Карликовая галактика породила молодые звезды после встречи с черным глазом. Карликовая галактика в созвездии скульптор - скромный сосед млечного пути

Карликовые галактики могут быть очень маленькими, но они обладают феноменальной мощностью, которая способна рождать новые звезды. Новые наблюдения с помощью космического телескопа Хаббл показали, что процесс звездообразования в карликовых галактиках играет большую роль в ранней вселенной, чем это принято считать сейчас.

И хотя галактики по всей вселенной до сих пор продолжают формировать новые звезды, большинство их было образовано между двумя и шестью миллиардами лет после Большого Взрыва. Изучение этой ранней эпохи истории вселенной является ключевым моментом, если мы хотим понять как появились первые звезды и как вырастал и развивались первые галактики.

На этом снимке показан участок неба с отмеченными карликовыми галактиками в которых наблюдаются вспышки звездообразования. Снимок получен в рамках программы GOODS (Great Observatories Origins Deep Survey) и демонстрирует только один кадр со всего обзора. Источник: NASA, ESA, the GOODS Team and M. Giavalisco (STScI/University of Massachusetts)

Новое исследование, выполненное с помощью Хаббла и его прибора Wide Field Camera 3 (WFC3) позволило астрономам сделать шаг вперед в понимании той эры, изучив различные виды карликовых галактик ранней вселенной и, в частности, выбрав из них только те, с явными процессами активного звездообразования. Подобные галактики принято называть галактиками со вспышками звездообразования. В таких объектах новые звезды формируются значительно быстрее обычного значения в других галактиках. Предыдущие изучения сосредотачивались в основном на анализе галактик со средней и высокой массой и не учитывали того огромного числа карликовых галактик, которые существовали в эту активную эпоху. Но вина здесь не столько на ученых, которые не хотели исследовать карликовые галактики. Скорее всего это связано с невозможностью увидеть эти маленькие объекты, поскольку они находятся от нас очень далеко. До недавнего времени астрономы могли наблюдать малые галактики на меньших расстояниях или большие галактики на больших расстояниях.

Однако сейчас, с использованием гризмы, астрономы смогли вглядеться в карликовые низкомассовые галактики в отдаленной вселенной и учесть вклад их вспышек звездообразования, аппроксимировав информацию на возможное число существовавших тогда малых галактик. Гризма – это объективная призма, комбинация призмы и дифракционной решётки, которая пропускает свет не смещая его спектр. Буква “Г” в названии от grating (решётка).

“Мы всегда предполагали, что карликовые галактики со вспышками звездообразования будут существенно влиять на процессы рождения новых звезд в молодой вселенной, но это – первый раз, когда мы в состоянии измерить тот эффект, которым они фактически обладают. И, по всей видимости, они играли существенную, если не ключевую роль”, – Хаким Атек из швейцарского Политехнического университета.

“Эти галактики формируют звезды так быстро, что они могли фактически удвоить всю свою звездную массу всего через 150 миллионов лет. Для сравнения, показатели звездной массы для обычных галактик удваиваются в среднем за 1-3 миллиарда лет”, – добавляет соавтор работы Жан-Поль Кнейб.

Снимок галактик в режиме гризмы на примере камеры Wide Field Camera 3, установленной на Хаббле и работающей в этом режиме спектроскопии. Протяженные радужные линии есть ни что иное как галактики, попавшие в объектив, но в режиме гризмы они представлены в виде радужного спектра. Благодаря этому ученые в состоянии оценивать химический состав космических объектов.

Любая звезда представляет собой огромный газовый шар, который состоит из гелия и водорода, а также следов других химических элементов. Звезд существует огромное количество и все они отличаются своими размерами и температурой, а некоторые из них состоят из двух и более звезд, которые связаны между собой силой гравитации. С Земли некоторые звезды видны невооруженным глазом, а некоторые можно рассмотреть только в телескоп. Однако, даже имея специальное оборудование, далеко не каждую звезду можно рассмотреть так, как этого хочется, и даже в мощные телескопы некоторые звезды будут выглядеть не более, чем просто светящиеся точки.

Таким образом, простой человек, имеющий достаточно хорошую остроту зрения, в ясную погоду на ночном небосводе может увидеть из одного земного полушария порядка 3000 звезд, однако, на самом деле, в Галактике их существует значительно больше. Все звезды классифицируются в соответствии с размером, цветом, температурой. Таким образом, бывают карлики, гиганты и сверхгиганты.

