Solving formulas online. Examples of identical transformations of equations

I. ax 2 =0incomplete quadratic equation (b=0, c=0 ). Solution: x=0. Answer: 0.

Solve equations.

2x·(x+3)=6x-x 2 .

Solution. Let's open the brackets by multiplying 2x for each term in brackets:

2x 2 +6x=6x-x 2 ; We move the terms from the right side to the left:

2x 2 +6x-6x+x 2 =0; Here are similar terms:

3x 2 =0, hence x=0.

Answer: 0.

II. ax 2 +bx=0incomplete quadratic equation (c=0 ). Solution: x (ax+b)=0 → x 1 =0 or ax+b=0 → x 2 =-b/a. Answer: 0; -b/a.

5x 2 -26x=0.

Solution. Let's take out the common factor X outside of brackets:

x(5x-26)=0; each factor can be equal to zero:

x=0 or 5x-26=0→ 5x=26, divide both sides of the equality by 5 and we get: x=5.2.

Answer: 0; 5,2.

Example 3. 64x+4x 2 =0.

Solution. Let's take out the common factor 4x outside of brackets:

4x(16+x)=0. We have three factors, 4≠0, therefore, or x=0 or 16+x=0. From the last equality we get x=-16.

Answer: -16; 0.

Example 4.(x-3) 2 +5x=9.

Solution. Applying the formula for the square of the difference of two expressions, we will open the brackets:

x 2 -6x+9+5x=9; transform to the form: x 2 -6x+9+5x-9=0; Let us present similar terms:

x 2 -x=0; we'll take it out X outside the brackets, we get: x (x-1)=0. From here or x=0 or x-1=0→ x=1.

Answer: 0; 1.

III. ax 2 +c=0incomplete quadratic equation (b=0 ); Solution: ax 2 =-c → x 2 =-c/a.

If (-c/a)<0 , then there are no real roots. If (-с/а)>0

Example 5. x 2 -49=0.

Solution.

x 2 =49, from here x=±7. Answer:-7; 7.

Example 6. 9x 2 -4=0.

Solution.

Often you need to find the sum of squares (x 1 2 +x 2 2) or the sum of cubes (x 1 3 +x 2 3) of the roots of a quadratic equation, less often - the sum of the reciprocal values ​​of the squares of the roots or the sum of arithmetic square roots of the roots of a quadratic equation:

Vieta's theorem can help with this:

x 2 +px+q=0

x 1 + x 2 = -p; x 1 ∙x 2 =q.

Let's express through p And q:

1) sum of squares of the roots of the equation x 2 +px+q=0;

2) sum of cubes of the roots of the equation x 2 +px+q=0.

Solution.

1) Expression x 1 2 +x 2 2 obtained by squaring both sides of the equation x 1 + x 2 = -p;

(x 1 +x 2) 2 =(-p) 2 ; open the brackets: x 1 2 +2x 1 x 2 + x 2 2 =p 2 ; we express the required amount: x 1 2 +x 2 2 =p 2 -2x 1 x 2 =p 2 -2q. We got a useful equality: x 1 2 +x 2 2 =p 2 -2q.

2) Expression x 1 3 +x 2 3 Let us represent the sum of cubes using the formula:

(x 1 3 +x 2 3)=(x 1 +x 2)(x 1 2 -x 1 x 2 +x 2 2)=-p·(p 2 -2q-q)=-p·(p 2 -3q).

Another useful equation: x 1 3 +x 2 3 = -p·(p 2 -3q).

Examples.

3) x 2 -3x-4=0. Without solving the equation, calculate the value of the expression x 1 2 +x 2 2.

Solution.

x 1 +x 2 =-p=3, and the work x 1 ∙x 2 =q=in example 1) equality:

x 1 2 +x 2 2 =p 2 -2q. We have -p=x 1 +x 2 = 3 → p 2 =3 2 =9; q= x 1 x 2 = -4. Then x 1 2 +x 2 2 =9-2·(-4)=9+8=17.

Answer: x 1 2 +x 2 2 =17.

4) x 2 -2x-4=0. Calculate: x 1 3 +x 2 3 .

Solution.

