Каковы строение и функции углеводов в клетке. Простые и сложные углеводы: стоит ли их бояться? Суточная норма углеводов

В основе строения биологических молекул лежит способность атомов углерода образовывать ковалентные связи, обычно с атомами углерода, кислорода, водорода или азота. Молекулы могут иметь форму длинных цепей или формировать кольцевые структуры.

Среди органических молекул, входящих в состав клетки выделяют углеводы, липиды, белки, нуклеиновые кислоты.

Углеводы – это полимеры, которые образуются из моносахаридов путем гликозидного связывания. Моносахариды объединяются путем конденсации (реакция сопровождается выделением молекулы воды).

Углеводы делятся на простые (моносахариды) и сложные (полисахариды). Среди моносахаридов по числу углеродных атомов различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С), гептозы (7С). В растворах пентозы и гексозы могут принимать циклическую форму.

Две молекулы моносахарида соединяются между собой с выделением молекулы воды и образуется дисахарид. Типичные примеры дисахаридов – сахароза (глюкоза + фруктоза), мальтоза (глюкоза + глюкоза), лактоза (галактоза + глюкоза). Дисахариды по своим свойствам похожи на моносахариды. Они хорошо растворяются в воде и сладкие на вкус.

Если количество моносахаридов увеличивать, то растворимость снижается, исчезает сладкий вкус.

Моносахариды, которые часто встречаются в природе – это глицериновый альдегид, рибоза, рибулоза, дезоксирибоза, фруктоза, галактоза.

Глицериновый альдегид участвует в реакциях фотосинтеза. Рибоза входит в состав РНК, АТФ. Дезоксирибоза входит в состав ДНК. Рибулоза в чистом виде в природе не встречается, а ее фосфорный эфир участвует в реакциях фотосинтеза. Фруктоза участвует в превращениях крахмала. Галактоза входит в состав лактозы.

Полисахариды, которые часто встречаются в природе – крахмал, гликоген, целлюлоза, хитин, инулин.

Крахмал состоит из двух полимеров α – глюкозы. Гликоген – это полимер α – глюкозы. Он является запасным питательным веществом в животных клетках. Целлюлоза – это полимер β – глюкозы. Входит в состав клеточной стенки растений. Целлюлоза состоит из параллельных цепей, которые соединяются водородными связями. Такое поперечное связывание предотвращает проникновение воды. Целлюлоза очень устойчива к гидролизу и является структурной молекулой.

Конец работы -

Эта тема принадлежит разделу:

Современные методы исследования клетки

Электронная микроскопия.. физики предложили использовать вместо пучка света пучок электронов электроны.. трансмиссионный электронный микроскоп..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Световая микроскопия
Клетка и ее органеллы были открыты с помощью светового микроскопа. Изображение некоторых органелл было сложно рассмотреть, так как они были прозрачны. В последствии были разработаны различные метод

Клеточная теория
Клетки –структурные и функциональные единицы живых организмов. Подобное представление, известное как клеточная теория, сложилась постепенно в девятнадцатом веке в результате микрос

Вода и неорганические соединения, их роль в клетке
На первом месте среди веществ клеток находится вода. Ее содержание зависит от вида организма, условий его местообитаний и т.д. Например, содержание воды в эмали зуба – 10%, в нервных клетк

Липиды, их роль в клетке
Липиды – это эфиры какого-либо спирта и жирных кислот. Они разнообразны по своему строению. Выделяют несколько групп липидов. Триацилглицеролы (или настоящие

Белки, их строение и функции
Белки входят в состав всех растительных и животных тканей. В клетках и тканях встречаются более 170 различных аминокислот. В составе белков обнаруживается лишь 26 из них. Обычными компонентами белк

Функции белков
Энергетическая – при полном расщеплении 1 г белка выделяется 17,6 кДж энергии. Структурная – белки входят в состав всех клеточных мембран и органоидов клетки, а также в

Ферменты
Ферменты –это специфические белки, которые присутствуют во всех живых организмах. Они играют роль биологических катализаторов. Ферменты могут являться простыми белками или сложными