Звезды карлики бывают следующих типов:

  • желтый карлик. Данный тип представляет собой небольшие звезды главной последовательности спектрального класса G. Их масса колеблется в пределах от 0,8 до 1,2 массы Солнца.
  • оранжевый карлик. К данному типу относятся небольшие звезды главной последовательности спектрального класса К. Их масса составляет 0,5 - 0,8 массы Солнца. В отличие от желтых карликов, оранжевые карлики характеризуются более длительной продолжительностью жизни.
  • красный карлик. Этот тип объединяет маленькие и относительно холодные звезды главной последовательности спектрального класса М. Их отличия от других звезд достаточно ярко выражены. Они имеют такой диаметр и массу, которые не более, чем 1/3 от Солнечной.
  • голубой карлик. Этот тип звезд гипотетический. Голубые карлики эволюционируют из красных карликов перед тем, как произойдет выгорание всего водорода, после чего они, предположительно, эволюционируют в белые карлики.
  • белый карлик. Это тип уже проэволюционировавших звезд. Они имеют такую массу, которая не более массы Чандрасекара. Белые карлики лишены собственного источника термоядерной энергии. Они относятся к спектральному классу DA.
  • черный карлик. Этот тип представляет собой остывшие белые карлики, которые, соответственно, не излучают энергии, т.е. не светятся, или же излучают ее очень-очень слабо. Они представляют собой конечную стадию эволюции белых карликов в отсутствие аккреции. Масса черных карликов, так же как и белых, не превышают массы Чандрасекара.
  • коричневый карлик. Данные звезды представляют собой субзвездные объекты, которые имеют массу от 12,57 до 80,35 масс Юпитера, что, в свою очередь, соответствует 0,012 - 0,0767 массам Солнца. Коричневые карлики отличаются от звезд главной последовательности тем, что в их недрах не протекает реакция термоядерного синтеза, в результате которой в других звездах водород превращается в гелий.
  • субкоричневые карлики или коричневые субкарлики. Представляют собой абсолютно холодные образования, масса которых ниже предела коричневых карликов. В большей степени их принято считать планетами.

Итак, можно отметить, что звезды, относящиеся к белым карликам, это те звезды, которые имеют изначально небольшой размер и находятся на свой конечной стадии эволюции. История открытия белых карликов уходит в относительно недалекий 1844 год. Именно в то время немецким астрономом и математиком Фридрихом Бесселем во время наблюдения за Сириусом было обнаружено небольшое отклонение звезды от прямолинейного движения. В результате этого, Фридрих предположил, что у Сириуса присутствует невидимая массивная звезда-спутник. Это предположение подтвердилось в 1862 году американским астрономом и телескопостроителем Альваном Грэхэмом Кларком во время юстировки самого крупного на то время рефрактора. Возле Сириуса была обнаружена неяркая звезда, получившая в дальнейшем название Сириус Б. Данная звезда характеризуется низкой светимостью, а ее гравитационное поле воздействует на своего яркого партнера достаточно заметно. Это, в свою очередь, является подтверждением того, что это звезда имеет очень малый радиус при значительной ее массе.

Какие звезды карлики

Карликами называются проэволюционировавшие звезды, имеющие массу, которая не превышает предел Чандрасекара. Образование белого карлика происходит в результате выгорания всего водорода. Когда водород выгорает, происходит сжатие ядра звезды до больших плотностей, в это же время внешние слои сильно расширяются и сопровождаются общим потускнением светимости. Таким образом звезда сначала превращается в красного гиганта, который сбрасывает свою оболочку. Сброс оболочки происходит по причине того, что внешние слои звезды имеют крайне слабую связь с центральным горячим и очень плотным ядром. Впоследствии данная оболочка становится расширяющей планетарной туманностью. Стоит обратить внимание на то, что красные гиганты и белые карлики имеют очень тесную взаимосвязь.

Все белые карлики подразделяются на две спектральные группы. К первой группе относятся карлики, имеющие «водородный» спектральный класс DA, в котором нет спектральных линий гелия. Данный тип является наиболее распространенным. Второй тип белых карликов - DB. Он более редкий и называется «гелиевый белый карлик». В спектре звезд данного типа не обнаружено водородных линий.

