Какой самый мощный телескоп в мире. Зеленый Телескоп Банка, США

Термин телескоп в буквальном смысле означает «далеко смотрю». Современные устройства оптического типа позволяют астрономам изучать нашу Солнечную систему, а также открывать новые планеты, находящиеся за ее пределами. В ниже представленную десятку вошли самые мощные телескопы в мире.

БТА

БТА открывает рейтинг самых мощных телескопов, имеющий одно из крупнейших монолитных зеркал во всем мире. Этот гигант, построенный в 70-х годах прошлого века, по сей день удерживает преимущества в плане самого большого астрономического купола. Зеркало диаметром свыше 6 метров сделано в виде параболоида вращения. Его масса составляет сорок две тонны, если не учитывать вес оправы. Общая масса этой громадины равна 850 тонн. Главным конструктором БТА является Б.К. Ионнисани. Покрытие отражающее зеркала было изготовлено из незащищенного алюминия. Рабочий слой требует замены каждые десять лет.

Гигантский Магелланов телескоп входит в десятку наиболее крупных и мощных во всем мире. Полное завершение его строительства планируется на 2020 год. Для собирания света будет использована система, включающая в себя семь первичных зеркал, каждое из которых станет обладателем диаметра в 8,4 м. Суммарная апертура устройства будет соответствовать телескопу, имеющего зеркало более 24 м диаметром. Предположительно МГТ будет в несколько раз мощнее всех современных телескопов. Планируется, что МГТ станет самым мощным и поможет открыть много новых экзопланет.

Джемини Юг и Джемини Север

Джемини Юг и Джемини Север представляют собой комплекс, в который включены два телескопа, высотой в восемь метров. Они предназначены для обеспечения полноценного беспрепятственного покрытия небосводов и расположены на разных вершинах. Это одни из самых мощных и совершенных инфракрасных оптических телескопов на сегодняшний день. Приборы обеспечивают получение максимально четких снимков, что достигается с помощью спектроскопии и адаптивной оптики. Управление телескопами часто осуществляется удаленно. Устройства принимают активное участие в поиске экзопланет.

Субару

Субару – один из мощнейших телескопов в мире, созданный японскими учеными. Находится он на вершине вулкана Мауна-Кеа. Имеет одно из самых больших монолитных зеркал в мире диаметром более восьми метров. Субару способен обнаруживать планеты, принадлежащие не нашей Солнечной системе, а также может устанавливать их размер при помощи исследования планетного света и обнаруживать газы, которые преобладают в атмосфере экзопланет.

Hobby-Eberly Telescope

Hobby-Eberly Telescope входит в десятку наиболее мощных телескопов на сегодняшний день с диаметром главного зеркала, превышающего девять метров. При его создании было использовано множество нововведений, что является одним из главных преимуществ данного прибора. Основное зеркало включает в себя 91 элемент, функционирующих как единое целое. Хобби - Эберли используется как для изучения нашей солнечной системы, так и для исследования внегалактических объектов. С помощью него было открыто несколько экзопланет.

SALT

SALT – полное название звучит, как Southern African Large Telescope. Оптический прибор имеет большое главное зеркало, диаметр которого равен одиннадцати метрам и состоит из массива зеркал. Расположился он на холме высотой почти 1,8 км неподалеку от провинции Сутерланд. С помощью данного устройства специалисты в области астрономии проводят исследования близлежащих галактик и находят новые планеты. Данное наимощнейшее астрономическое устройство позволяет проводить различного рода анализы излучения астрономических объектов.

LBT или Large Binocular Telescope в переводе на русский означает Большой бинокулярный телескоп. Является одним из самых передовых в технологическом плане приборов, который обладает максимальным оптическим разрешением в мире. Разместился он на высоте более чем 3 километров на горе под названием Грэхем. Устройство включает в себя пару громаднейших зеркал параболического типа диаметром в 8,4 м. Они установлены на общем креплении, отсюда и название «бинокулярный». По своей мощности астрономический прибор эквивалентен телескопу с одним зеркалом, имеющем диаметр более 11 метров. Благодаря необычному строению, устройство способно выдавать снимки одного объекта одновременно через разные фильтры. Это является одним из его главных преимуществ, ведь благодаря этому можно значительно сократить время на получение всей необходимой информации.

Keck I и Keck II

Keck I и Keck II расположились на самой вершине горы Мауна-Кеа, высота которой превышает 4 километра над уровнем моря. Данные астрономические приборы способны работать в режиме интерферометра, который используется в астрономии для телескопов с высоким разрешением. Они могут заменить телескоп с большой апертурой на решетку устройств с наименьшими апертурами, которые соединены по принципу интерферометра. Каждое из зеркал состоит из тридцати шести малых шестиугольных. Общий их диаметр составляет десять метров. Телескопы были созданы по системе Ричи – Кретьена. Управление устройствами близнецами ведется из офисов штаб-квартиры Ваймеа. Именно благодаря этим астрономическим агрегатам было найдено большинство планет, расположенных вне Солнечной системы.

