Эффект доплера для звуковых и электромагнитных волн. Для получения значения S некоторые пороговые значения должны быть приняты изначально

В акустике изменение частоты, обусловленное эффектом Доплера, определяется скоростями движения источника и приемника по отношению к среде, являющейся носителем звуковых волн (см. формулу (103.2)). Для световых волн также существует эффект Доплера. Однако особой среды, которая служила бы носителем электромагнитных волн, не существует. Поэтому доплеровское смещение частоты световых волн определяется только относительной скоростью источника и приемника.

Свяжем с источником света начало координат системы К, а с приемником - начало координат системы К (рис. 151.1). Оси направим, как обычно, вдоль вектора скорости v, с которой система К (т. е. приемник) движется относительно системы К (т е. источника). Уравнение плоской световой волны, испускаемой источником по направлению к приемнику, будет в системе К иметь вид

Здесь и - частота волны, фиксируемая в системе отсчета, связанной с источником, т. е. частота, с которой колеблется источник. Мы предполагаем, что световая волна распространяется в вакууме; поэтому фазовая скорость равна с.

Согласно принципу относительности законы природы имеют одинаковый вид во всех инерциальных системах отсчета. Следовательно, в системе К волна (151.1) описывается уравнением

где - частота, фиксируемая в системе отсчета К т. е. частота, воспринимаемая приемником. Мы снабдили штрихами все величины, кроме с, которая одинакова во всех системах отсчета.

Уравнение волны в системе К можно получить из уравнения в системе К, перейдя от с помощью преобразований Лоренца.

Заменив в и t согласно формулам (63.16) 1-го тома, получим

(роль играет v). Последнее выражение легко привести к виду

Уравнение (151.3) описывает в системе К ту же волну, что и уравнение (151.2). Поэтому должно выполняться соотношение

Изменим обозначения: частоту источника со обозначим через а частоту приемника - через . В результате формула примет вид

Перейдя от круговой частоты к обычной, получим

(151.5)

Фигурирующая в формулах (151.4) и (151.5) скоростью приемника по отношению к источнику есть величина алгебраическая. При удалении приемника и согласно при приближении приемника к источнику так что со

В случае, если формулу (151.4) можно приближенно записать следующим образом:

Отсюда, ограничившись членами порядка получим

(151.6)

Из этой формулы можно найти относительное изменение частоты:

(151.7)

(под подразумевается ).

Можно показать, что, кроме рассмотренного нами продольного эффекта, для световых волн существует также поперечный эффект Доплера. Он заключается в уменьшении воспринимаемой приемником частоты, наблюдающемся в том случае, когда вектор относительной скорости направлен перпендикулярно к прямой, проходящей через приемник, и источник (когда, например, источник движется по окружности, в центре которой помещаемся приемник).

В этом случае частота в системе источника связана с частотой со в системе приемника соотношением

Относительное изменение частоты при поперечном эффекте Доплера

пропорционально квадрату отношения и, следовательно, значительно меньше, чем при продольном эффекте, для которого относительное изменение частоты пропорционально первой степени

Существование поперечного эффекта Доплера было доказано экспериментально Айвсом в 1938 г. В опытах Айвса определялось изменение частоты излучения атомов водорода в каналовых лучах (см. последний абзац § 85). Скорость атомов составляла примерно 106 м/с. Эти опыты представляют собой непосредственное экспериментальное подтверждение справедливости преобразований Лоренца.

В общем случае вектор относительной скорости можно разложить на две составляющие, одна из которых направлена вдоль луча, а другая - перпендикулярно к лучу. Первая составляющая обусловит продольный, вторая - поперечный эффект Доплера.

