чем больше взаимодействующих атомов. В кристаллах число атомов более чем 10 22 см -3 , примерно такое же количество уровней в зонах. При этом расстояние между уровнями становится чрезвычайно малым, что позволяет считать, что энергия в разрешенной зоне изменяется непрерывно. Тогда электрон, попавший в незанятую зону можно рассматривать как классический, считая, что под действием электрического поля он набирает непрерывно энергию, а не квантами, т.е. ведет себя как классическая частица.

Рис. 1.6. Энергетическое расщепление 1s и 2s уровней для пяти атомов в зависимости от расстояния между ними

При образовании кристаллов образуемые валентными электронами зоны могут быть частично заполненными, свободными или полностью заполненными электронами. При этом если между заполненными и свободными состояниями запрещенная зона отсутствует, то материал является проводником, если существует небольшая запрещенная зона, то это полупроводник, если запрещенная зона большая и электроны за счет тепловой энергии в нее не попадают, то это изолятор. Рисунок 1.7. иллюстрирует возможные конфигурации зон.

Для проводников разрешенная зона частично заполнена электронами, поэтому даже при приложении внешнего напряжения они способны набирать энергию и перемещаться по кристаллу. Такая структура зон характерна для металлов. Уровень F, разделяющий заполненную электронами и незаполненную часть зоны называют уровнем Ферми. Формально его определяют как уровень вероятность заполнения которого электронами равна 1/2.

Рис. 1.7. Возможная структура энергетических зон, создаваемых валентными электронами в кристаллах

Для полупроводников и диэлектриков структура зон такова, что нижняя разрешенная зона полностью заполнена валентными электронами, поэтому ее называют валентной. Потолок валентной зоны обозначают Ev. В ней электроны перемещаться под действием поля (и соответственно набирать энергию) не могут, поскольку все энергетические уровни заняты, а согласно принципу Паули электрон не может переходить с занятого состояния на занятое. Поэтому электроны в полностью заполненной валентной зоны не участвуют в создании электропроводности. Верхняя зона в полупроводниках и диэлектриках в отсутствии внешнего возбуждения свободна от электронов и если каким либо образом туда забросить электрон, то под действием электрического поля он может создавать электропроводность, поэтому эту зону называют зоной проводимости. Дно зоны проводимости принято обозначать Ec. Между зоной проводимости и валентной зоной находится запрещенная зона Eg, в которой согласно законам квантовой механики электроны находиться не могут (подобно тому как электроны в атоме не могут иметь энергии не соответствующие энергиям электронных оболочек). Для ширины запрещенной зоны можно записать:

Eg = Ec – Ev (1.4.)

В полупроводниках в отличие от изоляторов ширина запрещенной зоны меньше, это сказывается в том, что при нагреве материала в зону проводимости полупроводника попадает за счет тепловой энергии значительно больше электронов, чем в зону проводимости изолятора и проводимость полупроводника может быть на несколько порядков выше чем проводимость изолятора, однако граница между полупроводником и изолятором условная.

Поскольку в отсутствии внешнего возбуждения валентная зона полностью заполнена (вероятность нахождения электрона на Ev = 1), зона проводимости полностью свободна (вероятность нахождения электрона на Eс = 0), то формально уровень Ферми с вероятностью заполнения ½ должен был бы находиться в запрещенной зоне. Расчеты показывают, что действительно в беспримесных бездефектных полупроводниках и диэлектриках (их принято называть собственными) он лежит вблизи середины запрещенной зоны. Однако электроны там находится не могут, поскольку там нет разрешенных энергетических уровней.

Рис. 1.7. Схематическое представление бездефектного кристалла кремния.

Основные элементарные полупроводники относятся к четвертой группе таблицы Менделеева, они имеют на внешней оболочке 4 электрона. Соответственно эти электроны находятся в S (1 электрон) и p (3 электрона). При образовании кристалла внешние электроны взаимодействуют и образуются полностью заполненная оболочка с восьмью электронами, как это показано на диаграмме рис. 1.7.

При этом атом может образовывать химические связи с четырьмя соседями, т.е. является четырежды координированными. Все связи эквивалентны и образуют тетраэдрическую решетку (тетраэдр – фигура с четырьмя одинаковыми поверхностями).

Тетраэдрическая структура свойственна кристаллам алмаза. Такие известные полупроводники как Si и Ge имеют структуру типа алмаза.