GTC – данная аббревиатура в переводе на русский означает Большой Канарский телескоп. Прибор действительно имеет впечатляющие размеры. Данный оптический телескоп-рефлектор имеет самое огромное зеркало в мире, диаметр которого превышает десять метров. Оно сделано из 36 шестиугольных сегментов, которые были получены из стеклокристаллических материалов Zerodur. Данный астрономический прибор имеет активную и адаптивную оптику. Расположился он на самой вершине потухшего вулкана Мучачос на Канарских островах. Особенностью устройства является способность видеть различные объекты на очень большом расстоянии в миллиард более слабые, чем способен различать невооруженный человеческий глаз.

VLT или Very Large Telescope, что в переводе на русский означает «очень большой телескоп». Он представляет собой комплекс приборов такого типа. В него входят четыре отдельных и такое же количество оптических телескопов. Это самый большой оптический прибор в мире по общей площади зеркал. Также он оснащен максимальной разрешающей способностью в мире. Расположилось астрономическое устройство в Чили на высоте более 2,6 км на горе с названием Серро Параналь, расположенной в пустыне неподалеку от Тихого океана. Благодаря этому мощнейшему телескопическому устройству пару лет назад ученым наконец-то удалось получить четкие фотографии планеты Юпитер.

На сегодняшний день телескопы по-прежнему остаются одними из основных инструментов астрономов, как любителей, так и профессионалов. Задача оптического инструмента собрать на приемнике света как можно больше фотонов.
В данной статье мы затронем оптические телескопы, кратко ответим на вопрос: «почему размер телескопа имеет значение?» и рассмотрим список самых больших телескопов в мире.

Прежде всего следует отметить различия между телескопом рефлектором и . Рефрактор – это самый первый тип телескопа, который был создан в 1609 году Галилеем. Принцип его работы заключается в сборе фотонов при помощи линзы или системы линз, с последующим уменьшением изображения и передачей его в окуляр, в который астроном смотрит во время наблюдения. Одной из важных характеристик такого телескопа – апертура, высокое значение которой достигается в том числе и с помощью увеличения размера линзы. Наряду с апертурой имеет большое значение и фокусное расстояние, величина которого зависит от длины самого телескопа. По этим причинам астрономы стремились увеличить свои телескопы.
На сегодняшний день самые большие телескопы-рефракторы находятся в следующих учреждениях:

  1. В Йеркской обсерватории (Висконсин, США) — диаметром 102 см, созданный в 1897 году;
  2. В Ликской обсерватории (Калифорния, США) – диаметром 91 см, созданный в 1888 году;
  3. В Парижской обсерватории (Медон, Франция) – диаметром 83 см, созданный в 1888 году;
  4. В Потсдамском институте (Потсдам, Германия) – диаметром 81 см, созданный в 1899 году;

Современные рефракторы хоть и шагнули заметно дальше изобретения Галилея, все же обладают таким недостатком как хроматическая аберрация. Кратко говоря, так как угол преломления света зависит от его длины волны, то, проходя через линзу, свет разной длины как-бы расслаивается (дисперсия света), в результате чего изображение выглядит нечетким, расплывчатым. Несмотря на то, что ученые разрабатывают все новые технологии для повышения четкости, например, стекло со сверхнизкой дисперсией, рефракторы все же во многом уступают рефлекторам.
В 1668 году Исаак Ньютон разработал первый . Основная особенность такого оптического телескопа состоит в том, что собирающим элементом является не линза, а зеркало. В силу искажения зеркала, падающий на него фотон отражается в другое зеркало, которое, в свою очередь, направляет его в окуляр. Различные конструкции рефлекторов отличаются взаимным расположением этих зеркал, однако так или иначе рефлекторы избавляют наблюдателя от последствий хроматической аберрации давая на выходе более четкое изображение. Кроме того, рефлекторы можно делать значительно больших размеров, так как линзы рефрактора диметром более 1 м деформируются под собственным весом. Также прозрачность материала линзы рефрактора заметно ограничивает диапазон длин волн, по сравнению с устройством рефлектора.

Говоря о телескопах-рефлекторах, следует также отметить, что с увеличением диаметра главного зеркала растет и его апертура. По описанным выше причинам астрономы стараются заполучить оптические телескопы-рефлекторы наибольших размеров.

Список самых больших телескопов

Рассмотрим семь комплексов телескопов с зеркалами диаметром более 8 метров. Здесь мы пытались их упорядочить по такому параметру как апертура, однако это не определяющий параметр качества наблюдения. Каждый из перечисленных телескопов имеет свои достоинства и недостатки, определенные задачи и требуемые для их выполнения характеристики.

  1. Большой Канарский телескоп, открытый в 2007-м году, является оптическим телескопом с наибольшей апертурой в мире. Диаметр зеркала составляет 10,4 метра, собирающая площадь 73 м², а фокусное расстояние — 169,9 м. Телескоп находится в Обсерватории Роке де лос Мучачос, которая расположена на пике потухшего вулкана Мучачос, примерно 2400 метров над уровнем моря, на одном из Канарских островов под названием Пальма. Местный астроклимат считается вторым наиболее качественным для астрономических наблюдений (после Гавайи).

    Большой Канарский телескоп — самый большой телескоп в мире

  2. Два телескопа Кек имеют зеркала диаметром по 10 метров каждый, собирающая площадь по 76 м² и фокусное расстояние 17,5 м. Принадлежат обсерватории Мауна-Кеа, которая располагается на высоте 4145 метров, на пике горы Мауна-Кеа (Гавайи, США). В обсерватории Кека было обнаружено наибольшее количество экзопланет.