Важнейшие группы ферментов
Номер и название классов Катализируемые реакции Примеры 1. Оксидоредуктазы 2. Трансферазы 3. Гидролазы 4. Лиазы 5. Изомер

Нуклеиновые кислоты
Нуклеиновые кислоты были открыты в 1869 году швейцарским химиком Мишером. Существуют два вида нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота). РНК (рибонуклеиновая

Репликация ДНК
Генетический материал должен быть способен к точному самовоспроизведению при каждом клеточном делении. Каждая цепь ДНК может служить матрицей для синтеза полипептидной цепочки. Такой механизм репли

Биологические мембраны, их строение, свойства и функции. Плазматическая мембрана
Плазматическая мембрана, или плазмалемма, - наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую в

Клеточная стенка растений
Клеточная стенка является одним из важнейших компонентов клеток растений, грибов, имеется у растений. Клеточная стенка выполняет функции: Обеспечивает механическую прочность

Цитоплазма: гиалоплазма, цитоскелет
Живое содержимое эукариотических клеток слагается из ядра и цитоплазмы, которые вместе образуют протоплазму. В состав цитоплазмы входят основное водянистое вещество и находящиеся в нем органеллы.

Органоиды клетки, их строение и функции
Пластиды –автономные органеллы растительных клеток. Существуют следующие разновидности пластид: Пропластиды Лейкопласты Этиопласты Хлоропл

Углеводы являются одним из самых важных и самым распространенным на планете классом органических соединений. Роль углеводов в целом можно описать, как своеобразный мост между органическими и неорганическими соединениями. Если рассматривать роль углеводов в жизнедеятельности человека, что следует выделить их участие в регулировании биохимических процессов организма, способствование накоплению и выделению энергии, а также огромное влияние на структуру и пластичность живых клеток.

Влияние углеводов на функционирование и нормализацию всех жизненных процессов организма человека велико. Самая важная роль углеводов в организме – нормализация обмена белков и жиров. В паре с белками, углеводы образуют важные для жизнедеятельности человека соединения, гормоны и ферменты, а также участвуют в секреторных образованиях желез – при выделении слюны, желудочного сока и прочего.

Основным источников углеводов являются продукты растительного происхождения. Такие углеводы, как пектин, клетчатка и крахмал относятся к углеводам сложного типа – полисахаридам. Клетчатка обязательно должна присутствовать в рационе питания человека, так как она способствует нормальной работе кишечника и способствует развитию важных и полезных бактерий в кишечной среде. Пектин же очень важен при выведении вредных веществ из организма, так как он тоже стимулирует пищеварение человека.

Что касается крахмала, то этот сложный углевод довольно долго усваивается организмом, в процессе чего перерабатывается до моносахарозы – глюкозы. Его можно назвать источником энергии длительного действия.

При расщеплении и переработке углеводов запускаются процессы по выделению энергии, необходимой для поддержания нормальной жизнедеятельности организма в целом. При переработке одного грамма углеводов вырабатывается до 4,1 ккал.

Моносахариды или простейшие углеводы состоят из единственной молекулы сахара, являются твердым кристаллическим веществом, способны растворяться в воде и имеют сладкий вкус. Моносахариды могут входить в состав более сложных углеводов. Гидролиз, или растворение сложного вещества водой, сложных углеводов ведет к их распаду на более простые углеводы – моносахариды. А вот моносахариды не подвержены распаду, потому что сами являются простейшим веществом.

К моносахаридам относятся глюкоза, галактоза и фруктоза – самые важные моносахариды для человеческого организма. При расщеплении сложных углеводов, они попадают в кровь и благодаря ей попадают во все органы человека, особенно в печень.

Фруктоза – это так называемый плодовый сахар, содержится в плодовых фруктах и меде. В отличие от глюкозы, фруктоза в два раза слаще и намного медленнее всасывается в кровь.

Галактоза в чистом виде в природе отсутствует. Этот моносахарид в паре с глюкозой образует молочный сахар – лактозу. Лактоза вырабатывается в молочных жирах животного происхождения из глюкозы крови в период кормления – лактации.

Попадая в печень, фруктоза и галактоза подвергаются химическим преобразованиям и таким образом трансформируются в глюкозу.

