Кто открыл аморфные тела. Аморфные твердые тела

В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком . Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел - стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Особенности аморфных тел

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления . И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Изотропность аморфных тел

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью .

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами . Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

Твердые тела разделяют на аморфные и кристаллические, в зависимости от их молекулярной структуры и физических свойств.

В отличие от кристаллов молекулы и атомы аморфных твердых тел не формируют решетку, а расстояние между ними колеблется в пределах некоторого интервала возможных расстояний. Иначе говоря, у кристаллов атомы или молекулы взаимно расположены таким образом, что формируемая структура может повторяться во всем объеме тела, что называется дальним порядком. В случае же с аморфными телами – сохраняется структура молекул лишь относительно каждой одной такой молекулы, наблюдается закономерность в распределении только соседних молекул – ближний порядок. Наглядный пример представлен ниже.

К аморфным телам относится стекло и другие вещества в стеклообразном состоянии, канифоль, смолы, янтарь, сургуч, битум, воск, а также органические вещества: каучук, кожа, целлюлоза, полиэтилен и др.

Свойства аморфных тел

Особенность строения аморфных твердых тел придает им индивидуальные свойства:

  1. Слабо выраженная текучесть – одно из наиболее известных свойств таких тел. Примером будут потеки стекла, которое долгое время стоит в оконной раме.
  2. Аморфные твердые тела не обладают определенной температурой плавления, так как переход в состояние жидкости во время нагрева происходит постепенно, посредством размягчения тела. По этой причине к таким телам применяют так называемый температурный интервал размягчения.

  1. В силу своей структуры такие тела являются изотропными, то есть их физические свойства не зависят от выбора направления.
  2. Вещество в аморфном состоянии обладает большей внутренней энергией, нежели в кристаллическом. По этой причине аморфные тела способны самостоятельно переходить в кристаллическое состояние. Данное явление можно наблюдать как результат помутнения стекол с течением времени.

Стеклообразное состояние

В природе существуют жидкости, которые практически невозможно перевести в кристаллическое состояние посредством охлаждения, так как сложность молекул этих веществ не позволяет им образовать регулярную кристаллическую решетку. К таким жидкостям относятся молекулы некоторых органических полимеров.

Однако, при помощи глубокого и быстрого охлаждения, практически любое вещество способно перейти в стеклообразное состояние. Это такое аморфное состояние, которое не имеет явной кристаллической решетки, но может частично кристаллизироваться, в масштабах малых кластеров. Данное состояние вещества является метастабильным, то есть сохраняется при некоторых требуемых термодинамических условиях.

При помощи технологии охлаждения с определенной скоростью вещество не будет успевать кристаллизоваться, и преобразуется в стекло. То есть чем выше скорость охлаждения материала, тем меньше вероятность его кристаллизации. Так, например, для изготовления металлических стекол потребуется скорость охлаждения, равная 100 000 – 1 000 000 Кельвин в секунду.

В природе вещество существует в стеклообразном состоянии возникает из жидкой вулканической магмы, которая, взаимодействуя с холодной водой или воздухом, быстро охлаждается. В данном случае вещество зовется вулканическим стеклом. Также можно наблюдать стекло, образованная в результате плавления падающего метеорита, взаимодействующего с атмосферой – метеоритное стекло или молдавит.

Наличие определенной точки плавления - это важный признак кристаллических веществ. Именно по этому признаку их можно легко отличить от аморфных тел, которые также относят к твердым телам. К ним, в частности, относятся стекла, очень вязкие смолы, пластмассы.

Аморфные вещества (в отличие от кристаллических) не имеют определенной температуры плавления - они не плавятся, а размягчаются. При нагревании кусок стекла, например, снача­ла становится из твердого мягким, его легко можно гнуть или растягивать; при более высокой температуре кусок начинает менять свою форму под действием собственной тяжести. По мере на­гревания густая вязкая масса принимает форму того сосуда, в котором лежит. Эта масса сначала густая, как мед, затем - как сметана и наконец становится почти такой же маловязкой жидкос­тью, как вода. Однако указать определенную температуру перехода твердого тела в жидкое здесь невозможно, поскольку ее нет.

Причины этого лежат в коренном отличии строения аморфных тел от строения кристалличес­ких. Атомы в аморфных телах расположены беспорядочно. Аморфные тела по своему строению нэ.поминэ.ют экидкости. лс6 в твердом стекле атомы расположены беспорядочно. Значит, повы­шение температуры стекла лишь увеличивает размах колебаний его молекул, дает им постепенно все большую и большую свободу перемещения. Поэтому стекло размягчается постепенно и не обнаруживает резкого перехода «твердое-жидкое», характерного для перехода от расположения молекул в строгом порядке к беспорядочному.

