Ковариация и коэффициент корреляции. Корреляционный момент, непрерывные случайные величины, линейная зависимость

4 страницы (Word-файл)

Посмотреть все страницы


Фрагмент текста работы

где

для дискретных случайных величин Хи У и

, y)dxdy

для непрерывных случайных величин,

Корреляционный момент служит для характеристики связи между случайными величинами. В частности, для независимых случайных величин Х и У корреляционный момент Сху равен нулю.

По определению корреляционный момент имеет размерность, равную произведению размерностей величин Х и У. Это значит, что величина корреляционного момента зависит от единиц измерения случайных величин. Например, если при измерении величин Х и У в сантиметрах получилось С». 2 см2, то при измерении Х и У в миллиметрах получим Сху = 200 мм2. Такая зависимость корреляционного момента от единиц измерения затрудняет сравнение различных систем случайных величин. Чтобы устранить этот недостаток, вводится безразмерная характеристика rry связи между величинами Х и У, называемая коэффициентом корреляции:

Если случайные величины Х и У независимы, то r», = О. Если же случайные величины Хи У связаны точной линейной зависимостью У = ах + Ь, то rxy= l при а>О и Ъ. = - при а z О. Вообще же справедливо двойное неравенство -1 S rxyS

Свойство независимости двух случайных величин Х и У в общем случае не равносильно их некоррелированности (т.е. равенству rn. = 0). Однако для нормально распределенных составляющих двумерной случайной величины это так.

Закон распределения системы двух дискретных случайных величин (Х, Л задан следующей таблицей

) законы распределения случайных величин Х и У;

2) условный закон распределения случайной величины Х при условии, что У = 1;

3) математические ожидания ИХ), Ц У) и центр рассеивания;

4) дисперсии D(X) и ДУЭ;

5) корреляционный момент Сду и коэффициент корреляции Ъ.

1. Сложив вероятности по строкам, получаем вероятности возможных значений случайной величины Х: = 0,4, p(l) = 0,2, р(4) = 0,4. Следовательно, закон распределения величины Х имеет следующий вид

Проверка: 0,4 + 1.

Сложив вероятности по столбцам, получаем вероятности возможных значений случайной величины У: = 0,1, p(l) = 0,3, АЗ) = 0,6. Напишем закон распределения величины У

Проверка: (),l + 0,3 + 0,6 =

2.
Найдем условные вероятности для случайной величины Х при условии, что У = У-2 = 1: p(-l f 1) = -Р12

Так как распределения (Х 1 У = 1) имеет следующую таблицу

З. Исходя из определения, вычисляем математические ожидания:

5. Составим таблицу системы чентривжанных случайных величин

х, У, где У=У-т = У -1,9

Вычислим корреляционный момент:

(-3,9) 0-2,4 (-0,9)

Система двух непрерывных случайных величин (Х, У) имеет равномерное распределение в области D = «х, у) - S х S 3, О S у S х + l} .

) плотность распределения;

2) вероятность Ч Х, У) с попадания в область

3) плотностиЛ(х) и Ку) распределения случайных величин Х и У, а также условные плотности и y(ylx);

4) функции и F20) распределения случайных величин Х и У;

5) математические ожидания М(Х), и центр рассеивания;

6) дисперсии и Ц У);

7) корреляционный момент Сл. и коэффициент корреляции

1. По условию функция плотности имеет вид а, если -lSxS3 и 0SySx+l, О, если (х, у) Е Д

Для нахождения параметра а воспользуемся соотношением f(x, y)dy.dy = , где обл5сть интегрирования D изображена на рис. 7.

Область D ограничена слева и справа прямыми х = -1 и х = 3, а снизу и сверху - прямыми О и У2(х) = х + 1. Переходя к повторному интегралу, имеем:

3

fady= гаур Х +1 Д = fa(x + l)dx =

8а. Так как 8а = 1, ТО а з- и функция ПлОтнОсТи 8

имеет вид

-, если

О, если (х,у) Е).