  3. Телескоп Хобби - Эберли находится в Обсерватории Макдональда (Техас, США) на высоте 2070 метров. Его апертура равна 9,2 м, хотя физически основное зеркало рефлектора имеет размеры 11 х 9,8 м. Собирающая площадь 77,6 м², фокусное расстояние 13,08 м. Особенность этого телескопа заключается в ряде нововведений. Одно из них — подвижные инструменты, находящиеся в фокусе, которые перемещаются вдоль неподвижного основного зеркала.

  4. Большой южно-африканский телескоп, принадлежащий Южно-африканской астрономической обсерватории, имеет зеркало наибольших размеров – 11,1 х 9,8 метров. При этом его эффективная апертура несколько меньше — 9.2 метра. Собирающая площадь составляет 79 м². Телескоп находится на высоте 1783 метра в полупустынном регионе Кару, ЮАР.

  5. Большой бинокулярный телескоп является одним из наиболее технологически развитых телескопов. Он обладает двумя зеркалами («бинокулярный»), каждое из которых имеет диаметр 8,4 метра. Собирающая площадь 110 м², а фокусное расстояние 9,6 м. Телескоп находится на высоте 3221 метр и принадлежит Международной обсерватории Маунт-Грэм (Аризона, США).

  6. Телескоп Субару, построенный в далеком 1999-м году, имеет диаметр 8,2 м, собирающую площадь 53 м² и фокусное расстояние 15 м. Принадлежит обсерватории Мауна-Кеа (Гавайи, США), той же, что и телескопы Кек, но находится шестью метрами ниже – на высоте 4139 м.

  7. VLT (Very Large Telescope – с англ. «Очень большой телескоп») состоит из четырех оптических телескопов с диметрами по 8,2 м и четырех вспомогательных – по 1,8 м. Телескопы располагаются на высоте 2635 м в пустыне Атакама, Чили. Находятся под контролем Европейской Южной Обсерватории.

    «Очень большой телескоп» (VLT)

Направление развития

Так как строительство, установка и эксплуатация гигантских зеркал является достаточно энергозатратным дорогостоящим мероприятием имеет смысл повышать качество наблюдения иными способами, помимо увеличения размеров самого телескопа. По этой причине ученые также работают в направлении развития самих технологий наблюдения. Одной из таких технологий является адаптивная оптика, которая позволяет минимизировать искажения полученных изображений в результате различных атмосферных явлений.
Если рассмотреть подробнее, то телескоп фокусируется на достаточно яркой звезде для определения текущих атмосферных условий, в результате чего получаемые изображения обрабатываются с учетом текущего астроклимата. В случае, если на небосводе нет достаточно ярких звезд, телескоп излучает лазерный луч в небо, формируя на нем пятно. По параметрам этого пятна ученые определяют текущую атмосферную погоду.

Часть оптических телескопов работает также в инфракрасном диапазоне спектра, что позволяет получать более полную информацию об исследуемых объектах.

Проекты будущих телескопов

Инструменты астрономов постоянно совершенствуются и ниже представлены наиболее масштабные проекты новых телескопов.

  • планируется возвести в Чили, на высоте 2516 метров, к 2022 году. Собирающий элемент состоит из семи зеркал по 8,4 м диаметром, при этом эффективная апертура достигнет 24,5 м. Собирающая площадь — 368 м². Разрешающая способность Гигантского Магелланова телескопа в 10 превысит таковую телескопа Хаббл. Способность собирать свет будет вчетверо превышать таковую любого современного оптического телескопа.

  • Тридцатиметровый телескоп будет относиться к обсерватории Мауна-Кеа (Гавайи, США), к которой также относятся телескопы Кек и Субару. Данный телескоп намерены возвести к 2022-му году на высоте 4050 метров. Как видно из названия, диаметр его главного зеркала будет составлять 30 метров, собирающая площадь — 655 м 2 , а фокусное расстояние – 450 метров. Тридцатиметровый телескоп будет способен собирать вдевятеро больше света, чем любой существующий, его четкость превысит четкость Хаббла в 10-12 раз.

  • (E-ELT) на сегодня является наиболее масштабным проектом телескопа. Он будет расположен на горе Армасонес на высоте 3060 метров, Чили. Диаметр зеркала E-ELT составит 39 м, собирающая площадь 978 м 2 и фокусное расстояние до 840 метров. Собирающая способность телескопа превысит в 15 раз таковую любого существующего сегодня, а качество изображения будет в 16 раз лучше, чем у Хаббла.

Перечисленные телескопы выходят за пределы видимого спектра и способны улавливать изображения также и в инфракрасной области. Сравнение этих наземных телескопов с орбитальным телескопом Хаббл означает то, что ученые преодолели барьер из помех, образованный в результате атмосферных явлений, при этом превзойдя мощный орбитальный телескоп. Все три перечисленные аппарата, вместе с Большим бинокулярным телескопом и Большим Канарским телескопом будут относиться к новому поколению так называемых Экстремально больших телескопов (Extremely Large Telescope — ELT).