Что касается глюкозы – то это самый важный моносахарид, необходимый для нормальной жизнедеятельности человеческого организма.

Основная функция - энергетическая

Главным энергетическим источником для клеток человеческого организма является глюкоза – углевод простого типа. Среднее содержание глюкозы в крови составляет 0,6-1,1 г на литр. Пища, насыщенная углеводами, дает возможность организму получить свыше 60% от необходимого энергетического ресурса для нормального функционирования всех органов.

В продуктах и готовых блюдах углеводы представлены в виде сложных соединений – полисахаридов растительного или животного происхождения. А попадая в желудок, происходит их расщепление на простейшие соединения – моносахариды. В организме именно глюкоза составляет 80% всех моносахаридов.

Энергия, которая вырабатывается при переработке глюкозы, дает возможность обеспечить нормальную работу на клеточном уровне головного мозга и мышечной ткани, особенно в периоды сильных нагрузок. Важна глюкоза для головного мозга, так как его клетки не могут самостоятельно синтезировать энергию из поступающих с кровью веществ.

Необходимо более внимательно следить за уровнем глюкозы в организме. При активном образе жизни или достаточно серьезных умственных нагрузках следует увеличить потребление углеводов, чтобы обеспечить организм необходимым запасом глюкозы. Резкое снижение или повышение уровня глюкозы может привести к достаточно серьезным последствиям.

При резком снижении уровня глюкозы мозг начинает испытывать голод, что может привести к обмороку, коме и иногда к летальному исходу. Если падение уровня глюкозы в крови является процессом постепенным – например, при соблюдении диеты, то нехватка энергии негативно отражается не только на физическом, но и на психическом состоянии человека. Его одолевает апатия или депрессия, в мышцах появляется слабость и любое физическое напряжение выполняется с трудом. Умственная деятельность притормаживается, и человек погружается в некое заторможенное состояние.

Переизбыток же глюкозы приводит к таким заболеваниям, как сахарный диабет. К тому же слишком большое количество глюкозы в крови приводит и к нарушениям в работе почек. Они начинают усиленно выводить из организма воду, поэтому человек испытывает сильную жажду или обезвоживание. Это один из симптомов сахарного диабета.

Помимо этого, излишнее содержание глюкозы в крови приводит к активации процессов по накоплению жира в организме. Таким образом, избыток углеводов в рационе питания способствует образованию жировых отложений, что негативно скажется как внешне – на фигуре, так и внутренне – на состоянии здоровья в целом.

Именно поэтому очень важно соблюдать баланс в потреблении углеводов. При активном образе жизни, серьезных физических нагрузках или длительных умственных процессах следует больше потреблять продуктов, в которых содержатся быстроусвояемые углеводы. К таким продуктам относятся выпечка из хлеба, из белой муки, конфеты и шоколад, крупа, алкогольные напитки.

Если же человек ведет менее активный или пассивный образ жизни, мало двигается и физические нагрузки сведены к необходимому минимуму, то в рационе питания должны доминировать продукты с углеводами медленного усвоения. Тогда организм не будет перенасыщен энергией, она будет поступать равномерно. Иначе ее переизбыток негативно отразится на общем состоянии организма, нарушится работа нервной системы и головного мозга, начнется выработка большого количества гормонов и ферментов, которые способствуют «запасанию» жира в тканях.

Функции защитные

Клеточная мембрана и внутриклеточные образования также содержат углеводы или их производные. Поэтому, помимо наполнения организма энергией, углеводы также способствуют синтезу многих важнейших веществ, ферментов, аминокислот и липидов. Такая особенность углеводов способствует укреплению иммунной системы человека, защищая организм от болезнетворных бактерий и вирусов. А некоторые полисахариды глюкозы составляют основу волосяного покрова человека, хрящей и связок.

В своем большинстве все выделения секреции организма, особенно желудочно-кишечного тракта, содержат большое количество углеводов и производных. Поэтому к еще одной важной функции углеводов в организме следует отнести способность активизировать и участвовать в процессах по защите стенок пищевода, кишечника и желудка, а также других полых органов от проникновения болезнетворных и вредных бактерий и вирусов, механического повреждения.