2. Изобразим область G, которая представляет собой круг радиуса 2 с центром в точке (2, О) (см. рис. 8). Так как функция Ах, у) равна нулю вне

3. Найдем плотностиЛ(х) илу):

поэтому

Следовательно,

Для О S у S 4 аналогично получаем

ГОСУДАРСТВЕННЫЙ КОМИТЕТ ПО НАУКЕ И ТЕХНИКЕ АЗЕРБАЙДЖАНСКОЙ РЕСПУБЛИКИ

БАКИНСКИЙ НАУЧНО-УЧЕБНЫЙ ЦЕНТР

АСПИРАНТА КАФЕДРЫ ДЕТСКОЙ ХИРУРГИИ

АМУ имени Н. НАРИМАНОВА

МУХТАРОВА ЭМИЛЯ ГАСАН оглы

КОРРЕЛЯЦИОННЫЕ МОМЕНТЫ. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

ВВЕДЕНИЕ

Теория вероятности есть математическая наука, изучающая закономерности в случайных явлениях.

Что же понимается под случайными явлениями?

При научном исследовании физических и технических задач, часто приходится встречаться с явлениями особого типа, которые принято называть случайными. Случайное явление - это такое явление, которое при неоднократном воспроизведении одного и того же опыта протекает несколько по-иному.

Приведем пример случайного явления.

Одно и то же тело несколько раз взвешивается на аналитических весах: результаты повторных взвешиваний несколько отличаются друг от друга. Эти различия обусловливаются влиянием различных второстепенных факторов, сопровождающих операцию взвешивания, таких как случайные вибрации аппаратуры, ошибки отсчета показаний прибора и т.д.

Очевидно, что в природе нет ни одного физического явления, в котором не присутствовали бы в той или иной мере элементы случайности. Как бы точно и подробно ни были фиксированы условия опыта, невозможно достигнуть того, чтобы при повторении опыта результаты полностью и в точности совпадали.

Случайности неизбежно сопутствуют любому закономерному явлению. Тем не менее, в ряде практических задач этими случайными элементами можно пренебречь, рассматривая вместо реального явления его упрощенную схему, т.е. модель , и предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом из бесчисленного множества факторов, влияющих на данное явление, выделяют самые главные, основные, решающие. Влиянием остальных, второстепенных факторов просто пренебрегают. Изучая закономерности в рамках некоторой теории, основные факторы, влияющие на то или иное явление, входят в понятия или определения, которыми оперирует рассматриваемая теория.

Как и всякая наука, развивающая общую теорию какого-либо круга явлений, теория вероятностей также содержит ряд основных понятий, на которых она базируется. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие - это значит свести его к другим, более известным. Этот процесс должен быть конечным и заканчиваться на первичных понятиях, которые только поясняются.

Одним из первых понятий в теории вероятности вводится понятие события.

Под событием понимается всякий факт, который в результате опыта может произойти или не произойти.

Приведем примеры событий.

А - рождение мальчика или девочки;

В - избрание того или иного дебюта в шахматной игре;

С - принадлежность к тому или иному зодиакальному знаку.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одна большей, другие - меньшей. Для того чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное число, которое тем больше, чем более возможно событие. Такое число называют вероятностью события. Таким образом, вероятность события есть численная характеристика степени объективной возможности события.

За единицу вероятности принимают вероятность достоверного события, равную 1, а диапазон изменения вероятностей любых событий - числа от 0 до 1.

Вероятность обычно обозначают буквой Р.

Рассмотрим на примере извечной проблемы шекспировского Гамлета "быть или не быть?" как можно определить вероятность события.

Вполне очевидно, что человек, предмет и всякое иное явление может находиться в одном из двух и не более состояний: наличия ("быть") и отсутствия ("не быть"). Т.е., возможных событий две, а произойти может только одно. Это означает, что вероятность, например бытия, равна 1/2.

Помимо понятия события и вероятности, одним из основных понятий теории вероятностей является понятие случайной величины.

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее какое именно.

Случайные величины, принимающие только отдельные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами.

Например:

1. Число выживших и умерших больных.

2. Общее количество детей из поступивших за ночь в больницу больных.

Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называют непрерывными случайными величинами.

Например, ошибка взвешивания на аналитических весах.

Отметим, что современная теория вероятности преимущественно оперирует случайными величинами, а не событиями, на которые в основном опиралась "классическая" теория вероятностей.

КОРРЕЛЯЦИОННЫЕ МОМЕНТЫ. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ.

Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.

Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).

Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.

Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.

Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.

Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.

Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.

В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью . Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.

Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y

имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.

Примеры вероятностной зависимости.

Выберем наугад одного больного с перитонитом. случайная величина Т - время от начала заболевания, случайная величина О - уровень гомеостатических нарушений. Между этими величинами имеется явная зависимость, так как величина Т является одной из наиболее главных причин, определяющих величину О.