При уходе электрона в зону проводимости он делокализуется и может перемещаться по зоне от одного атома к другому. Он становится электроном проводимости и может создавать электрический ток. Обычно говорят: появился свободный носитель заряда, хотя на самом деле электрон не покидал кристалл, у него только появилась возможность перемещаться из одного места кристалла в другое.

На месте откуда ушел электрон условие электронейтральности нарушается и возникает положительно заряженная вакансия электрона, которую принято называть дыркой (положительный заряд обусловлен не скомпенсированным зарядом ядра).

На место откуда ушел электрон может переместиться соседний электрон, что приведет к перемещению положительно заряженной дырки. Таким образом перемещение валентных электронов заполняющих свободное электронное состояние (запрет Паули снят) приводит к перемещению вакансии в которой нарушено условие компенсации заряда, т.е. дырки. Вместо того, чтобы рассматривать движение валентных электронов, которых в валентной зоне чрезвычайно много рассматривают перемещение положительно заряженных дырок, которых мало и которые так же как электроны могут переносить заряд. Этот процесс поясняет рис. 1.10.

На рисунке 1.10 показан кристалл, в котором каким либо внешним возбуждением, например квантом света с hν > Eg один из электронов переброшен в зону проводимости (стал свободным), т.е. у одного из атомов была разорвана одна из валентных связей. Тогда в кристалле помимо не связанного с атомом электрона возник положительно заряженный ион. Способность под действием поля перемещаться самого иона очень мала, поэтому ее учитывать не следует. Поскольку в кристалле атомы расположены близко друг от друга к этому иону может притянуться электрон от соседнего атома. В этом случае положительная дырка возникает у соседнего атома откуда ушел валентный электрон и т.д. Для совершенного, не имеющего примесей и дефектов, кристалла концентрация электронов будет равна концентрации дырок. Это собственная концентрация носителей заряда n i = p i , значок i означает концентрацию носителей для собственного полупроводника (intrinsic –собственный). Для произведения концентраций электронов и дырок можно записать:

np = n i 2 (1.5)

Следует отметить, то это соотношение выполняется не только для полупроводников с собственной проводимостью, но и для легированных кристаллов, в которых концентрация электронов не равна концентрации дырок.

Рис. 1.10. Схематическое изображение возникновения электрона и дырки при поглощении света

Направление движения дырки противоположно направлению движения электрона. Каждый электрон находящийся в валентной связи характеризуется своим уровнем. Все уровни валентных электронов расположены очень близко и образуют валентную зону, поэтому перемещение дырки можно рассматривать как непрерывный процесс, аналогичный движению классической свободной частицы. Аналогично поскольку в зоне проводимости энергетические уровни расположены очень близко, зависимость энергии от импульса можно считать непрерывной и соответственно движение электрона можно в первом приближении рассматривать как движение классической свободной частицы.

1.2.3. Легирование кристаллов донорной или акцепторной примесью, полупроводники "n" и "p" типа.

Наличие в кристалле примесей и дефектов приводит к появлению в запрещенной зоне энергетических уровней, положение которых зависит от типа примеси или дефекта. Для управления электрическими свойствами полупроводников в них специально вводят примеси (легируют). Так введение в элементарный полупроводник IV группы периодической системы элементов, например Si, примеси элементов V группы (доноров) приводит к появлению дополнительных электронов и соответственно преобладанию электронной проводимости (n - тип), введение элементов III группы приводит к появлению дополнительных дырок (p-тип).

Рис. 1.12. Схема образования свободного электрона и заряженного донорного атома при легировании Si элементами V группы периодической системы

На рис. 1.12 показана схема кристалла Si, в который введен фосфор (V группа). Элемент V группы (донор) имеет 5 валентных электронов, четыре из них образуют связи с соседними атомами Si, пятый электрон связан только с атомом примеси и эта связь слабее остальных, поэтому при нагреве кристалла этот электрон отрывается первым, при этом атом фосфора приобретает положительный заряд, становясь ионом.

(1.7)

где E d - энергия ионизации (активации) донорного атома.

Энергия ионизации доноров, как правило, не велика (0.005 - 0.01 эВ) и при комнатной температуре они практически все отдают свои электроны. При этом концентрация электронов, появившихся за счет ионизации доноров примерно равна концентрации введенных атомов примеси и значительно превосходит собственную концентрацию электронов и дырок n>>n i , поэтому такие материалы и называют электронными материалами (n-тип).

Будем называть электроны в них основными носителями и обозначать n n , соответственно дырки будем называть неосновными носителями заряда и обозначать p n .

