Solving quadratic equations examples and detailed solution. Solving quadratic equations, root formula, examples

", that is, equations of the first degree. In this lesson we will look at what is called a quadratic equation and how to solve it.

What is a quadratic equation?

Important!

The degree of an equation is determined by the highest degree to which the unknown stands.

If maximum degree, in which the unknown is “2”, which means you have a quadratic equation.

Examples of quadratic equations

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0.25x = 0
  • x 2 − 8 = 0

Important! The general form of a quadratic equation looks like this:

A x 2 + b x + c = 0

“a”, “b” and “c” are given numbers.
  • “a” is the first or highest coefficient;
  • “b” is the second coefficient;
  • "c" - free member.

To find “a”, “b” and “c” you need to compare your equation with the general form of the quadratic equation “ax 2 + bx + c = 0”.

Let's practice determining the coefficients "a", "b" and "c" in quadratic equations.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Equation Odds
  • a = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0.25x = 0
  • a = 1
  • b = 0.25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

How to Solve Quadratic Equations

Unlike linear equations to solve quadratic equations, a special formula for finding roots.

Remember!

To solve a quadratic equation you need:

  • reduce the quadratic equation to general appearance"ax 2 + bx + c = 0". That is, only “0” should remain on the right side;
  • use formula for roots:

Let's look at an example of how to use the formula to find the roots of a quadratic equation. Let's solve a quadratic equation.

X 2 − 3x − 4 = 0


The equation “x 2 − 3x − 4 = 0” has already been reduced to the general form “ax 2 + bx + c = 0” and does not require additional simplifications. To solve it, we just need to apply formula for finding the roots of a quadratic equation.

Let us determine the coefficients “a”, “b” and “c” for this equation.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

It can be used to solve any quadratic equation.

In the formula “x 1;2 = ” the radical expression is often replaced
“b 2 − 4ac” for the letter “D” and is called discriminant. The concept of a discriminant is discussed in more detail in the lesson “What is a discriminant”.

Let's look at another example of a quadratic equation.

x 2 + 9 + x = 7x

In this form, it is quite difficult to determine the coefficients “a”, “b” and “c”. Let's first reduce the equation to the general form “ax 2 + bx + c = 0”.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Now you can use the formula for the roots.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Answer: x = 3

There are times when quadratic equations have no roots. This situation arises when the formula under the root turns out to be negative number.

Just. According to formulas and clear simple rules. At the first stage

necessary given equation lead to a standard form, i.e. to the form:

If the equation is already given to you in this form, you do not need to do the first stage. The most important thing is to do it right

determine all the coefficients, A, b And c.

Formula for finding the roots of a quadratic equation.

The expression under the root sign is called discriminant . As you can see, to find X, we

we use only a, b and c. Those. coefficients from quadratic equation. Just carefully set it up

values a, b and c We calculate into this formula. We substitute with their signs!

For example, in the equation:

A =1; b = 3; c = -4.

We substitute the values ​​and write:

The example is almost solved:

This is the answer.

The most common mistakes are confusion with sign values a, b And With. Or rather, with substitution

negative values into the formula for calculating the roots. Saves here detailed entry formulas

with specific numbers. If you have problems with calculations, do it!

Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

We describe everything in detail, carefully, without missing anything with all the signs and brackets:

Quadratic equations often look slightly different. For example, like this:

Now take note of practical techniques that dramatically reduce the number of errors.

First appointment. Don't be lazy before solving a quadratic equation bring it to standard form.

What does this mean?

Let's say that after all the transformations you get the following equation:

Don't rush to write the root formula! You'll almost certainly get the odds mixed up a, b and c.

Construct the example correctly. First, X squared, then without square, then the free term. Like this:

Get rid of the minus. How? We need to multiply the entire equation by -1. We get:

But now you can safely write down the formula for the roots, calculate the discriminant and finish solving the example.

Decide for yourself. You should now have roots 2 and -1.