By Vieta's theorem, the sum of the roots of this reduced quadratic equation is x 1 +x 2 =-p=2, and the work x 1 ∙x 2 =q=-4. Let's apply what we have received ( in example 2) equality: x 1 3 +x 2 3 =-p·(p 2 -3q)= 2·(2 2 -3·(-4))=2·(4+12)=2·16=32.

Answer: x 1 3 +x 2 3 =32.

Question: what if we are given an unreduced quadratic equation? Answer: it can always be “reduced” by dividing term by term by the first coefficient.

5) 2x 2 -5x-7=0. Without deciding, calculate: x 1 2 +x 2 2.

Solution. We are given a complete quadratic equation. Divide both sides of the equality by 2 (the first coefficient) and obtain the following quadratic equation: x 2 -2.5x-3.5=0.

According to Vieta's theorem, the sum of the roots is equal to 2,5 ; the product of the roots is equal -3,5 .

We solve it in the same way as the example 3) using the equality: x 1 2 +x 2 2 =p 2 -2q.

x 1 2 +x 2 2 =p 2 -2q= 2,5 2 -2∙(-3,5)=6,25+7=13,25.

Answer: x 1 2 + x 2 2 = 13,25.

6) x 2 -5x-2=0. Find:

Let us transform this equality and, using Vieta’s theorem, replace the sum of roots through -p, and the product of the roots through q, we get another useful formula. When deriving the formula, we used equality 1): x 1 2 +x 2 2 =p 2 -2q.

In our example x 1 +x 2 =-p=5; x 1 ∙x 2 =q=-2. We substitute these values ​​into the resulting formula:

7) x 2 -13x+36=0. Find:

Let's transform this sum and get a formula that can be used to find the sum of arithmetic square roots from the roots of a quadratic equation.

We have x 1 +x 2 =-p=13; x 1 ∙x 2 =q=36. We substitute these values ​​into the resulting formula:

Advice : Always check the possibility of finding the roots of a quadratic equation using a suitable method, because 4 reviewed useful formulas allow you to quickly complete a task, especially in cases where the discriminant is an “inconvenient” number. In all simple cases, find the roots and operate on them. For example, in the last example we select the roots using Vieta’s theorem: the sum of the roots should be equal to 13 , and the product of the roots 36 . What are these numbers? Certainly, 4 and 9. Now calculate the sum of the square roots of these numbers: 2+3=5. That's it!

I. Vieta's theorem for the reduced quadratic equation.

Sum of roots of the reduced quadratic equation x 2 +px+q=0 is equal to the second coefficient taken with the opposite sign, and the product of the roots is equal to the free term:

x 1 + x 2 = -p; x 1 ∙x 2 =q.

Find the roots of the given quadratic equation using Vieta's theorem.

Example 1) x 2 -x-30=0. This is the reduced quadratic equation ( x 2 +px+q=0), second coefficient p=-1, and the free member q=-30. First, let's make sure that this equation has roots, and that the roots (if any) will be expressed in integers. To do this, it is enough that the discriminant be a perfect square of an integer.

Finding the discriminant D=b 2 — 4ac=(-1) 2 -4∙1∙(-30)=1+120=121= 11 2 .

Now, according to Vieta’s theorem, the sum of the roots must be equal to the second coefficient taken with the opposite sign, i.e. ( -p), and the product is equal to the free term, i.e. ( q). Then:

x 1 +x 2 =1; x 1 ∙x 2 =-30. We need to choose two numbers such that their product is equal to -30 , and the amount is unit. These are numbers -5 And 6 . Answer: -5; 6.

Example 2) x 2 +6x+8=0. We have the reduced quadratic equation with the second coefficient p=6 and free member q=8. Let's make sure that there are integer roots. Let's find the discriminant D 1 D 1=3 2 -1∙8=9-8=1=1 2 . The discriminant D 1 is the perfect square of the number 1 , which means that the roots of this equation are integers. Let us select the roots using Vieta’s theorem: the sum of the roots is equal to –р=-6, and the product of the roots is equal to q=8. These are numbers -4 And -2 .

In fact: -4-2=-6=-р; -4∙(-2)=8=q. Answer: -4; -2.