В то же время между случайной величиной Т и случайной величиной М, отражающей летальность при данной патологии, имеется более слабая вероятностная зависимость, так как случайная величина хоть и влияет на случайную величину О, однако не является главной определяющей.

Тем более, если рассматривать величину Т и величину В (возраст хирурга), то данные величины практически независимы.

До сих пор мы обсуждали свойства систем случайных величин, давая только словесное разъяснение. Однако существуют числовые характеристики, посредством которых исследуются свойства как отдельных случайных величин, так и системы случайных величин.

Для характеристики корреляционной зависимости между вели­чинами используются коррекляционный момент и коэффициент корреляции.

О п р е д е л е н и е 2. Корреляционным моментом µ xy случайных ве­личин X и Y называют математическое ожидание произведения отклонений этих величин

Для вычисления корреляционного момента дискретных величин используется выражение

(3.12)

а для непрерывных – выражение

(3.13)

З а м е ч а н и е. Корреляционный момент µ xy может быть пере­писан в виде

(3.14)

Действительно, используя свойства математического ожидания (см. §§ 2.2; 2.6), имеем

Т е о р е м а. Корреляционный момент двух независимых случайных величин X и Y равен нулю.

Д о к а з а т е л ь с т в о. Согласно замечанию

а так как Х и Y независимые случайные величины, то (см. §§ 2.2; 2.6)

и, значит, µ xy =0.

Из определения корреляционного момента следует, что он имеет размерность, равную произведению размерностей величин X и Y,т.е. его величина зависит от единиц измерения случайных величин. Поэтому для одних и тех же двух величин величина корреляцион­ного момента может иметь различные значения в зависимости от того, в каких единицах были измерены величины. Для устранения этого недостатка условились за меру связи (зависимости) двух слу­чайных величин X и Yпринять безразмерную величину

где σ х =σ(Х), σ y =σ(Y), называемую коэффициентом корреляции.

П р и м е р 1. Пусть двумерная дискретная случайная величи­на (X,Y)задана законом распределения:

и, значит,

Сложив же вероятности по столбцам, найдем вероятности воз­можных значений Y:

Отсюда закон распределения Y:

Y
p 1\3 1\2 1\6

и, значит,

Следовательно,

Таким образом, коэффициент корреляции

Т е о р е м а. Абсолютная величина корреляционного момента двух случайных величин не превосходит произведения их средних квадратических отклонений:

Д о к а з а т е л ь с т в о. Введя в рассмотрение случайную величи­ну где найдем ее дисперсию. Имеем

(любая дисперсия неотрицательна). Отсюда

Введя случайную величину , аналогично найдем

В результате имеем

О п р е д е л е н и е 2. Случайные величины X и Y называются некоррелированными, если = 0, и коррелированными, если

П р и м е р 1. Независимые случайные величины Х и Y являются некоррелированными, так как в силу соотношения (3.12) = 0.

П р и м е р 2. Пусть случайные величины Х и Y связаны линей­ной зависимостью Найдем коэффициент корреля­ции. Имеем:

Таким образом, коэффициент корреляции случайных величин, свя­занных линейной зависимостью, равен ±1 (точнее, =1, если А>0 и =-1, если А<0).

Отметим некоторые свойства коэффициента корреляции.

Из примера 1 следует:

1) Если X и Y - независимые случайные величины, то коэффи­циент корреляции равен нулю.

Заметим, что обратное утверждение, вообще говоря, неверно. (Доказательство см. в работе .)

2)Абсолютная величина коэффициента корреляции не превосхо­дит единицы:

Действительно, разделив обе части неравенства (3.16) на произ­ведение , приходим к искомому неравенству.

3) Как видно из формулы (3.15) с учетом формулы (3.14), ко­эффициент корреляции характеризует относительную величину отклонения математического ожидания произведения от про­изведения математических ожиданий М(Х) М(Y) величин X и Y. Так как это отклонение имеет место только для зависимых вели­чин, то можно сказать, чтокоэффициент корреляции характеризует тесноту зависимости между X и Y.

3. Линейная корреляция. Этот вид корреляционной зависимости встречается довольно часто.

О п р е д е л е н и е. Корреляционная зависимость между случай­ными величинами Х и Y называется линейной корреляцией, если обе функции регрессии и являются линейными. В этом случае обе линии регрессии являются прямыми; их называют прямыми регрессии.