Продольный эффект Доплера используется для определения радиальной скорости звезд. Измерив относительное смещение линий в спектрах звезд, можно по формуле (151.4) определить

Тепловое движение молекул светящегося газа приводит вследствие эффекта Доплера к уширению спектральных линий. Из-за хаотичности теплового движения все направления скоростей молекул относительно спектрографа равновероятны. Поэтому в регистрируемом прибором излучении присутствуют все частоты, заключенные в интервале от до где - частота, излучаемая молекулами, v - скорость теплового движения (см. формулу (151.6)). Таким образом, регистрируемая ширина спектральной линии составит Величину

(151.10)

называют доплеровской шириной спектральной линии (под v подразумевается наиболее вероятная скорость молекул). По величине доплеровского уширения спектральных линий можно судить о скорости теплового движения молекул, а следовательно, и о температуре светящегося газа.

Пусть в газе или жидкости на некотором расстоянии от источника волн располагается воспринимающее колебания среды устройство, которое мы будем называть приемником. Если источник и приемник волн неподвижны относительно среды, в которой распространяется волна, то частота колебаний, воспринимаемых приемником, будет равна частоте колебаний источника. Если же источник или приемник либо оба они движутся относительно среды, то частота v, воспринимаемая приемником, может оказаться отличной от Это явление называется эффектом Доплера.

Предположим, что источник и приемник движутся вдоль соединяющей их прямой. Скорость источника будем считать положительной, если источник движется по направлению к приемнику, и отрицательной, если источник движется в направлении от приемника. Аналогично скорость приемника будем считать положительной, если приемник движется по направлению к источнику, и отрицательной, если приемник движется в направлении от источника.

Если источник неподвижен и колеблется с частотой то к моменту, когда источник будет завершать колебание, порожденный первым колебанием «гребень» волны успеет пройти в среде путь v (v - скорость распространения волны относительно среды). Следовательно, порождаемые источником за секунду «гребней» и «впадин» волны уложатся на длине v. Если же источник движется относительно среды со скоростью то в момент, когда источник будет завершать колебание, «гребень», порожденный первым колебанием, будет находиться от источника на расстоянии (рис. 103.1). Следовательно, «гребней» и «впадин» волны уложатся на длине , так что длина волны будет равна

Мимо неподвижного приемника пройдут за секунду «гребни» и «впадины», укладывающиеся на длине v. Если приемник движется со скоростью то в конце длящегося 1 с промежутка времени он будет воспринимать «впадину», которая в начале этого промежутка отстояла от его теперешнего положения на расстояние, численно равное .

Таким образом, приемник воспримет за секунду колебания, отвечающие «гребням» и «впадинам», укладывающимся на длине, численно равной (рис. 103.2), и будет колебаться с частотой

Подставив в эту формулу выражение (103.1) для К, получим

(103.2)

Из формулы (103.2) вытекает, что при таком движении источника и приемника, при котором расстояние между ними уменьшается, воспринимаемая приемником частота v оказывается больше частоты источника

Если расстояние между источником и приемником увеличивается, v будет меньше, чем

Если направления скоростей не совпадают с проходящей через источник и приемник прямой, вместо в формуле (103.2) нужно брать проекции векторов на направление указанной прямой.

Из формулы (103.2) следует, что эффект Доплера для звуковых волн определяется скоростями движения источника и приемника относительно среды, в которой распространяется звук. Для световых волн также наблюдается эффект Доплера, однако формула для изменения частоты имеет иной вид, чем (103.2). Это обусловлено тем, что для световых волн не существует вещественной среды, колебания которой представляли бы собой «свет». Поэтому скорости источника и приемника света относительно «среды» не имеют смысла. В случае света можно говорить лишь об относительной скорости приемника и источника. Эффект Доплера для световых волн зависит от величины и направления этой скорости. Эффект Доплера для световых волн рассматривается в § 151.

Энциклопедичный YouTube

    1 / 5

    ✪ Эффект Доплера. Введение

    ✪ Урок 378. Эффект Доплера в акустике

    ✪ Выпуск 5 - Эффект Доплера, Красное смещение, Большой взрыв.

