Что такое точка в физике. Связь с реальными объектами

Вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной точкой в случаях, когда оно перемещается поступательно на большие (по сравнению с его размерами) расстояния; например, Земля радиусом около 6,4 тыс. км является материальной точкой в своем годовом движении вокруг Солнца (радиус орбиты - так называемой эклиптики - около 150 млн. км). Аналогично, понятие материальной точки применимо, если вращательную часть движения тела можно в условиях рассматриваемой задачи не учитывать (например, пренебречь суточным вращением Земли при изучении годового движения).

Современная энциклопедия . 2000 .

Смотреть что такое "МАТЕРИАЛЬНАЯ ТОЧКА" в других словарях:

    Точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    Понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    Понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    - (частица) простейшая физическая модель в механике идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой… … Википедия

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…
  • Начала биокосмологии. Синтез современной космологии и теоретической биологии , Казанцев Э.Ф.. В книге представлена программа становления будущей науки биокосмологии как синтеза достижений современной космологии с началами теоретической биологии, построенной на ее новых базовых…

Все тела, которые нас окружают состоят из колоссально большого числа атомов или молекул, то есть представляют собой макроскопические системы

Механические свойства тел

Механические свойства тел определяются их внутренним строением, состоянием, химическим составом, изучение которых выходит за рамки механики, потому изучаются в других разделах физики. В механике же при рассмотрении реальных тел в зависимости от условий конкретной задачи пользуются упрощенными моделями: материальной точки, абсолютно твердого тела и другими.

Материальной точкой (МТ) называют тело, размерами и формой которого можно пренебречь в данной конкретной физической задачи. Критерием этого является то, что характерные расстояния, которые тело проходит в процессе данного движения (масштаб движения, обозначим L) должны быть на порядки величины (хотя бы на 1-2 порядка) больше, чем характерные размеры тела. Таким образом, критерием того, что физическое тело можно считать МТ будет выполнение условия. Сам термин «материальная точка» как бы подчеркивает, что размерами тела пренебрегаем, но в то же время это физический объект, имеющий массу. В этом смысле, корректнее было бы пользоваться термином «точечная масса», аналогично тому, как это делается в электростатике, где используют понятие «точечный заряд».

На читайте похожие рефераты:

В физике очень важно понятие порядка величины: как это понятие нужно использовать уже даже для корректного определения МТ, то кратко вспомним это определение. Такое сравнение через порядок величины позволяет корректно устанавливать, можно считать это тело в данной конкретной физической задачи материальной точкой, или нет. Проще — можно пренебречь размерами тела по сравнению с характерными расстояниями, проходящей тело в процессе данного движения.

Теперь очевидно, что в процессе движения Земли вокруг Солнца ее можно, конечно же, считать материальной точкой. В процессе же движения тел по земной поверхности. или вблизи Земли (движение спутников), Земля уже не может считаться материальной точкой, и наоборот, будем сравнивать размеры этих тел с размерами Земли в каждой конкретной задачи.

Любое тело или систему тел изучается в механике, можно рассматривать как систему материальных точек. Для этого нужно условно разбить все тела системы на достаточно большое количество частей, таких, чтобы размеры каждой из этих частей были несравненно малыми по сравнению с размерами самих тел.

Абсолютно твердым телом называют тело, расстояние между — любыми двумя точками которого остается неизменной. Такая модель может быть использована в задачах, в которых деформациями тела можно пренебречь. Фактически абсолютно твердое тело — это система МТ, жестко связаны между собой.

На читайте похожие рефераты:

Движения тела в физике

Любое движение абсолютно твердого тела можно разложить на два основных вида движения — поступательное и вращательное.

Поступательное движение — это такое движение, при котором любая прямая, соединяющая две произвольные точки этого тела, проведенная в движущемся теле, остается параллельной самой себе. Поступательно движутся, например, поршень в цилиндре двигателя или тепловой машины, кабина лифта при опускании и поднимании. Ниже будет показано, что в каждый момент времени скорости и ускорения всех точек тела при поступательном движении будут одинаковыми, а значит для описания такого движения твердого тела достаточно рассмотреть движение какой-либо одной его точки.

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача - практически самое простое, что может ожидать ученика. Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней - материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс - знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость. Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно - их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе - в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше - простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

  • Механическое движение
  • Абсолютно твёрдое тело

Смотреть что такое "Материальная точка" в других словарях:

    МАТЕРИАЛЬНАЯ ТОЧКА - точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    МАТЕРИАЛЬНАЯ ТОЧКА - понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    МАТЕРИАЛЬНАЯ ТОЧКА Современная энциклопедия

    МАТЕРИАЛЬНАЯ ТОЧКА - В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    материальная точка - понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

Понятие материальной точки. Траектория. Путь и перемещение. Система отсчета. Скорость и ускорение при криволинейном движении. Нормальное и тангенциальное ускорения. Классификация механических движений.

Предмет механики . Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения.

Механика состоит из трех подразделов: кинематики, динамики и статики.

Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.

Динамика исследует законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. К кинематическим величинам добавляются величины - сила и масса.

В статике исследуют условия равновесия системы тел.

Механи́ческим движе́нием теланазывается изменение его положения в пространстве относительно других тел с течением времени.

Материальная точка - тело, размерами и формой которого можно пренебречь в данных условиях движения, считая массу тела сосредоточенной в данной точке. Модель материальной точки – простейшая модель движения тела в физике. Тело можно считать материальной точкой, когда его размеры много меньше характерных расстояний в задаче.