Example 3) x 2 +2x-4=0. In this reduced quadratic equation, the second coefficient p=2, and the free member q=-4. Let's find the discriminant D 1, since the second coefficient is an even number. D 1=1 2 -1∙(-4)=1+4=5. The discriminant is not a perfect square of the number, so we do conclusion: The roots of this equation are not integers and cannot be found using Vieta’s theorem. This means that we solve this equation, as usual, using formulas (in this case, using formulas). We get:

Example 4). Write a quadratic equation using its roots if x 1 =-7, x 2 =4.

Solution. The required equation will be written in the form: x 2 +px+q=0, and, based on Vieta’s theorem –p=x 1 +x 2=-7+4=-3 → p=3; q=x 1 ∙x 2=-7∙4=-28 . Then the equation will take the form: x 2 +3x-28=0.

Example 5). Write a quadratic equation using its roots if:

II. Vieta's theorem for a complete quadratic equation ax 2 +bx+c=0.

The sum of the roots is minus b, divided by A, the product of the roots is equal to With, divided by A:

x 1 + x 2 = -b/a; x 1 ∙x 2 =c/a.

Example 6). Find the sum of the roots of a quadratic equation 2x 2 -7x-11=0.

Solution.

We make sure that this equation will have roots. To do this, it is enough to create an expression for the discriminant, and, without calculating it, just make sure that the discriminant is greater than zero. D=7 2 -4∙2∙(-11)>0 . Now let's use theorem Vieta for complete quadratic equations.

x 1 +x 2 =-b:a=- (-7):2=3,5.

Example 7). Find the product of the roots of a quadratic equation 3x 2 +8x-21=0.

Solution.

Let's find the discriminant D 1, since the second coefficient ( 8 ) is an even number. D 1=4 2 -3∙(-21)=16+63=79>0 . The quadratic equation has 2 root, according to Vieta’s theorem, the product of roots x 1 ∙x 2 =c:a=-21:3=-7.

I. ax 2 +bx+c=0– general quadratic equation

Discriminant D=b 2 - 4ac.

If D>0, then we have two real roots:

If D=0, then we have a single root (or two equal roots) x=-b/(2a).

If D<0, то действительных корней нет.

Example 1) 2x 2 +5x-3=0.

Solution. a=2; b=5; c=-3.

D=b 2 - 4ac=5 2 -4∙2∙(-3)=25+24=49=7 2 >0; 2 real roots.

4x 2 +21x+5=0.

Solution. a=4; b=21; c=5.

D=b 2 - 4ac=21 2 - 4∙4∙5=441-80=361=19 2 >0; 2 real roots.

II. ax 2 +bx+c=0 quadratic equation of particular form with even second

coefficient b


Example 3) 3x 2 -10x+3=0.

Solution. a=3; b=-10 (even number); c=3.

Example 4) 5x 2 -14x-3=0.

Solution. a=5; b= -14 (even number); c=-3.

Example 5) 71x 2 +144x+4=0.

Solution. a=71; b=144 (even number); c=4.

Example 6) 9x 2 -30x+25=0.

Solution. a=9; b=-30 (even number); c=25.

III. ax 2 +bx+c=0 quadratic equation private type provided: a-b+c=0.

The first root is always equal to minus one, and the second root is always equal to minus With, divided by A:

x 1 =-1, x 2 =-c/a.

Example 7) 2x 2 +9x+7=0.

Solution. a=2; b=9; c=7. Let's check the equality: a-b+c=0. We get: 2-9+7=0 .

Then x 1 =-1, x 2 =-c/a=-7/2=-3.5. Answer: -1; -3,5.

IV. ax 2 +bx+c=0 quadratic equation of a particular form subject to : a+b+c=0.

The first root is always equal to one, and the second root is equal to With, divided by A:

x 1 =1, x 2 =c/a.

Example 8) 2x 2 -9x+7=0.

Solution. a=2; b=-9; c=7. Let's check the equality: a+b+c=0. We get: 2-9+7=0 .

Then x 1 =1, x 2 =c/a=7/2=3.5. Answer: 1; 3,5.