    Субтитры

    В этом видео мы поговорим о двух источниках волн. Но один из них будет неподвижным, а другой - движущимся. Допустим, он двигается вправо со скоростью 5 метров в секунду. Давайте подумаем, где через 3-4 секунды будет находиться гребень волны? Допустим, оба источника испускают волны и скорость их распространения составляет 10 метров в секунду. Представьте, что это звуковые волны, хотя звук в воздухе движется гораздо, гораздо быстрее, чем 10 метров в секунду. Но это упростит наши расчёты, особенно для источника, движущегося вправо со скоростью 5 метров в секунду. Я хотел бы, чтобы вы поняли логику происходящего, так что упростим расчёты. Оба источника испускают волны, скорость распространения их - 10 метров в секунду. Период волны будет равен 1 секунде за цикл. Если период - 1 секунда за цикл, то частота волны, испускаемой источником, - это величина, обратная периоду. Итак, частота будет обратна периоду. Обратная величина 1 - 1. Но, 1 цикл в секунду. Если цикл проходится за секунду, то на 1 секунду проходится один цикл. Посмотрим, что здесь происходит. Допустим, источник испустил волну ровно 1 секунду назад. Где окажется гребень волны сейчас? Давайте рассмотрим неподвижный источник. Вот этот источник секунду назад испустил волну. Она удаляется от него. Волна распространяется в радиальном направлении от источника. Нужно указывать направление, если говорится о векторе. Скорость распространения - 10 метров в секунду. Так что, если волну испустили секунду назад, она должна пройти 10 метров в радиальном направлении от источника. Допустим, гребень волны здесь. Вот где будет гребень волны. Попробую нарисовать аккуратнее. Вот гребень. Где будет гребень волны, испущенной секунду назад? Вы могли бы решить, что нужно просто нарисовать круг радиусом 10 метров вокруг источника. Но секунду назад его здесь не было. Он был на 5 метров левее. Помните, он движется вправо со скоростью 5 метров в секунду. Так что секунду назад он был на 5 метров левее. Он мог быть примерно тут. И гребень волны, испущенной секунду назад, будет в 10 метрах не от этого источника. Он будет в 10 метрах от места, где располагался источник. Итак, копируем, вставляем. Вот так. Теперь источник находится здесь. А тут он был секунду назад, когда испустил волну, удалившуюся на 10 метров. Немного неточно, сейчас я передвину его. Это 5 метров. Это 10. Думаю, смысл вам понятен. Продолжаем. Давайте подумаем о гребне волны, испущенной обоими источниками 2 секунды назад. Вот этот всё время был неподвижен. Испущенная им волна расходится со скоростью 10 метров в секунду. Так что гребень располагается по кругу радиусом в 20 метров с центром на источнике. Это будет выглядеть примерно так. Вот таким образом. Я рисую только гребни волн. Представьте пруд, в который бросили камень. Это будут гребни волны, которая распространяется радиально от центра, то есть места, куда был брошен камень. А вокруг этого источника мы не можем просто нарисовать круг, потому что 2 секунды назад он здесь еще не находился. Он был не здесь, он был тут. Прямо здесь 2 секунды назад. Секунду назад он был на 5 метров левее. А за секунду до этого, он был ещё на 5 метров левее. Так что испущенная им волна будет в 20 метрах от этой точки. Теперь нужно скопировать и вставить. Вот это. Центр распространения будет не здесь и не здесь. Центр будет в этой точке, где источник был 2 секунды назад. Давайте повторим ещё разок. Что будет с гребнем волны, испущенной 3 секунды назад? Она должна располагаться по кругу радиусом 30 метров, так что это ещё 10 метров от предыдущего круга. Это будет вот здесь. Это источник по-прежнему неподвижный. А что с этим источником? Со вторым, давайте разберемся с ним. 3 секунды назад его здесь не было. Он был здесь. Так? Секунду назад - здесь. 2 секунды назад - здесь. 