Рассмотрим, что происходит при введении в тот же Si элемента III группы, например B. Элемент III группы имеет 3 валентных электрона, которые образуют связи с соседними атомами Si, четвертая связь может образовываться, если к атому B перейдет еще один электрон от одного из его ближайших соседей, см. рис. 10. Энергия такого перехода не велика, поэтому соответствующий принимающий (акцепторный) электрон энергетический уровень расположен вблизи валентной зоны. При этом атом бора ионизуется заряжаясь отрицательно, а в том месте откуда ушел электрон образуется положительно заряженная дырка, которая может участвовать в переносе заряда.

где e v - электрон из валентной зоны, E a - энергия акцепторного уровня относительно потолка валентной зоны.

Рис. 1.13. Схема образования свободной дырки и заряженного акцепторного атома при легировании Si элементами III группы периодической системы

Количество дополнительно появившихся дырок примерно соответствует количеству введенных акцепторных атомов и, как правило, значительно превосходит количество электронов, возникающих за счет переходов из валентной зоны, поэтому материал легированный акцепторной примесью является дырочным (p тип).

Введение акцепторной примеси приводит к увеличению концентрации дырок и соответственно смещению уровня Ферми к валентной зоне (чем он ближе к ней, тем больше концентрация дырок).

Контрольные вопросы.

1. Почему электроны в полупроводниковом кристалле могут переносить заряд, если он находятся в зоне проводимости и не могут переносить заряд, если они находятся в заполненной валентной зоне?

2. Объясните, почему кристаллы состоящие из элементов первой группы являются хорошими проводниками?

3. Как вы считаете, если бы удалось получить кристаллический водород, то он был бы проводником или полупроводником?

4. Почему введение в кремний (германий) примесных атомов, принадлежащих к пятой группе периодической системы элементов приводит к появлению свободных электронов в зоне проводимости?

5. Почему введение в кремний (германий) примесных атомов, принадлежащих к третьей группе периодической системы элементов приводит к появлению свободных дырок в зоне проводимости?

Транзистор

Выпрямление на полупровод­никовом переходе

Переходы между полупроводни­ками

Эффект Холла

Примесные полупроводники

Электроны и дырки в полупроводниках

Г л а в a 12 ПОЛУПРОВОДНИКИ

Только не старайтесь сделать пакет чересчур узким.


Одним из самых замечательных и волную­щих открытий последних лет явилось приме­нение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупро­водников привело к открытию их полезных свойств и ко множеству практических приме­нений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего при­меняются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в на­стоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристал­лизуются в решетке алмазного типа - в такой кубической структуре, в которой атомы обла­дают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низ­ких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реаль­ной решетки кремния или германия уравнения были бы дру­гими. Но все существенное может стать ясным уже из резуль­татов для прямоугольной решетки.

Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой

Разные A - это амплитуды прыжков в направлениях х, у и z, а а, b, с - это постоянные решетки (интервалы между узлами) в этих направлениях.



Для энергий возле дна зоны формулу (12.1) можно прибли­зительно записать так:

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором опре­деленном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно напи­сать

где a - некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).

Фиг. 12.1. Энергетическая диаг­рамма для электрона в кристалле изолятора.

Такой график мы будем называть «энергетиче­ской диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного опре­деленного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка пере­прыгивает от атома а к атому b , в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного элект­рона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд А х, A y и А z . У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обна­ружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только раз­ницей, что в некубических кристаллах масса зависит от направ­ления движения. Итак, дырка напоминает частицу с положи­тельным зарядом, движущуюся сквозь кристалл. Заряд ча­стицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сто­рону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электро­нов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны нач­нут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется ме­таллический электрод, перейти на него, оставив кристалл нейт­ральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если при­ложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и про­исходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновре­менно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны назы­вают отрицательными носителями, а дырки - положитель­ными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон-дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S), - это энергия Е - , показанная на фиг. 12.2.

Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного

электрона.

Это некоторая энергия,

превышающая Е - мин . Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S ",- это энергия Е + (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е + мин ).

Фиг. 12.3. Энергия Е + , тре­буемая для «рождения» дырки в состоянии S".

А чтобы создать пару в со­стояниях S и S", потребуется просто энергия Е - +Е + .

Образование пар - это, как мы увидим позже, очень частый процесс, и многие люди предпочитают поме­щать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два гра­фика.

Фиг. 12.4. Энергетические диаграммы для электрона и дырки.