Выведем уравнения прямой регрессии Y на X, т.е. найдем коэф­фициент линейной функции

Обозначим М(Х) = а, М(Y) = b, М[(Х - а) 2 ] = , М[(Y –b 2)] = . С использованием свойств МО (§§ 2.2; 2.6) находим:

М(Y) = М = М(АХ + В)= АМ(Х) + В,

т.е. b = Аа + В, откуда В=b-Аа.

М(ХY) = М[Хg(Х)\ = М(АХ 2 + ВХ) = АМ(Х 2) + ВМ(Х) = АМ(Х 2) + (b- Аа)а,

или, согласно свойству 1 дисперсии (§§ 2.3; 2.6),

Полученный коэффициент называется коэффициентом регрессии Y на X и обозначается через :

Таким образом, уравнение прямой регрессии Y на X имеет вид

Аналогично можно получить уравнение прямой регрессии X на Y

Для описания системы двух случайных величин, кроме математических ожиданий и дисперсий составляющих пользуются и другими характеристиками, к числу которых относятся корреляционный момент икоэффициент корреляции (кратко было упомянуто в конце Т.8.п.8.6).

Корреляционным моментом (иликовариацией, или моментом связи ) двух случайных величинX иY называется м. о. произведения отклонений этих величин (см. равенство (5) п. 8.6):

Следствие 1. Длякорреляционного момента с.в. X иY также справедливы равенства:

,

где соответствующие централизованные с.в.X иY (см. п.8.6.).

При этом: если
- двумерная д.с.в., то ковариация вычисляется по формуле

(8)
;

если
- двумерная н.с.в., то ковариация вычисляется по формуле

(9)

Формулы (8) и (9) получены на основании формул (6) п.12.1. Имеет место вычислительная формула

(10)

которая выводится из определения (9) и на основании свойств м.о., действительно,

Следовательно, формул (36) и (37) можно переписать в виде

(11)
;

Корреляционный момент служит для характеристики связи между величинами X иY .

Как будет показано ниже, корреляционный момент равен нулю, если X иY являются независимыми;

Следовательно, если корреляционный момент не равен нулю, то X и Y – зависимые случайные величины.

Теорема12.1. Корреляционный момент двух независимых случайных величин X и Y равен нулю, т.е. для независимых с.в. X и Y ,

Доказательство. Так какX иY независимые случайные величины, то их отклонения

и

т акже независимы. Пользуясь свойствами математического ожидания (математическое ожидание произведения независимых с. в. равно произведению математических ожиданий сомножителей
,
, поэтому

Замечание. Из этой теоремы следует, что если
то с.в. X иY зависимы и в таких случаях с.в. X иY называюткоррелированными . Однако из того, что
не следует независимость с.в.X иY .

В этом случае (
с.в.X иY называютнекоррелированными, тем самым из независимости вытекаетнекоррелированность ; обратное утверждение, вообще говоря, неверно (см. далее пример 2.)

Рассмотрим основные свойства корреляционного момента.

C войства ковариации:

1. Ковариация симметрична, т.е.
.

Непосредственно следует из формулы (38).

2. Имеют место равенства:т.е. дисперсия с.в. является ковариацией её с самой собой.

Эти равенства прямо следуют из определения дисперсии и равенство (38) соответственно при

3. Справедливы равенства:

Эти равенства выводятся из определения дисперсии, ковариации с.в.
и, свойств 2.

По определению дисперсии (с учётом централизованности с.в.
) мы имеем

теперь, на основании (33) и свойств 2 и 3, получим первое (со знаком плюс) свойство 3.

Аналогично, вторая часть свойства3, выводится из равенство

4. Пусть
постоянные числа,
тогда справедливы равенства:

Обычно эти свойства называются свойствами однородностью первого порядка и периодичностью по аргументам.

Докажем первое равенство, при этом будем использовать свойства м.о.
.

Теорема 12.2. Абсолютное значение корреляционного момента двух произвольных случайных величин X и Y не превышает среднего геометрического их дисперсий: т.е.

Доказательство. Заметим, чтодля независимых с.в. неравенство выполняется (с.м. теорему 12.1.). Итак, пусть с.в.X и Y зависимые. Рассмотрим стандартные с.в.
и
и вычислим дисперсию с.в.
с учётом свойства 3, имеем: с одной стороны
С другой стороны

Следовательно, с учётом того, что
и- нормированные (стандартизированные) с.в., то для них м.о. равна нулю, а дисперсия равна 1, поэтому, пользуясь свойством м.о.
получим

а следовательно, на основании того, что
получим

Отсюда следует, что т.е.