March 23rd, 2018

Телескоп «Джеймс Уэбб» — это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл». «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» — «всего» 2.4 метра.

Работа над его идет около 20 лет! Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года. Потом объявили о запуске в 2018, но по последним сведениям телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года.

Давайте посмотрим как собирали это уникальное устройство:


Сама система очень сложная, ее собирают поэтапно, проверяя работоспособность многих элементов и уже собранной конструкции в ходе каждого этапа. Начиная с середины июля телескоп стали проверять на работоспособность при сверхнизких температурах — от 20 до 40 градусов Кельвина. В течение нескольких недель тестировалась работа 18 главных зеркальных секций телескопа для того, чтобы убедиться в возможности их работы в качестве единого целого. Диаметр составного зеркала телескопа равен 6,5 метров.

Позже, после того, как оказалось, что все хорошо, ученые проверили систему ориентирования, эмулируя свет далекой звезды. Телескоп смог обнаружить этот свет, все оптические системы работали в штатном режиме. Затем телескоп смог определить местоположение «звезды», отследив ее характеристики и динамику. Ученые убедились, что в космосе телескоп будет работать вполне корректно.

Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце — Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

в 2017 году телескоп «Джеймс Уэбб» опять провел в экстремальных условиях. Его поместили в камеру, температура в которой достигала всего 20 градусов Цельсия выше абсолютного нуля. Кроме того, в этой камере не было воздуха — ученые создали вакуум для того, чтобы поместить телескоп в условия открытого космоса.

«Теперь мы убедились в том, что НАСА и партнеры агентства создали отличный телескоп и набор научных инструментов», — заявил Билл Очс, руководитель проекта «Джеймс Уэбб» в Центре космических полетов имени Годдарда.

«Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

Но и это еще не все, телескопу предстоит пройти еще много проверок, прежде, чем его признают полностью готовым к отправке. Недавние тесты показали, что устройство может работать в вакууме при сверхнизких температурах. Именно такие условия царят в точке L2 Лагранжа в системе Земля-Солнце.

В начале Февраля «Джеймс Уэбб» перевезут в Хьюстон, где он будет помещен в самолет Локхид C-5 «Гэлэкси». На борту этого гиганта телескоп полетит в Лос-Анжелес, где его соберут окончательно, смонтировав солнцезащитный экран. Ученые после этого проверят, работает ли вся система с таким экраном, и нормально ли выдерживает устройство вибрации и нагрузки в ходе полета.

Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):



5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):



6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):



7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.


Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):



8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, но уже есть сведения о превышении и этого лимита до 10 млрд. (Фото Chris Gunn):



9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):





Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.


11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):



12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой — для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):



13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):



14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):







17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):



18. Масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе — 40 кг. (Фото Chris Gunn):



19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):



20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):



21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):



22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):



23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):







26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):





28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». (Фото Chris Gunn):


«Джеймс Уэбб» очень сложная система, которая состоит из тысяч отдельных элементов. Они формируют зеркало телескопа и его научные инструменты. Что касается последних, то это такие устройства:

Камера ближнего инфракрасного диапазона (Near-Infrared Camera);
- Прибор для работы в среднем диапазоне инфракрасного излучения (Mid-Infrared Instrument);
- Спектрограф ближнего инфракрасного диапазона (Near-Infrared Spectrograph);
- Датчик точного наведения c устройством формирования изображения в ближнем инфракрасном диапазоне и бесщелевым спектрографом (Fine Guidance Sensor/Near InfraRed Imager and Slitless Spectrograph).

Очень важно защитить телескоп экраном, который закроет его от Солнца. Дело в том, что именно благодаря этому экрану «Джеймс Уэбб» сможет обнаружить даже очень слабый свет самых удаленных звезд. Для развертывания экрана создана сложная система из 180 разных устройств и других элементов. Размеры его составляют 14*21 метр. «Это заставляет нас нервничать», — признал глава проекта разработки телескопа.

Основными задачами телескопа, который сменит в строю «Хаббл» являются: обнаружение света первых звёзд и галактик, сформированных после Большого взрыва, изучение формирования и развития галактик, звёзд, планетных систем и происхождения жизни. Также «Уэбб» сможет рассказать о том, когда и где началась реионизация Вселенной и что её вызвало.

источники

Вдали от огней и шума цивилизации, на вершинах гор и в безлюдных пустынях живут титаны, чьи многометровые глаза всегда обращены к звездам. Naked Science подобрал 10 крупнейших наземных телескопов: одни созерцают космос уже много лет, другим лишь предстоит увидеть «первый свет».

10. Large Synoptic Survey Telescope

Диаметр главного зеркала: 8,4 метра

Местонахождение: Чили, пик горы Серо-Пачон, 2682 метра над уровнем моря

Тип: рефлектор, оптический

Хотя LSST будет располагаться в Чили, это проект США и его строительство целиком финансируют американцы, в том числе Билл Гейтс (лично вложил 10 миллионов долларов из необходимых 400).

Предназначение телескопа - фотографирование всего доступного ночного неба раз в несколько ночей, для этого аппарат оснащен 3,2 гигапиксельной фотокамерой. LSST выделяется очень широким углом обзора в 3,5 градуса (для сравнения - Луна и Солнце, как они видны с Земли, занимают всего 0,5 градуса). Подобные возможности объясняются не только внушающим диаметром главного зеркала, но и уникальностью конструкции: вместо двух стандартных зеркал LSST использует три.