Page 1 of 1 1

At the stage of preparation for the final test, high school students need to improve their knowledge on the topic “Exponential Equations.” The experience of past years indicates that such tasks cause certain difficulties for schoolchildren. Therefore, high school students, regardless of their level of preparation, need to thoroughly master the theory, remember the formulas and understand the principle of solving such equations. Having learned to cope with this type of problem, graduates can count on high scores when passing the Unified State Exam in mathematics.

Get ready for exam testing with Shkolkovo!

When reviewing the materials they have covered, many students are faced with the problem of finding the formulas needed to solve equations. A school textbook is not always at hand, and selecting the necessary information on a topic on the Internet takes a long time.

The Shkolkovo educational portal invites students to use our knowledge base. We are implementing a completely new method of preparing for the final test. By studying on our website, you will be able to identify gaps in knowledge and pay attention to those tasks that cause the most difficulty.

Shkolkovo teachers collected, systematized and presented all the material necessary for successfully passing the Unified State Exam in the simplest and most accessible form.

Basic definitions and formulas are presented in the “Theoretical background” section.

To better understand the material, we recommend that you practice completing the assignments. Carefully review the examples of exponential equations with solutions presented on this page to understand the calculation algorithm. After that, proceed to perform tasks in the “Directories” section. You can start with the easiest tasks or go straight to solving complex exponential equations with several unknowns or . The database of exercises on our website is constantly supplemented and updated.

Those examples with indicators that caused you difficulties can be added to “Favorites”. This way you can quickly find them and discuss the solution with your teacher.

To successfully pass the Unified State Exam, study on the Shkolkovo portal every day!

The free calculator we bring to your attention has a rich arsenal of possibilities for mathematical calculations. It allows you to use the online calculator in various fields of activity: educational, professional And commercial. Of course, using an online calculator is especially popular among students And schoolchildren, it makes it much easier for them to perform a variety of calculations.

At the same time, the calculator can become a useful tool in some areas of business and for people of different professions. Of course, the need to use a calculator in business or work is determined primarily by the type of activity itself. If your business and profession are associated with constant calculations and calculations, then it is worth trying out an electronic calculator and assessing the degree of its usefulness for a particular task.

This online calculator can

  • Correctly perform standard mathematical functions written in one line like - 12*3-(7/2) and can process numbers larger than we can count huge numbers in an online calculator. We don’t even know what to call such a number correctly ( there are 34 characters and this is not the limit at all).
  • Except tangent, cosine, sine and other standard functions - the calculator supports calculation operations arctangent, arccotangent and others.
  • Available in Arsenal logarithms, factorials and other interesting features
  • This online calculator knows how to build graphs!!!

To plot graphs, the service uses a special button (the graph is drawn in gray) or a letter representation of this function (Plot). To build a graph in an online calculator, just write the function: plot(tan(x)),x=-360..360.

We took the simplest graph for the tangent, and after the decimal point we indicated the range of the X variable from -360 to 360.

You can build absolutely any function, with any number of variables, for example this: plot(cos(x)/3z, x=-180..360,z=4) or even more complex that you can come up with. Pay attention to the behavior of the variable X - the interval from and to is indicated using two dots.

The only negative (although it is difficult to call it a disadvantage) of this online calculator is that it cannot build spheres and other three-dimensional figures - only a plane.

How to use the Math Calculator

1. The display (calculator screen) displays the entered expression and the result of its calculation in ordinary symbols, as we write on paper. This field is simply for viewing the current transaction. The entry appears on the display as you type a mathematical expression in the input line.

2. The expression input field is intended for recording the expression that needs to be calculated. It should be noted here that the mathematical symbols used in computer programs are not always the same as those we usually use on paper. In the overview of each calculator function, you will find the correct designation for a specific operation and examples of calculations in the calculator. On this page below is a list of all possible operations in the calculator, also indicating their correct spelling.

3. Toolbar - these are calculator buttons that replace manual input of mathematical symbols indicating the corresponding operation. Some calculator buttons (additional functions, unit converter, solving matrices and equations, graphs) supplement the taskbar with new fields where data for a specific calculation is entered. The "History" field contains examples of writing mathematical expressions, as well as your six most recent entries.