=

Утверждение доказано.

Из определения и свойства ковариации следует, что она характеризует и степень зависимости с.в., и их рассеяния вокруг точки
Размерность ковариации равна произведению размерностей случайных величинX иY . Другими словами, величина корреляционного момента зависит от единиц измерения случайных величин. По этой причине для одних и тех же двух величинX иY , величина корреляционного момента будет иметь различные значения в зависимости от того, в каких единицах были измерены величины.

Пусть, например, X и Y были измерены в сантиметрах и
; если измерить X иY в миллиметрах, то
Эта особенность корреляционного момента и есть недостатком этой числовой характеристики, так как сравнение корреляционных моментов различных систем случайных величин становится затруднительным.

Для того чтобы устранить этот недостаток, вводят новую числовую характеристику- - «коэффициент корреляции ».

Коэффициентом корреляции
случайных величин
иназывают отношение корреляционного момента к произведению средних квадратических отклонений этих величин:

(13)
.

Так как размерность
равна произведению размерностей величин
и,
имеет размерность величины
σ y имеет размерность величины, то
есть просто число (т.е. «безразмерная величина» ). Таким образом, величина коэффициента корреляции не зависит от выбора единиц измерения с.в., в этом состоитпреимущество коэффициента корреляции перед корреляционным моментом.

В Т.8. п.8.3 нами было введено понятие нормированной с.в.
, формула (18), и доказана теорема о том, что
и
(см. там же теорема 8.2.). Здесь докажем следующее утверждение.

Теорема 12.3. Длялюбых двух случайных величин
и справедливо равенство
.Другими словами, коэффициент корреляции
любых двух с
.в .X и Y равно корреляционному моменту их соответствующих нормированных с.в.
и .

Доказательство. По определениюнормированных случайных величин
и

и
.

Учитывая свойство математического ожидания: и равенство (40) получим

Утверждение доказано.

Рассмотрим некоторые часто встречающие свойства коэффициента корреляции.

Свойства коэффициента корреляции:

1. Коэффициент корреляции по абсолютной величине непревосходит 1, т.е.

Это свойство прямо следует из формулы (41) - определения коффициента корреляции и теоремы 13.5. (см. равенство (40)).

2. Если случайные величины
инезависимы, токоэффициент корреляции равен нулю, т.е.
.

Это свойство является прямым следствием равенства (40) и теоремы 13.4.

Следующее свойство сформулируем в виде отдельной теоремы.

Теорема 12.4.

Если с.в.
имежду собой связаны линейной функциональной зависимостью, т.е.
то

при этом

и наоборот, если
,
то с.в.
и между собой связаны линейной функциональной зависимостью, т.е. существуют постоянные
и
такие, что имеет место равенство

Доказательство. Пусть
тогда на основании свойства 4 ковариации, имеем

и поскольку, , поэтому

Следовательно,
. Равенство в одну сторону получено. Пусть далее,
, тогда

следует рассматривать два случая:1)
и 2)
Итак, рассмотрим первый случай. Тогда по определению
и следовательно из равенства
, где
. В нашем случае
, поэтому из равенства (см. доказательство теоремы 13.5.)

=
,

получаем, что
, значит
постоянна. Так как
и поскольку, то
действительно,

.

Следовательно,


.

Аналогично, показывается, что для
имеет место (проверьте самостоятельно!)

,
.

Некоторые выводы:

1. Если
инезависимыес.в., то

2. Если с.в.
имежду собой связаны линейно, то
.

3. В остальных случаях
:

В этом случае говорят, что с.в.
исвязаны между собойположительной корреляцией, если
в случаях же
отрицательной корреляцией . Чем ближе
к единице, тем больше оснований считать, чтос.в.
исвязаны линейной зависимостью.

Отметим, что корреляционные моменты и дисперсии системы с.в. обычно задаются корреляционной матрицей :

.

Очевидно, что определитель корреляционной матрицы удовлетворяет:

Как уже было отмечено, если две случайные величины зависимы, то они могут быть как коррелированными , так инекоррелированными. Другими словами, корреляционный момент двух зависимых величин может бытьне равен нулю , но может иравняться нулю.