Reception second. Check the roots! By Vieta's theorem.

To solve the given quadratic equations, i.e. if the coefficient

x 2 +bx+c=0,

Thenx 1 x 2 =c

x 1 +x 2 =−b

For a complete quadratic equation in which a≠1:

x 2 +bx+c=0,

divide the whole equation by A:

Where x 1 And x 2 - roots of the equation.

Reception third. If your equation has fractional odds, - get rid of fractions! Multiply

equation with a common denominator.

Conclusion. Practical advice:

1. Before solving, we bring the quadratic equation to standard form and build it Right.

2. If there is a negative coefficient in front of the X squared, we eliminate it by multiplying everything

equations by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding

factor.

4. If x squared is pure, its coefficient equal to one, the solution can be easily verified by

I hope that after studying this article you will learn how to find the roots of a complete quadratic equation.

Using the discriminant, only complete quadratic equations are solved; to solve incomplete quadratic equations, other methods are used, which you will find in the article “Solving incomplete quadratic equations.”

What quadratic equations are called complete? This equations of the form ax 2 + b x + c = 0, where coefficients a, b and c are not equal to zero. So, to solve a complete quadratic equation, we need to calculate the discriminant D.

D = b 2 – 4ac.

Depending on the value of the discriminant, we will write down the answer.

If the discriminant is a negative number (D< 0),то корней нет.

If the discriminant equal to zero, then x = (-b)/2a. When the discriminant is a positive number (D > 0),

then x 1 = (-b - √D)/2a, and x 2 = (-b + √D)/2a.

For example. Solve the equation x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Answer: 2.

Solve Equation 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Answer: no roots.

Solve Equation 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3.5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Answer: – 3.5; 1.

So let’s imagine the solution of complete quadratic equations using the diagram in Figure 1.

Using these formulas you can solve any complete quadratic equation. You just need to be careful to the equation was written as a polynomial standard view

A x 2 + bx + c, otherwise you may make a mistake. For example, in writing the equation x + 3 + 2x 2 = 0, you can mistakenly decide that

a = 1, b = 3 and c = 2. Then

D = 3 2 – 4 1 2 = 1 and then the equation has two roots. And this is not true. (See solution to example 2 above).

Therefore, if the equation is not written as a polynomial of the standard form, first the complete quadratic equation must be written as a polynomial of the standard form (the monomial with the highest indicator degrees, that is A x 2 , then with less bx and then a free member With.

When solving the reduced quadratic equation and a quadratic equation with an even coefficient in the second term, you can use other formulas. Let's get acquainted with these formulas. If in a complete quadratic equation the second term has an even coefficient (b = 2k), then you can solve the equation using the formulas shown in the diagram in Figure 2.

A complete quadratic equation is called reduced if the coefficient at x 2 is equal to one and the equation takes the form x 2 + px + q = 0. Such an equation can be given for solution, or it can be obtained by dividing all coefficients of the equation by the coefficient A, standing at x 2 .

Figure 3 shows a diagram for solving the reduced square
equations. Let's look at an example of the application of the formulas discussed in this article.

Example. Solve the equation

3x 2 + 6x – 6 = 0.

Let's solve this equation using the formulas shown in the diagram in Figure 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Answer: –1 – √3; –1 + √3

You can notice that the coefficient of x in this equation even number, that is, b = 6 or b = 2k, whence k = 3. Then let’s try to solve the equation using the formulas given in the diagram of the figure D 1 = 3 2 – 3 (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Answer: –1 – √3; –1 + √3. Noticing that all the coefficients in this quadratic equation are divisible by 3 and performing the division, we get the reduced quadratic equation x 2 + 2x – 2 = 0 Solve this equation using the formulas for the reduced quadratic
equations figure 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Answer: –1 – √3; –1 + √3.

As we see, when solving this equation by various formulas we received the same answer. Therefore, having thoroughly mastered the formulas shown in the diagram in Figure 1, you will always be able to solve any complete quadratic equation.

website, when copying material in full or in part, a link to the source is required.