Преимущества такого графика в том, что энергия E пары =Е - +Е + , требуемая для образования пары (электрона в S и дырки в S’ ), дается попросту расстоянием по вертикали между S и S", как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энерге­тической шириной, или шириной щели, и равняется

е - мин +e + мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок.

Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.

Как создается пара электрон-дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)

могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон - дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон - дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки

I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон - дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели E щели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Е щеяи /kТ), где Т- температура, а k- постоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть N n (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей N p , то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению N n N p . При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение N n N p должно равняться произведению некото­рой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, N n = N р. Значит, каждое из этих чисел должно с температурой меняться как . Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре kТ составляет около 1 / 40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6-7 эв, по­этому при комнатной температуре алмаз - хороший изолятор.

В кристалле чистого германия и кремния связь между атомами осуществляется за счет вращения двух электронов, принадлежащих двум рядом расположенным атомам, по од­ной общей орбите. Такая связь называется парноэлектронной , или ковалентной (рис. 10, а). Германии и кремний являются четырехвалентными элементами, их атомы имеют по 4 валентных электрона, и ковалентные связи образуются между четырьмя соседними атомами, как показано на рис. 10, б. На этом рисунке парные ковалентные связи обозначены параллельными линиями, соединяющими два соседних атома, а электроны, образующие эти связи, - черными точками (1) Электроны, связанные ковалентными связями, не участвуют в электропроводности полупроводника. Чтобы появилась электропроводность (т.е. чтобы полупроводник стал способным проводить электрический ток), необходимо разорвать часть ковалентных связей. Освобожденные от ковалентных связей электроны смогут свободно перемещаться по кристаллу полупроводника и участвовать в электропроводности. Такие электроны называют свободными , или электронами проводимости (рис.10, в). Разрушение ковалентных связей происходит при сообщении электронам дополнительной энергии за счет повышения температуры (нагрева) полупроводника, облучения светом и других энергетических воздействий. В результате энергия свободных электронов увеличивается, и их энергетические уровни соответствуют энергетическим уровням зоны проводимости.

Место на внешней орбите атома, где ранее находился электрон (или, иными словами, разорванная ковалентная связь), называется дыркой. На энергетической диаграмме

Рис.10. Плоская модель кристаллической решетки германия и кремния (а, б, в) и их энергетическая диаграмма (г)

дырке соответствует свободный энергетический уровень (2) в валентной зоне, с которого электрон перешел в зону проводимости (рис. 10, г). Атом, лишившийся одного из электронов, обладает положительным зарядом, равным абсолютному значению заряда электрона. Следовательно, образование дырки эквивалентно возникновению положительного заряда р= +q(q ≈ 1,6 *10 -19 Кл - заряд электрона).

Образование свободных электронов в зоне проводимости и дырок в валентной зоне называют генерацией носителей заряда , или генерацией пар электрон-дырка , поскольку у абсолютно чистых (собственных) полупроводников появление свободного электрона в зоне проводимости обязательно сопровождается появлением дырки в валентной зоне.

Свободный электрон может, теряя часть своей энергии, из зоны проводимости перейти в валентную зону, заполнив собой одну из имеющихся в ней дырок. При этом восстанавливается ковалентная связь. Этот процесс называют рекомбинацией . Таким образом, рекомбинация всегда сопровождается потерей пары электрон-дырка.

Рекомбинация всегда означает переход электрона в состояние с более низкой энергией. Выделяющаяся при этом энергия может излучаться в виде кванта света (фотона) или превращаться в тепловую энергию.

Промежуток времени от момента генерации носителя заряда до его рекомбинации называют временем жизни, а расстояние, пройденное им за время жизни, - диффузионной длиной .

Концентрация носителей зарядов в собственном полупроводнике.

При температурах, превышающих -273,16 °С, в полупроводнике всегда имеются разорванные ковалентные связи, т.е. некоторое количество свободных электронов и равное им число дырок. Число, или концентрация, свободных электронов и дырок зависит от ширины запрещенной зоны ∆Wn температуры: оно тем больше, чем меньше ∆W и выше температура. При заданной температуре процесс генерации носителей заряда уравновешивается процессом рекомбинации. Такое состояние полупроводника называют равновесным . Для полупроводника, находящегося в равновесном состоянии, концентрация свободных электронов n ,равна концентрации дырок р , (индексы / соответствуют чистому, или собственному, полупроводнику) в валентной зоне, и можно записать

ni pi = ni2 = pi2 = const.



Понравилась статья? Поделитесь с друзьями!