Please note that when you press the buttons for calling additional functions, a unit converter, solving matrices and equations, and plotting graphs, the entire calculator panel moves up, covering part of the display. Fill in the required fields and press the "I" key (highlighted in red in the picture) to see the full-size display.

4. The numeric keypad contains numbers and arithmetic symbols. The "C" button deletes the entire entry in the expression entry field. To delete characters one by one, you need to use the arrow to the right of the input line.

Try to always close parentheses at the end of an expression. For most operations this is not critical; the online calculator will calculate everything correctly. However, in some cases errors may occur. For example, when raising to a fractional power, unclosed parentheses will cause the denominator of the fraction in the exponent to go into the denominator of the base. The closing bracket is shown in pale gray on the display and should be closed when recording is complete.

Key Symbol Operation
pi pi Constant pi
e e Euler number
% % Percent
() () Open/Close Brackets
, , Comma
sin sin(?) Sine of angle
cos cos(?) Cosine
tan tan(y) Tangent
sinh sinh() Hyperbolic sine
cosh cosh() Hyperbolic cosine
tanh tanh() Hyperbolic tangent
sin -1 asin() Reverse sine
cos -1 acos() Inverse cosine
tan -1 atan() Reverse tangent
sinh -1 asinh() Inverse hyperbolic sine
cosh -1 acosh() Inverse hyperbolic cosine
tanh -1 atanh() Inverse hyperbolic tangent
x 2 ^2 Squaring
x 3 ^3 Cube
x y ^ Exponentiation
10 x 10^() Exponentiation to base 10
e x exp() Exponentiation of Euler's number
vx sqrt(x) Square root
3 vx sqrt3(x) 3rd root
yvx sqrt(x,y) Root extraction
log 2 x log2(x) Binary logarithm
log log(x) Decimal logarithm
ln ln(x) Natural logarithm
log y x log(x,y) Logarithm
I/II Collapse/Call additional functions
Unit Unit converter
Matrix Matrices
Solve Equations and systems of equations
Graphing
Additional functions (call with key II)
mod mod Division with remainder
! ! Factorial
i/j i/j Imaginary unit
Re Re() Isolating the whole real part
Im Im() Excluding the real part
|x| abs() Number modulus
Arg arg() Function argument
nCr ncr() Binominal coefficient
gcd gcd() GCD
lcm lcm() NOC
sum sum() Total value of all decisions
fac factorize() Prime factorization
diff diff() Differentiation
Deg Degrees
Rad Radians

to solve mathematics. Find quickly solving a mathematical equation in mode online. The website www.site allows solve the equation almost any given algebraic, trigonometric or transcendental equation online. When studying almost any branch of mathematics at different stages you have to decide equations online. To get an answer immediately, and most importantly an accurate answer, you need a resource that allows you to do this. Thanks to the site www.site solve equations online will take a few minutes. The main advantage of www.site when solving mathematical equations online- this is the speed and accuracy of the response provided. The site is able to solve any algebraic equations online, trigonometric equations online, transcendental equations online, and also equations with unknown parameters in mode online. Equations serve as a powerful mathematical apparatus solutions practical problems. With the help mathematical equations it is possible to express facts and relationships that may seem confusing and complex at first glance. Unknown quantities equations can be found by formulating the problem in mathematical language in the form equations And decide received task in mode online on the website www.site. Any algebraic equation, trigonometric equation or equations containing transcendental features you can easily decide online and get the exact answer. When studying natural sciences, you inevitably encounter the need solving equations. In this case, the answer must be accurate and must be obtained immediately in the mode online. Therefore for solving mathematical equations online we recommend the site www.site, which will become your indispensable calculator for solve algebraic equations online, trigonometric equations online, and also transcendental equations online or equations with unknown parameters. For practical problems of finding the roots of various mathematical equations resource www.. Solving equations online yourself, it is useful to check the received answer using online equation solving on the website www.site. You need to write the equation correctly and instantly get online solution, after which all that remains is to compare the answer with your solution to the equation. Checking the answer will take no more than a minute, that’s enough solve equation online and compare the answers. This will help you avoid mistakes in decision and correct the answer in time when solving equations online be it algebraic, trigonometric, transcendental or equation with unknown parameters.



Did you like the article? Share with your friends!