Функции регуляторные

Для нормальной работы кишечника организму необходима клетчатка. Она является сложным полисахаридом, который не растворяется в воде и не поддается ферментированию в желудочно-кишечном тракте человека. При этом большая часть пищи, которую потребляет человек, насыщена клетчаткой. Структура этого полисахарида достаточно грубая, и при его переработке происходят механические раздражения слизистой желудка и кишечника. Такое раздражение приводит к волнообразному сокращению стенок кишечника и желудка, а у человека появляется ощущение сытости. Таким образом, клетчатка является своеобразным чистильщиком, способствует очищению стенок кишечника от шлаковых и иных отложений.

Другие функции

Еще одной функцией углеводов является пластическая функция. Углеводы, попадая в организм с пищей, не только расщепляются и являются первопричиной выработки глюкозы. Гликоген относится к простым углеводам животного типа и представляет собой некое хранилище глюкозы. Этот углевод откладывается в тканях организма, создавая таким образом энергетический запас.

Помимо этого, углеводы входят в состав таких сложных молекул, как дезоксирибозы и ризобы. Благодаря этому углеводы принимают участие в построении ДНК, РНК и АТФ.

Осмотическое давление крови во многом зависит от концентрации глюкозы в крови. Это давление, при котором происходит нормальный обмен между внутриклеточной жидкостью и той, что находится за мембраной клеток. При нормальном состоянии давление на мембрану клетки происходит в такой степени, чтобы клетка была нормальной формы – не съеженная или распухшая. При нормальном осмотическом давлении концентрация глюкозы составляет порядка 100 мг на процент глюкозы. Таким образом, углеводы выполняют регулятивную функцию.

Одним из видов полисахаридов являются олигосахариды. Данный углевод содержит остатки моносахаридов и является частью воспринимающей (рецепторной) части клетки или молекулы-лиганды. Такой вид функций углеводов называется рецепторным.

), не ограничиваются выполнением какой-то одной функции в организме человека. Помимо того, что обеспечение энергией основная функциональная роль углеводов , они так же необходимы для нормальной деятельности сердца, печени, мышц и центральной нервной системы. Являются важной составляющей в регуляции обмена белков и жиров.

Основные биологические функции углеводов, для чего они необходимы в организме

  1. Энергетическая функция.
    Главная функция углеводов в организме человека. Являются основным энергетическим источником для всех видов работ, происходящих в клетках. При расщеплении углеводов высвобождаемая энергия рассеивается в виде тепла или накапливается в молекулах АТФ. Углеводы обеспечивают около 50 – 60 % суточного энергопотребления организма и все энергетические расходы мозга (мозг поглощает около 70% глюкозы, выделяемой печенью). При окислении 1 г углеводов выделяется 17,6 кДж энергии. В качестве основного энергетического источника в организме используется свободная глюкоза или запасенные углеводы в виде гликогена.
  2. Пластическая (строительная) функция.
    Углеводы (рибоза, дезоксирибоза) используются для построения АДФ, АТФ и других нуклеотидов, а также нуклеиновых кислот. Они входят в состав некоторых ферментов. Отдельные углеводы являются структурными компонентами клеточных мембран. Продукты превращения глюкозы (глюкуроновая кислота, глюкозамин и др.) входят в состав полисахаридов и сложных белков хрящевой и других тканей.
  3. Запасающая функция.
    Углеводы запасаются (накапливаются) в скелетных мышцах (до 2%), печени и других тканях в виде гликогена. При полноценном питании в печени может накапливаться до 10% гликогена, а при неблагоприятных условиях его содержание может снижаться до 0,2% массы печени.
  4. Защитная функция.
    Сложные углеводы входят в состав компонентов иммунной системы; мукополисахариды находятся в слизистых веществах, которые покрывают поверхность сосудов носа, бронхов, пищеварительного тракта, мочеполовых путей и защищают от проникновения бактерий и вирусов, а также от механических повреждений.
  5. Регуляторная функция.
    Входят в состав мембранных рецепторов гликопротеидов. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови. Клетчатка из пищи не расщепляется (переваривается) в кишечнике, однако активирует перистальтику кишечного тракта, ферменты, использующиеся в пищеварительном тракте, улучшая пищеварение и усвоение питательных веществ.