Теплота плавления

Теплота плавления - это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полно­стью перевести его из твердого кристаллического состояния в жидкое.

Теплота плавления равна тому количеству теплоты, которое выделяется при кристалли­зации вещества из жидкого состояния.

При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энер­гии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.

Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить 332 Дж энергии, а для того чтобы расплавить 1 кг свинца - 25 кДж.

Физическая величина, показывающая, какое количество теплоты необходимо сообщить крис­таллическому телу массой 1 кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.

Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают гре­ческой буквой X (лямбда).

Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при крис­таллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой 1 кг выделяются те же 332 Дж энергии, которые нужны для превращения такой же массы льда в воду.

Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произ­вольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:

Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете ко­личества теплоты, выделяющегося при кристаллизации вещества массой т, следует пользоваться той же формулой, но со знаком «минус».

В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком . Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел - стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Особенности аморфных тел

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления . И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Изотропность аморфных тел

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью .

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами . Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

Твердое тело - агрегатное состояние вещества, характеризующееся постоянством формы и характером движения атомов, которые совершают малые колебания около положений равно­весия.

Кристаллические тела. Твердое тело в обычных условиях трудно сжать или растянуть. Для придания твердым телам нужной формы или объема на заводах и фабриках их обрабатывают на специальных станках: токарных, строгальных, шлифовальных.

В отсутствие внешних воздействий твердое тело сохраняет свою форму и объем.

Это объясняется тем, что притяжение между атомами (или молекулами) у них больше, чем у жид­костей (и тем более газов). Оно достаточно, чтобы удержать атомы около положений равновесия.

Молекулы или атомы большинства твердых тел, таких, как лед, соль, алмаз, металлы, распо­ложены в определенном порядке. Такие твердые тела называют кристаллическими. Хотя части­цы этих тел и находятся в движении, движения эти представляют собой колебания около опре­деленных точек (положений равновесия). Частицы не могут уйти далеко от этих точек, поэтому твердое тело сохраняет свою форму и объем.

Кроме того, в отличие от жидкостей, точки положений равновесия атомов или ионов твердого тела, будучи соединенными, располагаются в вершинах правильной пространственной решетки, которая называется кристаллической.

Положения равновесия, относительно которых происходят тепловые колебания частиц, назы­ваются узлами кристаллической решетки.

Монокристалл - твердое тело, частицы которого образуют единую кристаллическую решетку (одиночный кристалл).

Анизотропия монокристаллов. Одним из главных свойств монокристаллов, которым они отли­чаются от жидкостей и газов, является анизотропия их физических свойств. Под анизотропией понимают зависимость физических свойств от направления в кристалле. Анизотропными яв­ляются механические свойства (например, известно, что слюду легко расслоить в одном направле­нии и очень трудно - в перпендикулярном), электрические свойства (электропроводность многих кристаллов зависит от направления), оптические свойства (явление двойного лучепреломления, и дихроизма - анизотропии поглощения; так, например, монокристалл турмалина «окрашен» в разные цвета - зеленый и бурый, в зависимости от того, с какой стороны на него посмотреть).

Поликристалл - твердое тело, состоящее из беспорядочно ориентированных монокристал­лов. Поликристаллическими являются большинство твердых тел, с которыми мы имеем дело в быту - соль, сахар, различные металлические изделия. Беспорядочная ориентация сросшихся микрокристалликов, из которых они состоят, приводит к исчезновению анизотропии свойств.

Аморфные тела. Кроме кристаллических, к твердым телам относят также аморфные тела. Аморфный в переводе с греческого означает «бесформенный».

Аморфные тела - это твердые тела, для которых характерно неупорядоченное расположение частиц в пространстве.

В этих телах молекулы (или атомы) колеблются около хаотически расположенных точек и, по­добно молекулам жидкости, имеют определенное время оседлой жизни. Но, в отличие от жидкос­тей, время это у них очень велико.

К аморфным телам относятся стекло, янтарь, различные другие смолы, пластмассы. Хотя при комнатной температуре эти тела сохраняют свою форму, но при повышении температуры они постепенно размягчаются и начинают течь, как жидкости: у аморфных тел нет определенной температуры, плавления.

Этим они отличаются от кристаллических тел, которые при повышении температуры перехо­дят в жидкое состояние не постепенно, а скачком (при вполне определенной температуре - тем­пературе плавления).

Все аморфные тела изотропны, т. е. имеют одинаковые физические свойства по разным на­правлениям. При ударе они ведут себя как твердые тела - раскалываются, а при очень длитель­ном воздействии - текут.

В настоящее время есть много веществ в аморфном состоянии, полученных искусственным путем, например, аморфные и стеклообразные полупроводники, магнитные материалы и даже металлы.



Понравилась статья? Поделитесь с друзьями!