3 секунды - здесь. Так что нам нужен радиус 30 метров из этой точки. Опять копируем, вставляем вот сюда. Центр круга будет примерно вот тут. Теперь давайте подумаем, какова будет частота волны для восприятия наблюдателей. Разместим наблюдателя здесь, хотя можно разместить его где угодно вокруг источника. Другой наблюдатель будет вот тут. А третий - здесь. Что будет воспринимать этот наблюдатель? Каждую секунду он получает импульс - тут есть ещё пара моментов. Какова длина волны, например, вот здесь? Каждую секунду источник испускает импульс. Так что импульс, испущенный секунду назад, пройдёт 10 метров. А источник испускает следующий импульс. Импульсы разделяет 1 секунда, но, поскольку они проходят за нее 10 метров, их разделяет также 10 метров. Так что, длина волны в этом случае будет равна 10 метрам. Расстояние между этими гребнями равно 10 метрам. Теперь, что касается второго случая. Тут всё зависит от того, приближается источник звука к вам или удаляется от вас, как в случае с этим наблюдателем. Когда же он приближается к вам, он испускает импульсы. Например, он испустил импульс отсюда и продвинулся на 5 метров вправо до того, как испустить следующий импульс. Так что расстояние между гребнями будет уже не 10 метров, как здесь, потому что источник сократил дистанцию на 5 метров в этом направлении. Так что гребни будет разделять лишь 5 метров. И длина волны здесь будет только 5 метров. Вы сами можете это увидеть. Это расстояние наполовину меньше, чем это. Их разделяет лишь 5 метров. А с левой стороны, когда источник удаляется от вас, это расстояние должно быть 10 метров, но с каждой секундой источник удаляется от вас на 5 метров. Так что воспринимаемая длина волны здесь составит 15 метров. Можно убедиться в этом наглядно. Для этого я нарисовал всё именно таким образом. Какова будет частота волн, воспринимаемых наблюдателем? Этого наблюдателя как раз достиг один из гребней. До прихода следующего гребня пройдёт в точности 1 секунда, потому что он движется со скоростью 10 метров в секунду. Так что он воспринимает волны с частотой 1 гребень, или 1 цикл в секунду, или 1 Гц, что вполне логично. Источник неподвижен. Наблюдатель и источник неподвижны по отношению друг к другу. Мы говорим о классической механике, не затрагивая релятивистскую и все прочие. Но частота, воспринимаемая наблюдателем, в точности совпадает с частотой волны, испускаемой источником. А теперь, что касается этого случая. Для этого наблюдателя гребни разделяет 5 метров. Представьте, что к наблюдателю приближается поезд, Гребни разделяет 5 метров, но скорость распространения 10 метров в секунду. Так сколько гребней в секунду доходит до наблюдателя? Их будет 2. Вот этот достигнет наблюдателя за полсекунды, следом, ещё через полсекунды, появится второй. Или, можно сказать, что вот этому понадобится полсекунды, а этот достигнет вас через секунду. Наблюдателя достигает 2 гребня в секунду. Можно выразить это 2 способами. Можно сказать, что в этом случае период равен полсекунды за цикл. Или, можно сказать, что воспринимаемая наблюдателем частота составит 2 цикла в секунду. Заметьте, воспринимаемая этим наблюдателем частота выше, потому что волны, или гребни волн, проходят мимо него более часто. И связано это с тем, что источник приближается к наблюдателю, и они сближаются. А вот это противоположный случай. Допустим, этот гребень как раз достиг наблюдателя. Через какое время следующий гребень пройдёт эти 15 метров? Скорость распространения волн - 10 метров в секунду. Так период, воспринимаемый наблюдателем, составит 1,5 секунды за цикл. Находим обратную величину: 1,5 - это 3/2, то есть получается 2/3, или, можно сказать, 2/3 цикла в секунду. Итак, если источник удаляется от наблюдателя, частота, или воспринимаемая частота, ниже, чем истинная частота волны, испускаемой источником. При приближении источника частота повышается. Это может показаться необычным, но это наверняка знакомо вам по опыту. Это называется эффект Доплера, о котором вы, вероятно, слышали. Это именно то, что можно наблюдать, стоя около железной дороги. Но не стойте слишком близко. Допустим, к вам приближается поезд, включив сирену. Издаваемый сиреной звук будет очень высоким. Затем, когда поезд проходит мимо и начинает удаляться, звук значительно понижается. Это воспринимаемый диапазон, это способ вашего мозга и ушей ощущать частоту звука. Когда поезд приближается к вам, это высокий диапазон, высокая частота. При удалении от вас - низкий диапазон, низкая частота. Надеюсь, изображённая мной схема даёт вам визуальное понимание того, как всё устроено, почему эти точки на гребнях сближаются друг с другом при приближении к вам и отдаляются, когда источник отдаляется от вас. Далее выведем обобщённые формулы соотношения частоты, воспринимаемой наблюдателем и испускаемой источником. Subtitles by the Amara.org community