Пример 1. Закон распределения дискретной с.в.задан таблицей


Найти коэффициент корреляции

Решение. Находим законы распределения составляющих
и:


Теперь вычислим м.о. составляющих:

Этих величин можно было находить на основании таблицы распределения с.в.

Аналогично,
находите самостоятельно.

Вычислим дисперсии составляющих при это будем пользоваться вычислительной формулой:

Составим закон распределения
, а затем найдём
:

При составлении таблицы закона распределения следует выполнять действия:

1) оставить лишь различные значения всевозможных произведений
.

2) для определения вероятности данного значения
, нужно

складывать все соответствующие вероятности, находящиеся на пересечении основной таблицы, благоприятствующие наступлению данного значения.

В нашем примере с.в.принимает всего три различных значения
. Здесь первое значение (
) соответствует произведению
из второй строки и
из первого столбца, поэтому на их пересечении находится вероятностное число
аналогично

которое получено из суммы вероятностей, находящихся на пересечениях соответственно первой строки и первого столбца (0,15 ; 0,40; 0,05) и одно значение
, которое находится на пересечении второй строки и второго столбца, и наконец,
, которое находится на пересечении второй строки и третьего столбца.

Из нашей таблицы находим:

Находим корреляционный момент, используя формулу (38):

Находим коэффициент корреляции по формуле (41)

Таким образом, отрицательная корреляция.

Упражнение. Закон распределения дискретной с.в. задан таблицей


Найти коэффициент корреляции

Рассмотрим пример, где окажется две зависимые случайные величины могут бытьнекоррелированными.

Пример 2. Двумерная случайная величина
)
задана функцией плотностью

Докажем, что
и зависимые , нонекоррелированные случайные величины.

Решение. Воспользуемся ранее вычисленными плотностями распределения составляющих
и :

Так как ,то
изависимые величины. Для того, чтобы доказать некоррелированность
и, достаточно убедиться в том, что

Найдем корреляционный момент по формуле:

Поскольку дифференциальная функция
симметрична относительно оси OY , то
аналогично
, в силу симметрии
относительно оси OX . Поэтому, вынося постоянный множитель

Внутренний интеграл равен нулю (подынтегральная функция нечетна, пределы интегрирования симметричны относительно начала координат), следовательно,
, т.е. зависимые случайные величины
и между собой некоррелируют.

Итак, из коррелированности двух случайных величин следует их зависимость, но из некоррелированности ещё нельзя заключить о независимости этих величин.

Однако, для нормально распределённых с.в. такой вывод является исключением, т.е. из некоррелированности нормально распределенных с.в. вытекает их независимость .

Этому вопросу посвящается следующий пункт.

Корреляционные моменты, коэффициент корреляции - это числовые характеристики, тесно связанные во введенным выше понятием случайной величины, а точнее с системой случайных величин. Поэтому для введения и определения их значения и роли необходимо пояснить понятие системы случайных величин и некоторые свойства присущие им.

Два или более случайные величины, описывающих некоторое явление называют системой или комплексом случайных величин.

Систему нескольких случайных величин X, Y, Z, …, W принято обозначать через (X, Y, Z, …, W).

Например, точка на плоскости описывается не одной координатой, а двумя, а в пространстве - даже тремя.

Свойства системы нескольких случайных величин не исчерпываются свойствами отдельных случайных величин, входящих в систему, а включают также взаимные связи (зависимости) между случайными величинами. Поэтому при изучении системы случайных величин следует обращать внимание на характер и степень зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. А в других случаях случайные величины оказаться практически независимыми.

Случайная величина Y называется независимой от случайной величины Х, если закон распределения случайной величины Y не зависит от того какое значение приняла величина Х.

Следует отметить, что зависимость и независимость случайных величин есть всегда явление взаимное: если Y не зависит от Х, то и величина Х не зависит от Y. Учитывая это, можно привести следующее определение независимости случайных величин.

Случайные величины Х и Y называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины Х и Y называются зависимыми.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Понятие "зависимости" случайных величин, которым пользуются в теории вероятностей, несколько отличается от обычного понятия "зависимости" величин, которым пользуются в математике. Так, математик под "зависимостью" подразумевает только один тип зависимости - полную, жесткую, так называемую функциональную зависимость. Две величины Х и Y называются функционально зависимыми, если, зная значение одного из них, можно точно определить значение другой.