Среди научных целей проекта заявлены поиск проявлений темной материи и темной энергии, картографирование Млечного пути, детектирование кратковременных событий вроде взрывов новых или сверхновых, а также регистрация малых объектов Солнечной системы вроде астероидов и комет, в частности, вблизи Земли и в Поясе Койпера.

Ожидается, что LSST увидит «первый свет» (распространенный на Западе термин, означает момент, когда телескоп впервые используется по прямому назначению) в 2020 году. На данный момент идет строительство, выход аппарата на полное функционирование запланирован на 2022 год.

Large Synoptic Survey Telescope, концепт / LSST Corporation

9. South African Large Telescope

Диаметр главного зеркала: 11 x 9,8 метров

Местонахождение: ЮАР, вершина холма недалеко от поселения Сутерланд, 1798 метров над уровнем моря

Тип: рефлектор, оптический

Самый большой оптический телескоп южного полушария располагается в ЮАР, в полупустынной местности недалеко от города Сутерланд. Треть из 36 миллионов долларов, необходимых для конструирования телескопа, вложило правительство ЮАР; остальная часть поделена между Польшей, Германией, Великобританией, США и Новой Зеландией.

Свой первый снимок SALT сделал в 2005 году, немногим после окончания строительства. Его конструкция довольно нестандартна для оптических телескопов, однако широко распространена среди поколения новейших «очень больших телескопов»: главное зеркало не едино и состоит из 91 шестиугольного зеркала диаметром в 1 метр, угол наклона каждого из которых может регулироваться для достижения определенной видимости.

Предназначен для проведения визуального и спектрометрического анализа излучения астрономических объектов, недоступных телескопам северного полушария. Сотрудники SALT занимаются наблюдениями квазаров, близких и далеких галактик, а также следят за эволюцией звезд.

Аналогичный телескоп есть в Штатах, он называется Hobby-Eberly Telescope и расположен в Техасе, в местечке Форт Дэвис. И диаметр зеркала, и его технология почти полностью совпадают с SALT.


South African Large Telescope / Franklin Projects

8. Keck I и Keck II

Диаметр главного зеркала: 10 метров (оба)

Местонахождение: США, Гавайи, гора Мауна Кеа, 4145 метров над уровнем моря

Тип: рефлектор, оптический

Оба этих американских телескопа соединены в одну систему (астрономический интерферометр) и могут работать вместе, создавая единое изображение. Уникальное расположение телескопов в одном из лучших мест на Земле с точки зрения астроклимата (степень вмешательства атмосферы в качество астрономических наблюдений) превратило Keck в одну из самых эффективных обсерваторий в истории.

Главные зеркала Keck I и Keck II идентичны между собой и подобны по своей структуре телескопу SALT: они состоят из 36 шестиугольных подвижных элементов. Оборудование обсерватории позволяет наблюдать небо не только в оптическом, но и в ближнем инфракрасном диапазоне.

Помимо основной части широчайшего спектра исследований, Keck является на данный момент одним из самых эффективных наземных инструментов в поиске экзопланет.


Keck на закате / SiOwl

7. Gran Telescopio Canarias

Диаметр главного зеркала: 10,4 метров

Местонахождение: Испания, Канарские острова, остров Ла Пальма, 2267 метров над уровнем моря

Тип: рефлектор, оптический

Строительство GTC закончилось в 2009 году, тогда же обсерватория и была официально открыта. На церемонию приехал даже король Испании Хуан Карлос I. Всего на проект было потрачено 130 миллионов евро: 90% профинансировала Испания, а остальные 10% поровну поделили Мексика и Университет Флориды.

Телескоп способен наблюдать за звездами в оптическом и среднем инфракрасном диапазоне, обладает инструментами CanariCam и Osiris, которые позволяют GTC проводить спектрометрические, поляриметрические и коронографические исследования астрономических объектов.


Gran Telescopio Camarias / Pachango

6. Arecibo Observatory

Диаметр главного зеркала: 304,8 метров

Местонахождение: Пуэрто-Рико, Аресибо, 497 метров над уровнем моря

Тип: рефлектор, радиотелескоп

Один из самых узнаваемых телескопов в мире, радиотелескоп в Аресибо не раз попадал в объективы кинокамер: к примеру, обсерватория фигурировала в качестве места финальной конфронтации между Джеймсом Бондом и его антагонистом в фильме «Золотой Глаз», а также в научно-фантастической экранизации романа Карла Сагана «Контакт».

Этот радиотелескоп попал даже в видеоигры - в частности, в одной из карт сетевого режима Battlefield 4, которая называется Rogue Transmission, военное столкновение между двумя сторонами происходит как раз вокруг конструкции, полностью скопированной с Аресибо.

Выглядит Аресибо действительно необычно: гигантская тарелка телескопа диаметром почти в треть километра помещена в естественную карстовую воронку, окруженную джунглями, и покрыта алюминием. Над ней подвешен подвижный облучатель антенны, поддерживаемый 18 тросами с трех высоких башен по краям тарелки-рефлектора. Гигантская конструкция позволяет Аресибо ловить электромагнитное излучение относительно большого диапазона - с длиной волны от от 3 см до 1 м.