История открытия

Исходя из собственных наблюдений за волнами на воде, Доплер предположил, что подобные явления происходят в воздухе с другими волнами. На основании волновой теории он в 1842 году вывел, что приближение источника света к наблюдателю увеличивает наблюдаемую частоту, отдаление уменьшает её (статья «О цветном свете двойных звезд и некоторых других звезд на небесах (англ.) русск. »). Доплер теоретически обосновал зависимость частоты звуковых и световых колебаний, воспринимаемых наблюдателем, от скорости и направления движения источника волн и наблюдателя относительно друг друга. Это явление впоследствии было названо его именем.

Доплер использовал этот принцип в астрономии и провел параллель между акустическим и оптическим явлениями. Он полагал, что все звёзды излучают белый свет, однако цвет меняется из-за их движения к или от Земли (этот эффект для рассматриваемых Доплером двойных звёзд очень мал). Хотя изменения в цвете невозможно было наблюдать с оборудованием того времени, теория о звуке была проверена уже в 1845 году . Только открытие спектрального анализа дало возможность экспериментальной проверки эффекта в оптике.

Критика публикации Доплера

Главным основанием для критики являлось то, что статья не имела экспериментальных подтверждений и была исключительно теоретической. Хотя общее объяснение его теории и вспомогательные иллюстрации, которые он привел для звука, и были верны, объяснения и девять поддерживающих аргументов об изменении цвета звёзд верны не были. Ошибка произошла из-за заблуждения, что все звёзды излучают белый свет, и Доплер, видимо, не знал об открытиях инфракрасного (У. Гершель , 1800 год) и ультрафиолетового излучения (И. Риттер , 1801 год) .

Хотя к 1850 году эффект Доплера был подтверждён экспериментально для звука, его теоретическая основа вызвала острые дебаты, которые спровоцировал Йозеф Пецваль . Основные возражения Пецваля были основаны на преувеличении роли высшей математики. Он ответил на теорию Доплера своей работой «Об основных принципах волнового движения: закон сохранения длины волны», представленной на встрече Академии Наук 15 января 1852 года. В ней он утверждал, что теория не может представлять ценности, если она опубликована всего на 8 страницах и использует только простые уравнения. В своих возражениях Пецваль смешал два абсолютно разных случая движения наблюдателя и источника и движения среды. В последнем случае, согласно теории Доплера, частота не меняется .

Экспериментальная проверка

В 1845 году голландский метеоролог из Утрехта , Христофор Хенрик Дидерик Бёйс-Баллот , подтвердил эффект Доплера для звука на железной дороге между Утрехтом и Амстердамом . Локомотив, достигший невероятной на то время скорости 40 миль/ч (64 км/ч), тянул открытый вагон с группой трубачей. Баллот слушал изменения тона во время движения вагона при приближении и удалении. В тот же год Доплер провел эксперимент, используя две группы трубачей, одна из которых двигалась от станции, а вторая оставалась неподвижной. Он подтвердил, что, когда оркестры играют одну ноту, они находятся в диссонансе . В 1846 году он опубликовал пересмотренную версию своей теории, в которой он рассматривал как движение источника, так и движение наблюдателя. Позднее в 1848 году французский физик Арман Физо обобщил работы Доплера, распространив его теорию и на свет (рассчитал смещение линий в спектрах небесных светил) . В 1860 году Эрнст Мах предсказал, что линии поглощения в спектрах звёзд, связанные с самой звездой, должны обнаруживать эффект Доплера, также в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффект Доплера. Первое соответствующее наблюдение удалось провести в 1868 году Уильяму Хаггинсу .