В теории вероятностей встречаются несколько с иным типом зависимости - вероятностной зависимостью. Если величина Y связана с величиной Х вероятностной зависимостью, то, зная значение Х, нельзя точно указать значение Y, а можно указать её закон распределения, зависящий от того, какое значение приняла величина Х.

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Т.о., функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой.

Вероятностная зависимость между случайными величинами часто встречается на практике. Если случайные величины Х и Y находятся в вероятностной зависимости, то это не означает, что с изменением величины Х величина Y изменяется вполне определенным образом; это лишь означает, что с изменением величины Х величина Y

имеет тенденцию также изменяться (возрастать или убывать при возрастании Х). Эта тенденция соблюдается лишь в общих чертах, а в каждом отдельном случае возможны отступления от неё.

Примеры вероятностной зависимости.

Выберем наугад одного больного с перитонитом. случайная величина Т - время от начала заболевания, случайная величина О - уровень гомеостатических нарушений. Между этими величинами имеется явная зависимость, так как величина Т является одной из наиболее главных причин, определяющих величину О.

В то же время между случайной величиной Т и случайной величиной М, отражающей летальность при данной патологии, имеется более слабая вероятностная зависимость, так как случайная величина хоть и влияет на случайную величину О, однако не является главной определяющей.

Тем более, если рассматривать величину Т и величину В (возраст хирурга), то данные величины практически независимы.

До сих пор мы обсуждали свойства систем случайных величин, давая только словесное разъяснение. Однако существуют числовые характеристики, посредством которых исследуются свойства как отдельных случайных величин, так и системы случайных величин.

Одной из важнейших характеристик случайной величины нормального распределения является математическое ожидание.

Рассмотрим дискретную случайную величину Х, имеющую возможные значения Х 1 , Х2 , ... , Хn с вероятностями р1 , р2 , ... , рn . нам требуется охарактеризовать каким-то числом положение значений случайной величины на оси абсцисс с учетом того, что эти значения имеют различные значения. Для этой цели обычно пользуются так называемым "средним взвешенным" из значений Хi , причем каждое значение Хi при осреднении должно учитываться с "весом", пропорциональным вероятности этого значения. Таким образом, если обозначить "среднее взвешенное" через М[X] или mx , получим

или, учитывая, что,

Математическим ожиданием случайной величины называется сумма произведений всех возможных значений случайной величины на вероятности этих значений.

Для большей наглядности рассмотрим одну механическую интерпретацию введенного понятия. Пусть на оси абсцисс расположены точки с абсциссами х 1 , х2 , …, хn , в которых сосредоточены соответственно массы р1 , р2 , … , рn , причем. Тогда математическое ожидание есть не что иное, как абсцисса центра тяжести данной системы материальных точек.

Формула (1) для математического ожидания соответствует случаю дискретной случайной величины. Для непрерывной величины Х математическое ожидание, естественно, выражается не суммой, а интегралом:

где - плотность распределения величины Х.

Формула (2) получается из формулы (1), если в ней заменить отдельные значения Хi непрерывно изменяющимся параметром Х, соответствующие вероятности рi элементом вероятности f(x)dx, конечную сумму - интегралом.

В механической интерпретации математическое ожидание непрерывной случайной величины сохраняет тот же смысл - абсциссы центра тяжести в случае, когда масса распределения по оси абсцисс непрерывна с плотностью f(x).

Следует отметить, что математическое ожидание существует не для всех случайных величин, что, однако, по мнению некоторых ученых, не представляет для практики существенного интереса.

Помимо математического ожидания важное значение имеют также другие числовые случайной величины - моменты.

Понятие момента широко применяется в механике для описания распределения масс (статистические моменты, моменты инерции и т.д.). Совершенно теми же приемами пользуются в теории вероятностей для описания основных свойств распределения случайной величины. Чаще всего применяются на практике моменты двух видов: начальные и центральные.

Начальным моментом s-го порядка прерывной случайной величины Х называется сумма вида

Очевидно это определение совпадает с определением начального момента порядка s в механике, если на оси абсцисс в точках х 1 , …, хn сосредоточена масса р1 , …, рn .

Для непрерывной случайной величины Х начальным моментом s-го порядка называется интеграл

Очевидно, что

т.е. начальный момент s-го порядка случайной величины Х есть не что иное, как математическое ожидание s-ой степени этой случайной величины.

Перед тем как дать определение центрального момента введем понятие "центрированной случайной величины".