Группы углеводов

  • Простые (быстрые) углеводы
    Различают два вида сахаров: моносахариды и дисахариды. Моносахариды содержат одну сахарную группу, как, например, глюкоза, фруктоза или галактоза. Дисахариды образованы остатками двух моносахаридов и представлены, в частности, сахарозой (обычный столовый сахар) и лактозой. Быстро повышают содержание сахара в крови и обладают высоким гликемическим индексом.
  • Сложные (медленные) углеводы
    Полисахариды представляют собой углеводы, содержащие три и более молекул простых углеводов. К данному виду углеводов относятся, в частности, декстрины, крахмалы, гликогены и целлюлозы. Источниками полисахаридов являются крупы, бобовые, картофель и другие овощи. Постепенно повышают содержание глюкозы и имеют низкий гликемический индекс.
  • Неусваиваемые (волокнистые)
    Клетчатка (пищевые волокна), не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Следует заметить, что клетчатка замедляет усвоение углеводов, белков и жиров (может быть полезным при похудении). Является источником питания для полезных бактерий кишечника (микробиом)

Виды углеводов

Моносахариды

  • Глюкоза
    Моносахарид, бесцветное кристаллическое вещество сладкого вкуса, содержится практически в каждой углеводной цепочке.
  • Фруктоза
    Фруктовый сахар в свободном виде присутствует почти во всех сладких ягодах и плодах, самый сладкий из сахаров.
  • Галактоза
    Не встречается в свободной форме; в связанном с глюкозой виде он образует лактозу, молочный сахар.

Дисахариды

  • Сахароза
    Дисахарид, состоящий из комбинации фруктозы и глюкозы, имеет высокую растворимость. Попадая в кишечник, распадается на данные компоненты, которые затем всасываются в кровь.
  • Лактоза
    Молочный сахар, углевод группы дисахаридов, содержится в молоке и молочных продуктах.
  • Мальтоза
    Солодовый сахар, легко усваивается организмом человека. Образуется в результате объединения двух молекул глюкозы. Мальтоза возникает в результате расщепления крахмалов в процессе пищеварения.

Полисахариды

  • Крахмал
    Порошок белого цвета, нерастворимый в холодной воде. Крахмал является наиболее распространенным углеводом в рационе человека и содержится во многих основных продуктах питания.
  • Клетчатка
    Сложные углеводы, представляющие собой жесткие растительные структуры. Составная часть растительной пищи, которая не переваривается в организме человека, но играет огромную роль в его жизнедеятельности и пищеварении.
  • Мальтодекстрин
    Порошок белого или кремового цвета, со сладковатым вкусом, хорошо растворим в воде. Представляет собой промежуточный продукт ферментного расщепления растительного крахмала, в результате чего молекулы крахмала делятся на фрагменты – декстрины.
  • Гликоген
    Полисахарид, образованный остатками глюкозы; основной запасной углевод, нигде кроме организма не встречается. Гликоген, образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы в организме человека.

1. Какие вещества, относящиеся к углеводам, вам известны?

Ответ. Углеводы (сахариды) - общее название обширного класса природных органических соединений. Название происходит от слов «уголь» и «вода». Углеводы делятся на две группы: простые и сложные. Простые углеводы - глюкоза и фруктоза, дисахарид – сахароза, полисахариды – крахмал и целлюлоза

2. Какую роль играют углеводы в живом организме?

Ответ. Углеводы в живом организме выполняют ряд функций: энергетическую, строительную, защитную, запасающую функции.

Вопросы после §9

1. Какие углеводы называют моно-, олиго– и полисахаридами?

Ответ. Моносахариды (от греч. monos – один) – бесцветные кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус. Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза. Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов (крахмала, гликогена, целлюлозы). Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений. Галактоза также входит в состав некоторых олигосахаридов, например лактозы.