Прямое подтверждение формул Доплера для световых волн было получено Г. Фогелем в 1871 году путём сравнения положений линий Фраунгофера в спектрах , полученных от противоположных краёв солнечного экватора. Относительная скорость краёв, рассчитанная по значениям измеренных Г. Фогелем спектральных интервалов, оказалась близка к скорости, рассчитанной по смещению солнечных пятен .

Сущность явления

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью . В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

Математическое описание явления

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны λ) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется - длина волны увеличивается:

где - угловая частота , с которой источник испускает волны, c {\displaystyle c} - скорость распространения волн в среде, v {\displaystyle v} - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

ω = ω 0 (1 + u c) , {\displaystyle \omega =\omega _{0}\left(1+{\frac {u}{c}}\right),} (2)

где u {\displaystyle u} - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо ω 0 {\displaystyle \omega _{0}} в формуле (2) значение частоты ω {\displaystyle \omega } из формулы (1), получим формулу для общего случая:

ω = ω 0 (1 + u c) (1 − v c) . {\displaystyle \omega =\omega _{0}{\frac {\left(1+{\frac {u}{c}}\right)}{\left(1-{\frac {v}{c}}\right)}}.} (3)

Релятивистский эффект Доплера

ω = ω 0 ⋅ 1 − v 2 c 2 1 + v c ⋅ cos ⁡ θ {\displaystyle \omega =\omega _{0}\cdot {\frac {\sqrt {1-{\frac {v^{2}}{c^{2}}}}}{1+{\frac {v}{c}}\cdot \cos \theta }}}

где c {\displaystyle c} - скорость света , v {\displaystyle v} - скорость источника относительно приёмника (наблюдателя), θ {\displaystyle \theta } - угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то θ = 0 {\displaystyle \theta =0} , если приближается, то θ = π {\displaystyle \theta =\pi } .

Релятивистский эффект Доплера обусловлен двумя причинами:

  • классический аналог изменения частоты при относительном движении источника и приёмника;

Последний фактор приводит к поперечному эффекту Доплера , когда угол между волновым вектором и скоростью источника равен θ = π 2 {\displaystyle \theta ={\frac {\pi }{2}}} . В этом случае изменение частоты является чисто релятивистским эффектом, не имеющим классического аналога.

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера , по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера .

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω 0 - круговая частота, с которой источник испускает волны;

с - скорость распространения волн в среде;

v - скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u - скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта - движение источника волн и приёмника относительно друг друга.

Радар Доплера - это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта. Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость. Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

– важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия. Волна - это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой , длиной и частотой . Звук, который мы слышим - это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если хотите узнать больше о колебаниях, волнах и резонансе - добро пожаловать в нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, вы стоите на остановке. К вам по улице движется карета скорой помощи со включенной сиреной. Частота звука, которую вы будете слышать по мере приближения машины, не одинакова.

Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться. Это и есть эффект Доплера .


Частота и длина волны излучения, воспринимаемого наблюдателем, изменяется вследствие движения источника излучения.

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав. Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером , было впоследствии названо его именем. Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов. В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом. Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы.

Другие музыканты находились на станции и слушали, что играют их коллеги. Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).


Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией .

Эффект Доплера также используют в оптике , акустике , радиоэлектронике , астрономии , радиолокации .

Кстати! Для наших читателей сейчас действует скидка 10% на

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.


Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с - скорость распространения волн в среде, w0 - частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени. Пусть света – с , v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника. Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у , и они охотно поделятся своим опытом! А в конце - еще немного про теорию Большого взрыва и эффект Доплера.



Понравилась статья? Поделитесь с друзьями!