По мнению американского астронома Ико Ибена указанные типы белых карликов образуются совершенно разными путями. Это связано с тем, что горение гелия в красных гигантах является неустойчивым и периодически происходит развитие слоевой гелиевой вспышки. Также Ико Ибен предположил механизм, по которому происходит сброс оболочки в разные стадии развития гелиевой вспышки - на ее пике и между вспышками. Соответственно, на его образование влияет механизм сброса оболочки.

Мессье 32, или М32, относится к типу карликовых галактик эллиптической формы. Расположена в созвездии Андромеды. М32 обладает видимой величиной в 8,1 с угловым размером – 8 х 6 угловых минут. Галактика удалена от нашей планеты на 2,9 млн световых лет. По данным Equinox 2000, выведены следующие координаты: прямое восхождение 0 ч. 42,8 мин.; склонение +40 ° 52′. Благодаря этому галактику можно увидеть на протяжении всей осени.

Мессье 32 относится к двум эллиптическим галактикам спутников Великой Андромеды, которые можно наблюдать на предоставленных изображениях. По нижней кромке объекта М31 галактика М32 является самой близкой галактикой, в то время как объект М110 – самая отдаленная галактика по правой верхней кромке. М31 – большая галактика Андромеды, представлена ярким небесным объектом, допустимым для наблюдений невооруженным глазом. Мессье 31, Мессье 32 и Мессье 110 относятся к Местной группе галактик. В нее входят также галактика Треугольника и Млечный Путь.

На предоставленных изображениях видны несжатые фотографии всех трех объектов – М31, М32 и М110. Все фото были сделаны при помощи астрографа Takahashi E-180. Рядом находится изображение трехкратного увеличения центра галактики Мессье 32.

Объект был включен в каталог Мессье, однако его обнаружил французский ученый Ле Жантиль в 1749 году. Опираясь на данные передовых исследователей 2010 года, можно вычислить примерные данные об этой галактике. Расстояние от Земли до Мессье 32 составляет 2,57 млн световых лет, примерная масса варьируется в пределах 3000000000 масс Солнца, а диаметр достигает отметки в 6500 световых лет.

Наблюдения

М32 относится к малым галактикам, но имеет яркую эллиптическую форму. Когда любители рассматривают Туманности Андромеды, именно данный объект покажется им странным. Даже самый обычный телескоп покажет особенности диффузной природы галактики. Она находится по направлению в полградуса на юг от центра галактики М31. Если рассматривать М32 в среднего качества телескоп, можно увидеть звездообразное ядро и компактное, плавно спадающее по яркости овальное гало.

Соседствующие объекты из каталога Мессье

Первый сосед галактики М32 – его физический спутник Туманность Андромеды. Это спиральная сверхгигантская галактика. Второй соседствующей галактикой является эллиптическая М110, а третьей – М31, спутник, который находится по другую сторону от объекта Мессье 32.

Благодаря Карликовой галактике можно увидеть шаровое скопление G156. Оно принадлежит объекту М31. Лучшим инструментом для наблюдения послужит телескоп с апертурой в 400 мм.

Описание Мессье 32 в каталоге

Август 1764 года

Ниже пояса Андромеды на несколько минут располагается небольшая беззвездная туманность. В сравнении с поясом эта небольшая туманность имеет более тусклый свет. Ее обнаружил Ле Жантиль 29 октября 1749 года, а в 1757 году ее увидел Мессье.

Технические детали фотографии Мессье 32

    Объект: М32

    Другие обозначения: NGC 221

    Тип объекта: Карликовая эллиптическая галактика

    Позиция: Астрономическая обсерватория Бифрост

    Монтировка: Astro-Physics 1200GTO

    Телескоп: Гиперболический астрограф TakahashiEpsilon 180

    Камера : Canon EOS 550D (Rebel T2i) (светофильтрBaader UV/IR filter)

    Экспозиция: 8 x 300s, f/2.8, ISO 800

    Оригинальный размер фотографии: 3454 × 5179 pixels (17.9 MP); 11.5″ x 17.3″ @ 300 dpi

На изображении показана Карликовая галактика в созвездии Скульптор (Sculptor Dwarf Galaxy). Снимок был получен прибором Wide Field Imager, который установлен на 2.2-метровом телескопе MPG/ESO Европейской южной обсерватории в Ла-Силья. Эта галактика является одним из соседей нашего Млечного Пути. Но, несмотря на такое близкое расположение друг к другу, у этих двух галактик совершенно различные история возникновения и эволюции, можно сказать, что их характеры совершенно разные. Карликовая галактика в Скульпторе намного меньше и старее Млечного Пути, из-за чего она стала очень ценным объектом для изучения тех процессов, которые приводили к рождению новых звёзд и других галактик в ранней Вселенной. Однако, из-за того, что она излучает очень мало света, её изучение сильно затруднено.