Олигосахариды (от греч. oligos – немного) образованы двумя (тогда их называют дисахариды) или несколькими моносахаридами, связанными ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус. Из олигосахаридов наиболее широко распространены дисахариды: сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар).

Полисахариды (от греч. poly – много) являются полимерами и состоят из неопределённо большого (до нескольких сотен или тысяч) числа остатков молекул моносахаридов, соединённых ковалентными связями. К ним относятся крахмал, гликоген, целлюлоза, хитин и др. Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того, у целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.

2. Какие функции выполняют углеводы в живых организмах?

Ответ. Основная функция углеводов – энергетическая. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г углеводов освобождается 17,6 кДж.

Углеводы выполняют запасающую функцию. При избытке они накапливаются в клетке в качестве запасающих веществ (крахмал, гликоген) и при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.

Очень важной является структурная, или строительная, функция углеводов. Они используются в качестве строительного материала. Так, целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20–40 % материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, и именно поэтому они используются для изготовления тканей.

Хитин входит в состав клеточных стенок некоторых простейших и грибов. В качестве важного компонента наружного скелета хитин встречается у отдельных групп животных, например у членистоногих.

Углеводы выполняют защитную функцию. Так, камеди (смолы, выделяющиеся при повреждении стволов и веток растений, например слив, вишен), препятствующие проникновению в раны болезнетворных микроорганизмов, являются производными моносахаридов.

Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.

3. Почему углеводы считаются главными источниками энергии в клетке?

Ответ. Углеводы считаются главными источниками энергии в клетке потому, что при их расщеплении выделяется достаточно количества энергии. Углеводы доступны организму. Расщепление углеводов происходит быстрее, чем остальных органических веществ.

Обычно в клетке животных организмов содержится около 1 % углеводов, в клетках печени их содержание доходит до 5 %, а в растительных клетках – до 90 %. Подумайте и объясните почему.

Ответ. В растительных клетках - большой процент углеводов, т. Так как растения автотрофы и в их клетках постоянно идёт процесс фотосинтеза углеводов.

В печени животных более высокое содержание углеводов, т. к. в её клетках находится запас глюкозы в виде гликогена.

Углеводы являются производными многоатомных спиртов и состоят из углерода, водорода и кислорода. Химики определяют эти соединения как многоатомные оксиальдегиды или многоатомные оксикетоны. Название «углеводы» хотя и является устаревшим, но и по сей день широко используется, в том числе и в научной литературе. Своё название этот класс соединений получил потому, что у большинства из них соотношение водорода и кислорода в молекуле такое же, как и в воде. Общая формула углеводов Cn(H20)m, где n не меньше 3. Однако не все соединения, относящиеся к классу углеводов, соответствуют данной формуле.

Выясните, какие это соединения.

Ответ. Общая формула углеводов Сn(H2O)m. Однако с развитием химии углеводов обнаружены соединения, состав которых не отвечает приведенной общей формуле,но обладающие свойствами веществ своего класса(например,C5H10O4-Дезоксирибоза). Еще одним примером может служить молочная кислота С3Н6 О3.

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой C n (H 2 O) m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С 5 Н 10 О 4) отличается от рибозы (С 5 Н 10 О 5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С 6 Н 12 О 6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

  1. один из самых распространенных моносахаридов,
  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
  3. мономер многих олигосахаридов и полисахаридов,
  4. необходимый компонент крови.

Фруктоза, или фруктовый сахар , относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной .

Сахароза, или тростниковый, или свекловичный сахар , — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар ). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар , — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар , — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2-8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С 6 Н 10 О 5) n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С 6 Н 10 О 5) n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

(С 6 Н 10 О 5) n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

Функции углеводов

Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (-СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок -СН 2 -. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (-СН=СН-), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Функции липидов

Функция Примеры и пояснения
Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.

Защитная Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

Теплоизоляционная Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
Регуляторная Гиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.

Источник метаболической воды При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
Каталитическая Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

    Перейти к лекции №1 «Введение. Химические элементы клетки. Вода и другие неорганические соединения»

    Перейти к лекции №3 «Строение и функции белков. Ферменты»



Понравилась статья? Поделитесь с друзьями!