Для описания механического движения необходимо указать тело, относительно которого рассматривается движение. Произвольно выбранное неподвижное тело, по отношению к которому рассматривается движение данного тела, называется телом отсчета .

Система отсчета - тело отсчета вместе со связанными с ним системой координат и часами.

Рассмотрим движение материальной точки М в прямоугольной системе координат, поместив начало координат в точку О.

Положение точки М относительно системы отсчета можно задать не только с помощью трех декартовых координат , но также с помощью одной векторной величины - радиуса-вектора точки М, проведенного в эту точку из начала системы координат (рис. 1.1). Если - единичные вектора (орты) осей прямоугольной декартовой системы координат, то

либо зависимость от времени радиус-вектора этой точки

Три скалярных уравнения (1.2) или эквивалентное им одно векторное уравнение (1.3) называются кинематическими уравнениями движения материальной точки .

Траекторией материальной точки называется линия, описываемая пространстве этой точкой при ее движении (геометрическое место концов радиуса-вектора частицы). В зависимости от формы траектории различают прямолинейное и криволинейное движения точки. Если все участки траектории точки лежат в одной плоскости, то движение точки называют плоским.

Уравнения (1.2) и (1.3) задают траекторию точки в так называемой параметрической форме. Роль параметра играет время t. Решая эти уравнения совместно и исключая из них время t, найдем уравнение траектории.

Длиной пути материальной точки называют сумму длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени.

Вектором перемещения материальной точки называется вектор, соединяющий начальное и конечное положение материальной точки, т.е. приращение радиуса-вектора точки за рассматриваемый промежуток времени

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории. Из того, что перемещение является вектором, следует подтверждающийся на опыте закон независимости движений: если материальная точка участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме ее перемещений, совершаемых ею за тоже время в каждом из движений порознь

Для характеристики движения материальной точки вводят векторную физическую величину - скорость , величину, определяющую как быстроту движения, так и направление движения в данный момент времени.

Пусть материальная точка движется по криволинейной траектории МN так, что в момент времени t она находится в т.М, а в момент времени в т. N. Радиус-векторы точек М и N соответственно равны , а длина дуги МN равна (рис. 1.3).

Вектором средней скорости точки в интервале времени от t до t t называют отношение приращения радиуса-вектора точки за этот промежуток времени к его величине :

Вектор средней скорости направлен также, как вектор перемещения т.е. вдоль хорды МN.

Мгновенная скорость или скорость в данный момент времени . Если в выражении (1.5) перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

В процессе уменьшения величины точка N приближается к т.М, и хорда МN, поворачиваясь вокруг т.М, в пределе совпадает по направлению с касательной к траектории в точке М. Поэтому вектор и скорость v движущейся точки направлены по касательной траектории в сторону движения. Вектор скорости v материальной точки можно разложить на три составляющие, направленные вдоль осей прямоугольной декартовой системы координат.

Из сопоставления выражений (1.7) и (1.8) следует, что проекции скорости материальной точки на оси прямоугольной декартовой системы координат равны первым производным по времени от соответствующих координат точки:

Движение, при котором направление скорости материальной точки не изменяется, называется прямолинейным. Если численное значение мгновенной скорости точки остается во время движения неизменным, то такое движение называется равномерным.

Если же за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее мгновенной скорости с течением времени изменяется. Такое движение называют неравномерным.

В этом случае часто пользуются скалярной величиной , называемой средней путевой скоростью неравномерного движения на данном участке траектории. Она равна численному значению скорости такого равномерного движения, при котором на прохождение пути затрачивается то же время , что и при заданном неравномерном движении:

Т.к. только в случае прямолинейного движения с неизменной по направлению скоростью, то в общем случае:

Величину пройденного точкой пути можно представить графически пло­щадью фигуры ограниченной кривой v = f (t ), прямыми t = t 1 и t = t 1 и осью времени на графике скорости.

Закон сложения скоростей . Если материальная точка одновременно участвует в нескольких движениях, то результирующее перемещения в соответствии с законом независимости движения, равно векторной (геометрической) сумме элементарных перемещений, обусловленных каждым из этих движений в отдельности:

В соответствии с определением (1.6):

Таким образом, скорость результирующего движения равна геометрической сумме скоростей всех движений, в которых участвует материальная точка, (это положение носит название закона сложения скоростей).

При движении точки мгновенная скорость может меняться как по величине, так и по направлению. Ускорение характеризует быстроту изменения модуля и направления вектора скорости, т.е. изменение величины вектора скорости за единицу времени.

Вектор среднего ускорения . Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение:

Вектор, среднего ускорения совпадает по направлению с вектором .

Ускорение, или мгновенное ускорение равно пределу среднего ускорения при стремлении промежутка времени к нулю:

В проекциях на соответствующие координаты оси:

При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М 1 стала . При этом считаем, что промежуток времени при переходе точки на пути из М в М 1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность:

Для этого перенесем параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор на две составляющих АВ и АД, и обе соответственно через и . Таким образом вектор изменения скорости равен векторной сумме двух векторов:

Таким образом, ускорение материальной точки можно представить как векторную сумму нормального и тангенциального ускорений этой точки

По определению:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент. Вектор тангенциального ускорения направлен по касательной к траектории движения тела.



Понравилась статья? Поделитесь с друзьями!