Карликовая галактика в созвездии Скульптор относится к подклассу карликовых сфероидальных галактик и является одной из четырнадцати галактик-спутников, которые вращаются вокруг Млечного Пути. Все они расположены близко друг к другу в области гало нашей Галактики, которая представляет собой сферическую область, простирающуюся далеко за границами спиральных рукавов. Как следует из названия, эта карликовая галактика расположилась в созвездии Скульптора и лежит на расстоянии 280000 световых лет от Земли. Несмотря на её близость, она была обнаружена только в 1937 году с появлением новых мощных приборов, поскольку звёзды её составляющие очень слабы и кажется , будто они разбросаны по всему небу. Также не стоит путать эту галактику и NGC 253, которая расположилась в том же созвездии Скульптор, но выглядит намного ярче и является спиральной с перемычкой.

Карликовая галактика в созвездии Скульптор. Источник: ESO

Информация о снимке

Информация о снимке

Несмотря на всю трудность своего обнаружения, эта карликовая галактика была среди первых слабых карликовых объектов, обнаруженных в области вокруг Млечного Пути. Её странная форма заставляет задумываться астрономов с момента открытия и до сегодняшнего дня. Но в наше время астрономы уже привыкли к сфероидальным галактикам и поняли, что такие объекты позволяют заглянуть далеко в прошлое Вселенной.

Считается, что Млечный Путь, впрочем, как и все большие галактики, сформировался в результате слияния с меньшими объектами в течение первых лет существования Вселенной. И если некоторые из этих малых галактик всё ещё существуют в наши дни, то они должны содержать в себе много чрезвычайно старых звёзд. Именно поэтому Карликовая галактика в созвездии Скульптор отвечает всем требованиям, которые предъявляются к первородным галактикам. Как раз эти древние звёзды и можно наблюдать на данном изображении.

Астрономы научились определять возраст зв ёзд в галактике по характерным подписям, которые присутствуют в их световом потоке. Это излучение несёт в себе очень мало признаков наличия в этих объектах тяжёлых химических элементов. Дело в том, что такие химические соединения имеют тенденцию накапливаться в галактиках при смене поколений звёзд. Таким образом, малые концентрации тяжёлых молекул указывают на то, что средний возраст зв ёзд в этой сфероидальной галактике достаточно высокий.

Область неба вокруг карликовой галактики в созвездии Скульптор.

Исследование учёных показывает, насколько сильно на самом деле распространен этот тип звезд в нашей галактике и какое активное участие они принимают в формировании новых звезд.

Цифры показывают, что на 2 -3 звезды других классов приходится как минимум 1 коричневый карлик.

Данный тип космических объектов явно выделяется на фоне остальных.

Они слишком большие и горячие (в 15 -80 раз массивнее нашего Юпитера), чтобы их можно было классифицировать как планеты, но при этом слишком меленькие, чтобы являться полноценными звездами — у них не хватает массы для поддержания стабильного синтеза водорода в ядре.

Тем не менее коричневые карлики изначально формируются так же, как обычные звезды, поэтому их нередко называют неудавшимися звездами.

Eщё в 2013 году астрономы начали подозревать, что коричневые карлики являются довольно частым явлением для нашей галактики, подсчитав приблизительное их количество в районе 70 миллиардов.

Однако новые данные, представленные на конференции National Astronomy M eeting, проходившей на днях в английском Университете Халла, говорят о том, что подобных космических объектов в нашей галактике может присутствовать около 100 миллиардов.

Если учесть, что весь Млечный Путь может содержать по примерным оценкам до 400 миллиардов звезд, то количество коричневых карликов одновременно впечатляет и разочаровывает.

Для уточнения результатов астрономы провели исследование более тысячи коричневых карликов, расположенных в радиусе не более 1500 световых лет. Так как звезды подобного класса весьма тусклые, наблюдение за ними на более дальних дистанциях представляется крайне сложным, если не сказать невозможным занятием.