Пусть имеется случайная величина Х с математическим ожиданием m x . Центрированной случайной величиной, соответствующей величине Х, называется отклонение случайной величины Х от её математического ожидания

Нетрудно видеть, что математическое ожидание центрированной случайной величины равно нулю.

Центрирование случайной величины равносильно переносу начала координат в точку, абсцисса которой равна математическому ожиданию.

Центральным моментом порядка s случайной величины Х называется математическое ожидание s-ой степени соответствующей центрированной случайной величины:

Для прерывной случайной величины s-й центральный момент выражается суммой

а для непрерывной - интегралом

Важнейшее значение имеет второй центральный момент, который называют дисперсией и обозначают D[X]. Для дисперсии имеем

Дисперсия случайной величины есть характеристика рассеивания, разбросанности значений случайной величины около её математического ожидания. Само слово "дисперсия" означает "рассеивание".

Механической интерпретацией дисперсии является не что иное, как момент инерции заданного распределения масс относительно центра тяжести.

На практике часто применяется также величина

называемая средним квадратичным отклонением (иначе - "стандартом") случайной величины Х.

Теперь перейдем к рассмотрению характеристик систем случайных величин.

Начальным моментом порядка k,s системы (Х, Y) называется математическое ожидание произведения X k и Y s ,

xk,s =M.

Центральным моментом порядка k,s системы (Х, Y) называется математическое ожидание произведения k-ой и s-ой степени соответствующих центрированных величин:

Для прерывных случайных величин

где р ij - вероятность того, что система (Х, Y) примем значения (xi , yj ), а сумма рассматривается по всем возможным значениям случайных величин X,Y.

Для непрерывных случайных величин

где f(x,y) - плотность распределения системы.

Помимо чисел k и s, характеризующих порядок момента по отношению к отдельным величинам, рассматривается ещё суммарный порядок момента k+s, равный сумме показателей степеней при Х и Y. Соответственно суммарному порядку моменты классифицируют на первый, второй и т.д. На практике обычно применяются только первые и вторые моменты.

Первые начальные моменты представляют собой математические ожидания величин Х и Y, входящих в систему

у1,0 =mx у0,1 =my.

Совокупность математических ожиданий m x , my представляет собой характеристику положения системы. Геометрически это координаты средней точки на плоскости, вокруг которой происходит рассеивание точки (Х, Y).

Важную роль на практике играют также вторые центральные моменты систем. Два из них представляют собой дисперсии величин Х и Y

характеризующие рассеивание случайной точки в направлении осей Ox и Oy.

Особую роль играет второй смещенный центральный момент:

называемый корреляционным моментом (иначе - "моментом связи")случайных величин Х и Y.

Корреляционный момент есть характеристика системы случайных величин, описывающая, помимо рассеивания величин Х и Y, еще и связь между ними. Для того, чтобы убедиться в этом отметим, что корреляционный момент независимых случайных величин равен нулю.

Заметим, что корреляционный момент характеризует не только зависимость величин, но и их рассеивание. Поэтому для характеристики связи между величинами (Х;Y) в чистом виде переходят от момента K xy к характеристике

где уx , уy - средние квадратичные отклонения величин Х и Y. Эта характеристика называется коэффициентом корреляции величин Х и Y.

Из формулы (3) видно, что для независимых случайных величин коэффициент корреляции равен нулю, так как для таких величин kxy =0.

Случайные величины, для которых rxy =0, называют некоррелированными (несвязанными).

Отметим однако, что из некоррелированности случайных величин не следует их независимость.

Коэффициент корреляции характеризует не всякую зависимость, а только так называемую линейную зависимость. Линейная вероятностная зависимость случайных величин заключается в том, что при возрастании одной случайной величины другая имеет тенденцию возрастать (или же убывать) по линейному закону. Т.о., коэффициент корреляции характеризует степень тесноты линейной зависимости между случайными величинами.

Для определения коэффициента корреляции имеется несколько методов. Однако мы приведем пример с использованием коэффициента корреляции смешанных моментов Пирсона, где

с применением таблицы данных (в нашем примере относительного содержания Т-лимфоцитов в % и уровня IgG в г/л):

Подставив полученные значения в формулу (4), получим

Т.е., коэффициент корреляции динамики Т-лимфоцитов и иммуноглобулина G у детей при перитонитах равен 0,9933, что говорит о высокой связи между данными показателями.



Понравилась статья? Поделитесь с друзьями!