Введенный в строй еще в 60-х годах, этот радиотелескоп использовался в бесчисленных исследованиях и успел помочь сделать ряд значительных открытий (вроде первого обнаруженного телескопом астероида 4769 Castalia). Однажды Аресибо даже обеспечил ученых Нобелевской премией: в 1974 году были награждены Халс и Тейлор за первое в истории обнаружение пульсара в двойной звездной системе (PSR B1913+16).

В конце 1990-х годов обсерватория также стала использоваться в качестве одного из инструментов американского проекта по поиску внеземной жизни SETI.


Arecibo Observatory / Wikimedia Commons

5. Atacama Large Millimeter Array

Диаметр главного зеркала: 12 и 7 метров

Местонахождение: Чили, пустыня Атакама, 5058 метров над уровнем моря

Тип: радиоинтерферометр

На данный момент этот астрономический интерферометр из 66 радиотелескопов 12-и и 7-метрового диаметра является самым дорогим действующим наземным телескопом. США, Япония, Тайвань, Канада, Европа и, конечно, Чили потратили на него около 1,4 миллиарда долларов.

Поскольку предназначением ALMA является изучение миллиметровых и субмиллиметровых волн, наиболее благоприятным для такого аппарата является сухой и высокогорный климат; этим объясняется расположение всех шести с половиной десятков телескопов на пустынном чилийском плато в 5 км над уровнем моря.

Телескопы доставлялись постепенно: первая радиоантенна начала функционировать в 2008 году, а последняя - в марте 2013 года, когда ALMA и был официально запущен на полную запланированную мощность.

Главной научной целью гигантского интерферометра является изучение эволюции космоса на самых ранних стадиях развития Вселенной; в частности, рождения и дальнейшей динамики первых звезд.


Радиотелескопы системы ALMA / ESO/C.Malin

4. Giant Magellan Telescope

Диаметр главного зеркала: 25,4 метров

Местонахождение: Чили, обсерватория Лас-Кампанас, 2516 метров над уровнем моря

Тип: рефлектор, оптический

Далеко к юго-западу от ALMA в той же пустыне Атакама строится еще один крупный телескоп, проект США и Австралии - GMT. Главное зеркало будет состоять из одного центрального и шести симметрично окружающих его и чуть изогнутых сегментов, образуя единый рефлектор диаметром более чем в 25 метров. Помимо огромного рефлектора, на телескоп будет установлена новейшая адаптивная оптика, которая позволит максимально устранить искажения, создаваемые атмосферой при наблюдениях.

Ученые рассчитывают, что эти факторы позволят GMT получать изображения в 10 раз более четкие, чем снимки Hubble, и вероятно даже более совершенные, чем у его долгожданного наследника - космического телескопа James Webb.

Среди научных целей GMT значится очень широкий спектр исследований - поиск и снимки экзопланет, исследование планетарной, звездной и галактической эволюции, изучение черных дыр, проявлений темной энергии, а также наблюдение самого первого поколения галактик. Рабочий диапазон телескопа в связи с заявленными целями - оптический, ближний и средний инфракрасный.

Закончить все работы предполагается к 2020 году, однако заявлено, что GMT может увидеть «первый свет» уже с 4 зеркалами, как только они окажутся введены в конструкцию. В данный момент идет работа по созданию уже четвертого зеркала.


Концепт Giant Magellan Telescope / GMTO Corporation

3. Thirty Meter Telescope

Диаметр главного зеркала: 30 метров

Местонахождение: США, Гавайи, гора Мауна Кеа, 4050 метров над уровнем моря

Тип: рефлектор, оптический

По своим целям и характеристикам TMT похож на GMT и гавайские телескопы Keck. Именно на успехе Keck и основан более крупный TMT с той же технологией разделенного на множество шестиугольных элементов главного зеркала (только в этот раз его диаметр в три раза больше), а заявленные исследовательские цели проекта почти полностью совпадают с задачами GMT, вплоть до фотографирования самых ранних галактик чуть ли не на краю Вселенной.

СМИ называют разную стоимость проекта, она варьируется от 900 миллионов до 1,3 миллиарда долларов. Известно, что желание участвовать в TMT выразили Индия и Китай, которые согласны взять на себя часть финансовых обязательств.

В данный момент выбрано место для строительства, однако до сих пор ведется противодействие некоторых сил в администрации Гавайев. Гора Мауна Кеа является священным местом для коренных гавайцев, и многие среди них категорически против строительства сверхкрупного телескопа.

Предполагается, что все административные проблемы уже очень скоро будут решены, а полностью завершить строительство планируется примерно к 2022 году.


Концепт Thirty Meter Telescope / Thirty Meter Telescope

2. Square Kilometer Array

Диаметр главного зеркала: 200 или 90 метров

Местонахождение: Австралия и Южная Африка

Тип: радиоинтерферометр

Если этот интерферометр будет построен, то он станет в 50 раз более мощным астрономическим инструментом, чем крупнейшие радиотелескопы Земли. Дело в том, что своими антеннами SKA должен покрыть площадь примерно в 1 квадратный километр, что обеспечит ему беспрецедентную чувствительность.