Большинство из известных нам коричневых карликов были обнаружены в областях формирования новых звезд, известных как скопления.

Одним из таких скоплений является объект NGC 133 , в котором содержится практически столько же коричневых карликов, сколько и обычных звезд.

Это показалось весьма странным для Алекса Шольца из Сент-Эндрюсского университета и его коллеги Коральки Мужич из Лиссабонского университета. Для более детального понимания частоты появления на свет коричневых карликов внутри звездных скоплений различной плотности исследователи решили поискать более удаленные карлики в более плотном звездном скоплении RC W38 .

Для возможности рассмотреть далекое скопление, расположенное примерно в 5000 световых годах от нас, астрономы использовали камеру NAC O с адаптивной оптикой, установленной на Очень большом телескопе Европейской южной обсерватории.

Как и рамках предыдущих наблюдений, в этот раз учёные тоже обнаружили, что численность коричневых карликов этого скопления составляет практически половину от общего числа находящихся в нем звезд, что, в свою очередь, говорит о том, что частота рождения коричневых карликов совсем не зависит от самого состава звездных скоплений.

« ... Мы обнаружили большое число коричневых карликов в этих скоплениях. Выходит, что независимо от типа скопления, подобный класс звезд встречается довольно часто. А так как коричневые карлики формируются вместе с другими звездами в скоплениях, то можно сделать вывод, что их в нашей галактике действительно очень много... »

— комментирует Шольц.

Речь может идти о цифре в 100 миллиардов. Однако их может быть eщё больше.

Напомним, что коричневые карлики являются весьма тусклыми звездными объектами, поэтому eщё более тусклые их представители могли просто не попасть в поле видимости астрономов.

На момент написания данной статьи результаты последних исследований Шольца ожидали критической проверки сторонними учеными, однако первые комментарии по поводу этих наблюдений порталу Gizmodo дал астроном Джон Омира из Колледжа Сэнт-Мигеля, не принимавший участия в работе, но считающий, что отраженные в ней цифры могут быть верны.

« ... Они приходят к числу 100 миллиардов, делая немало предположений для этого. Но на самом деле вывод о количестве коричневых карликов в звездном скоплении построен на так называемой начальной функции масс, описывающей распределение масс звезд в скоплении. Когда вам известная такая функция и вам известно, с какой частотой галактика формирует звезды, то вы можете высчитать и количество звезд определенного типа. Поэтому если опустить пару допущений, то цифра в 100 миллиардов действительно кажется реальной... »

— прокомментировал Омира.

А сравнив количество коричневых карликов в двух разных скоплениях — с плотным и менее плотным распределением звезд — исследователи показали, что среда, в которой появляются звезды, не всегда является ключевым фактором, регулирующим частоту появления подобного типа звездных объектов.

“Формирование коричневых карликов является универсальной и неотъемлемой частью звездообразования в целом” , — говорит Омира.

Профессор Абель Мендес из Лаборатории по изучению обитаемости планет (Planetary Habitability L aboratory), eщё один астроном, также не принимавший участия в обсуждаемом исследовании, говорит, что цифры в новой работе действительно могут иметь смысл, особенно если учитывать тот факт, что в нашей галактике существенно больше более компактных звездных объектов, нежели более крупных.

« ... Маленькие красные карлики, например, встречаются гораздо чаще всех остальных типов звезд. Поэтому я бы предположил, что новые цифры ─ это скорее даже нижний предел... »

— говорит Мендес.

Есть, конечно, и обратная сторона такой плодовитости коричневых карликов. Большое количество неудавшихся звезд означает и снижение потенциала обитаемости.

Мендес говорит, что коричневые карлики недостаточно стабильны для поддержания среды, которую принято называть обитаемой зоной. К тому же далеко не всем астрономам нравится сам термин “неудавшиеся звезды” .

« ... Лично я предпочитаю не называть коричневые карлики “неудавшимися звездами”, так как, на мой взгляд, они просто не заслуживают звания звезд... »

— комментирует Жаклин Фахерти, астрофизик Американского музея естественной истории.

« ... Я бы назвала их скорее “планетами-переростками”, или просто “сверхпланетами”, так как с точки зрения показателей своих масс они все-таки ближе именно к этим астрономическим объектам, нежели к звездам... »

— говорит учёный.



Понравилась статья? Поделитесь с друзьями!