I hope that after studying this article you will learn how to find the roots of a complete quadratic equation.

Using the discriminant, only complete quadratic equations are solved; to solve incomplete quadratic equations, other methods are used, which you will find in the article “Solving incomplete quadratic equations.”

What quadratic equations are called complete? This equations of the form ax 2 + b x + c = 0, where coefficients a, b and c are not equal to zero. So, to solve a complete quadratic equation, we need to calculate the discriminant D.

D = b 2 – 4ac.

Depending on the value of the discriminant, we will write down the answer.

If the discriminant is a negative number (D< 0),то корней нет.

If the discriminant is zero, then x = (-b)/2a. When the discriminant is a positive number (D > 0),

then x 1 = (-b - √D)/2a, and x 2 = (-b + √D)/2a.

For example. Solve the equation x 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Answer: 2.

Solve Equation 2 x 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Answer: no roots.

Solve Equation 2 x 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3.5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Answer: – 3.5; 1.

So let’s imagine the solution of complete quadratic equations using the diagram in Figure 1.

Using these formulas you can solve any complete quadratic equation. You just need to be careful to the equation was written as a polynomial of the standard form

A x 2 + bx + c, otherwise you may make a mistake. For example, in writing the equation x + 3 + 2x 2 = 0, you can mistakenly decide that

a = 1, b = 3 and c = 2. Then

D = 3 2 – 4 1 2 = 1 and then the equation has two roots. And this is not true. (See solution to example 2 above).

Therefore, if the equation is not written as a polynomial of the standard form, first the complete quadratic equation must be written as a polynomial of the standard form (the monomial with the largest exponent should come first, that is A x 2 , then with less bx and then a free member With.

When solving the reduced quadratic equation and a quadratic equation with an even coefficient in the second term, you can use other formulas. Let's get acquainted with these formulas. If in a complete quadratic equation the second term has an even coefficient (b = 2k), then you can solve the equation using the formulas shown in the diagram in Figure 2.

A complete quadratic equation is called reduced if the coefficient at x 2 is equal to one and the equation takes the form x 2 + px + q = 0. Such an equation can be given for solution, or it can be obtained by dividing all coefficients of the equation by the coefficient A, standing at x 2 .

Figure 3 shows a diagram for solving the reduced square
equations. Let's look at an example of the application of the formulas discussed in this article.

Example. Solve the equation

3x 2 + 6x – 6 = 0.

Let's solve this equation using the formulas shown in the diagram in Figure 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Answer: –1 – √3; –1 + √3

You can notice that the coefficient of x in this equation is an even number, that is, b = 6 or b = 2k, whence k = 3. Then let’s try to solve the equation using the formulas shown in the diagram of the figure D 1 = 3 2 – 3 (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Answer: –1 – √3; –1 + √3. Noticing that all the coefficients in this quadratic equation are divisible by 3 and performing the division, we get the reduced quadratic equation x 2 + 2x – 2 = 0 Solve this equation using the formulas for the reduced quadratic
equations figure 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Answer: –1 – √3; –1 + √3.

As you can see, when solving this equation using different formulas, we received the same answer. Therefore, having thoroughly mastered the formulas shown in the diagram in Figure 1, you will always be able to solve any complete quadratic equation.

blog.site, when copying material in full or in part, a link to the original source is required.

Quadratic equations They study it in 8th grade, so there is nothing complicated here. The ability to solve them is absolutely necessary.

A quadratic equation is an equation of the form ax 2 + bx + c = 0, where the coefficients a, b and c are arbitrary numbers, and a ≠ 0.

Before studying specific solution methods, note that all quadratic equations can be divided into three classes:

  1. Have no roots;
  2. Have exactly one root;
  3. They have two different roots.

This is important difference quadratic equations from linear ones, where the root always exists and is unique. How to determine how many roots an equation has? There is a wonderful thing for this - discriminant.