По структуре SKA очень напоминает проект ALMA, правда, по габаритам будет значительно превосходить своего чилийского собрата. На данный момент есть две формулы: либо строить 30 радиотелескопов с антеннами в 200 метров, либо 150 с диаметром в 90 метров. Так или иначе, протяженность, на которой будут размещены телескопы, будет составлять, согласно планам ученых, 3000 км.

Чтобы выбрать страну, где будет строиться телескоп, был проведен своего рода конкурс. В «финал» вышли Австралия и ЮАР, и в 2012 году специальная комиссия объявила свое решение: антенны будут распределены между Африкой и Австралией в общую систему, то есть SKA будет размещен на территории обеих стран.

Заявленная стоимость мегапроекта - 2 миллиарда долларов. Сумма разделена между целым рядом стран: Великобританией, Германией, Китаем, Австралией, Новой Зеландией, Нидерландами, ЮАР, Италией, Канадой и даже Швецией. Предполагается, что строительство будет полностью завершено к 2020 году.


Художественное изображение 5-километрового ядра SKA / SPDO/Swinburne Astronomy Production

1. European Extremely Large Telescope

Диаметр главного зеркала: 39.3 метра

Местонахождение: Чили, вершина горы Серро Армазонес, 3060 метров

Тип: рефлектор, оптический

На пару лет - возможно. Однако к 2025 году на полную мощность выйдет телескоп, который превзойдет TMT на целый десяток метров и который, в отличии от гавайского проекта, уже находится на стадии строительства. Речь идет о бесспорном лидере среди новейшего поколения крупных телескопов, а именно о Европейском очень большом телескопе, или E-ELT.

Его главное почти 40-метровое зеркало будет состоять из 798 подвижных элементов диаметром в 1,45 метра. Это вместе с самой современной системой адаптивной оптики позволит сделать телескоп настолько мощным, что он, по мнению ученых, сможет не только находить планеты, подобные Земле по размерам, но и сможет с помощью спектрографа изучить состав их атмосферы, что открывает совершенно новые перспективы в изучении планет вне солнечной системы.

Помимо поиска экзопланет, E-ELT займется исследованием ранних стадий развития космоса, попробует измерить точное ускорение расширения Вселенной, проверит физические константы на, собственно, постоянство во времени; также этот телескоп позволит ученым глубже чем когда-либо погрузиться в процессы формирования планет и их первичный химический состав в поисках воды и органики - то есть, E-ELT поможет ответить на целый ряд фундаментальных вопросов науки, включая те, что затрагивают возникновение жизни.

Заявленная представителями Европейской южной обсерватории (авторами проекта) стоимость телескопа - 1 миллиард евро.


Концепт European Extremely Large Telescope / ESO/L. Calçada


Сравнение размеров E-ELT и египетских пирамид / Abovetopsecret

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем . Ученый, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал ее устройство и изготовил образец, который впервые использовал для космических наблюдений. Первый телескоп Галилея имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.Но позволил сделать целую серию замечательных открытий: обнаружить четыре спутника планеты Юпитер , фазы Венеры , пятна на Солнце, горы на поверхности Луны, наличие у диска Сатурна придатков в двух противоположных точках.

Прошло более четырехсот лет - на земле и даже в космосе современные телескопы помогают землянам заглянуть в далекие космические миры. Чем больше диаметр зеркала телескопа, тем мощнее оптическая установка.

Многозеркальный телескоп

Расположен на горе Маунт-Хопкинс, на высоте 2606 метров над уровнем море, в штате Аризона в США . Диаметр зеркала этого телескопа – 6,5 метров . Этот телескоп был построен еще в 1979 году. В 2000 году он был усовершенствован. Многозеркальным он называется, потому что состоит из 6 точно подогнанных сегментов, составляющих одно большое зеркало.


Телескопы Магеллана

Два телескопа, “Магеллан -1″ и “Магеллан-2″, находятся в обсерватории “Лас-Кампанас” в Чили , в горах, на высоте 2400 м, диаметр их зеркал 6,5 м у каждого . Телескопы начали работать в 2002 году.

А 23 марта 2012 года начато строительство еще одного более мощного телескопа «Магеллан» - «Гигантского Магелланова Телескопа», он должен вступить в строй в 2016-м. А пока взрывом была снесена вершина одной из гор, чтобы расчистить место для строительства. Гигантский телескоп будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали “Семиглаз”.


Разлученные близнецы телескопы «Джемини»

Два телескопа-брата, каждый из которых расположен в другой части света. Один – «Джемини север» стоит на вершине потухшего вулкана Мауна-Кеа на Гавайях , на высоте 4200 м. Другой – «Джемини юг», находится на горе Серра-Пачон (Чили) на высота 2700 м.

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра , построены они в 2000 г. и принадлежат обсерватории «Джемини». Телескопы расположены на разных полушариях Земли, чтобы было доступно для наблюдения все звездное небо. Системы управления телескопами приспособлены для работы через интернет, поэтому астрономам не приходится совершать путешествия к разным полушариям Земли. Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. Эти телескопы созданы по самым совершенным технологиям, что делает обсерваторию «Джемини» одной из передовых астрономических лабораторий на сегодняшний день.