Discriminant

Let the quadratic equation ax 2 + bx + c = 0 be given. Then the discriminant is simply the number D = b 2 − 4ac.

You need to know this formula by heart. Where it comes from is not important now. Another thing is important: by the sign of the discriminant you can determine how many roots a quadratic equation has. Namely:

  1. If D< 0, корней нет;
  2. If D = 0, there is exactly one root;
  3. If D > 0, there will be two roots.

Please note: the discriminant indicates the number of roots, and not at all their signs, as for some reason many people believe. Take a look at the examples and you will understand everything yourself:

Task. How many roots do quadratic equations have:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Let's write out the coefficients for the first equation and find the discriminant:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

So the discriminant is positive, so the equation has two different roots. We analyze the second equation in a similar way:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

The discriminant is negative, there are no roots. The last equation left is:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

The discriminant is zero - the root will be one.

Please note that the coefficients have been written down for each equation. Yes, it’s long, yes, it’s tedious, but you won’t mix up the odds and make stupid mistakes. Choose for yourself: speed or quality.

By the way, if you get the hang of it, after a while you won’t need to write down all the coefficients. You will perform such operations in your head. Most people start doing this somewhere after 50-70 solved equations - in general, not that much.

Roots of a quadratic equation

Now let's move on to the solution itself. If the discriminant D > 0, the roots can be found using the formulas:

Basic formula for the roots of a quadratic equation

When D = 0, you can use any of these formulas - you will get the same number, which will be the answer. Finally, if D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

First equation:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ the equation has two roots. Let's find them:

Second equation:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ the equation again has two roots. Let's find them

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Finally, the third equation:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ the equation has one root. Any formula can be used. For example, the first one:

As you can see from the examples, everything is very simple. If you know the formulas and can count, there will be no problems. Most often, errors occur when substituting negative coefficients into the formula. Here again, the technique described above will help: look at the formula literally, write down each step - and very soon you will get rid of mistakes.

Incomplete quadratic equations

It happens that a quadratic equation is slightly different from what is given in the definition. For example:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

It is easy to notice that these equations are missing one of the terms. Such quadratic equations are even easier to solve than standard ones: they don’t even require calculating the discriminant. So, let's introduce a new concept:

The equation ax 2 + bx + c = 0 is called an incomplete quadratic equation if b = 0 or c = 0, i.e. the coefficient of the variable x or the free element is equal to zero.

Of course, a very difficult case is possible when both of these coefficients are equal to zero: b = c = 0. In this case, the equation takes the form ax 2 = 0. Obviously, such an equation has a single root: x = 0.

Let's consider the remaining cases. Let b = 0, then we get an incomplete quadratic equation of the form ax 2 + c = 0. Let’s transform it a little:

Since arithmetic square root exists only from non-negative number, the last equality makes sense only for (−c /a) ≥ 0. Conclusion:

  1. If in an incomplete quadratic equation of the form ax 2 + c = 0 the inequality (−c /a) ≥ 0 is satisfied, there will be two roots. The formula is given above;
  2. If (−c /a)< 0, корней нет.

As you can see, the discriminant was not required - in incomplete quadratic equations there is no complex calculations. In fact, it is not even necessary to remember the inequality (−c /a) ≥ 0. It is enough to express the value x 2 and see what is on the other side of the equal sign. If there is a positive number, there will be two roots. If it is negative, there will be no roots at all.

Now let's look at equations of the form ax 2 + bx = 0, in which the free element is equal to zero. Everything is simple here: there will always be two roots. It is enough to factor the polynomial:

Removal common multiplier out of bracket

The product is zero when at least one of the factors is zero. This is where the roots come from. In conclusion, let’s look at a few of these equations:

Task. Solve quadratic equations:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. There are no roots, because a square cannot be equal to a negative number.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; x 2 = −1.5.



Did you like the article? Share with your friends!