Северный "Джемини" на Гаваях

Телескоп «Субару»

Этот телескоп принадлежит Японской Национальной Астрономической Обсерватории. А расположен на Гавайях, на высоте 4139 м, по соседству с одним из телескопов «Джемини». Диаметр его зеркала – 8,2 метра . «Субару» оснащенкрупнейшим в мире «тонким» зеркалом.: его толщина – 20 см., его вес - 22,8 т. Это позволяет использовать систему приводов, каждый из которых передает свое усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться самого лучшего качества изображения.

С помощью этого зоркого телескопа была открыта самая далекая из известных на сегодняшний день галактик, расположенная на расстояние 12,9 млрд. св. лет, 8 новых спутников Сатурна, сфотографированы протопланетные облака.

Кстати, «субару» по-японски значит «Плеяды» - название этого красивейшего звездного скопления.


Японский телескоп "Субару" на Гаваях

Телескоп Хобби-Эберли (НЕТ)

Расположен в США на горе Фолкс, на высоте 2072 м, и принадлежит обсерватории Мак-Дональд. Диаметр его зеркала около 10 м . Несмотря на внушительные размеры, Хобби-Эберли обошелся своим создателям всего в 13,5 млн. долларов. Сэкономить бюджет удалось благодаря некоторым конструктивным особенностям: зеркало у этого телескопа не параболическое, а сферическое, не цельное – состоит из 91 сегмента. К тому же зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Все это значительно удешевляет конструкцию. Специализируется этот телескоп на спектрографии и успешно используется для поиска экзопланет и измерения скорости вращения космических объектов.


Большой южноафриканский телескоп (SALT)

Принадлежит Южно-африканской Астрономической Обсерватории и находится в ЮАР , на плато Кару , на высоте 1783 м. Размеры его зеркала 11х9,8 м . Оно крупнейшее в Южном полушарии нашей планеты. А изготовлено в России , на «Лыткаринском заводе оптического стекла». Этот телескоп стал аналогом телескопа Хобби-Эберли в США. Но был модернизирован – откорректирована сферическая аберрация зеркала и увеличено поле зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии небесных объектов с большим разрешением.


Самый большой телескоп в мире ()

Стоит на вершине потухшего вулкана Мучачос на одном из Канарских островов, на высоте 2396 м. Диаметр главного зеркала – 10,4 м . В создании этого телескопа принимали участие Испания , Мексика и США. Между прочим, этот интернациональный проект обошелся в 176 млн. долларов США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа, составленное из 36 шестиугольных частей – крупнейшее из существующих на сегодняшний день в мире. Хотя это и самый большой телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим показателям, так как в мире существуют системы, превосходящие его по своей зоркости.


Расположен на горе Грэхем, на высоте 3,3 км, в штате Аризона (США). Этот телескоп ринадлежит Международной Обсерватории Маунт-Грэм и строился на деньги США, Италии и Германии . Сооружение представляет собой систему из двух зеркал диаметром по 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м . Центры двух зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа "Хаббла". Оба зеркала Большого Бинокулярного Телескопа являются частью одного оптического прибора и вместе представляют собой один огромный бинокль – самый мощный оптический прибор в мире на данный момент.


Телескопы Вильяма Кека

Keck I и Keck II – еще одна пара телескопов-близнецов. Располагаются по соседству с телескопом «Субару» на вершине гавайского вулкана Мауна-Кеа (высота 4139 м). Диаметр главного зеркала каждого из Кеков составляет 10 метров - каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского. Но эта система телескопов превосходит Канарский по «зоркости». Параболические зеркала этих телескопов составлены из 36 сегментов, каждый из которых снабжен специальной опорной системой, с компьютерным управлением.Атакама в горном массиве чилийских Анд, на горе Параналь, 2635 м над уровнем моря. И принадлежит Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Система из четырех телескопов по 8,2 метра, и еще четырех вспомогательных по 1,8 метра по светосиле эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Каждый из четырех телескопов может работать и отдельно, получая фотографии, на которых видны звезды до 30-й звездной величины. Все телескопы сразу работают редко, это слишком затратно. Чаще каждый из больших телескопов работает в паре со своим 1,8 метровым помощником. Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «большого брата», занимая наиболее выгодное для наблюдения данного объекта положение. Очень Большой Телескоп – самая продвинутая астрономическая система в мире. На нем была сделана масса астрономических открытий, например, было получено первое в мире прямое изображение экзопланеты.

Космический телескоп «Хаббл» - совместный проект NASA и Европейского космического агентства, автоматическая обсерватория на земной орбите, названная в честь американского астронома Эдвина Хаббла. Диаметр его зеркала только 2,4 м, что меньше самых больших телескопов на Земле. Но из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7 - 10 раз больше аналогичного телескопа, расположенного на Земле . «Хаббл» принадлежит множество научных открытий: столкновение Юпитера с кометой, изображение рельефа Плутона , полярные сияния на Юпитере и Сатурне...

Но цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 раз, чем наземного рефлектора с 4-метровым зеркалом.


Телескоп "Хаббл" на земной орбите



Понравилась статья? Поделитесь с друзьями!